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Abstract

During recent years, ML-based heuristic functions for auto-
mated planning have shown increasing performance. A main
challenge is the level of generalization present in planning:
techniques shall generalize at least across different instances
of the same domain (which results in different sizes of learn-
ing input). To overcome the issue, a common approach is to
use graph representations as input. While GNNs are a natural
choice for learning, other methods have recently been favored
because they show better runtime performance and need less
training data. However, the work has been limited to non-
hierarchical planning so far. We describe the first approach
to learn heuristics for hierarchical planning. We extend the
Instance Learning Graph – a graph structure used in non-
hierarchical planning – to the new setting and show how to
learn heuristic functions based on it. Since our heuristics are
applicable to the lifted model, there is no need to ground it,
thus we combine it with a novel lifted HTN planning system.
Like recent systems in non-hierarchical planning, it grounds
the search space explored so far, but not the entire model prior
to search. Our evaluation shows that our approach is compet-
itive with the lifted systems from the literature, though the
ground systems reach higher coverage.

1 Introduction
During the past years, much work has been done towards
exploiting methods from Machine Learning (ML) in auto-
mated planning: for selecting the best planning system for
a given problem (Sievers et al. 2019; Ma et al. 2020; Fer-
ber and Seipp 2022), for learning policies (Toyer et al. 2018;
Groshev et al. 2018; Rivlin, Hazan, and Karpas 2020; Toyer
et al. 2020; Silver et al. 2024), and for learning heuris-
tic functions (Ferber, Helmert, and Hoffmann 2020; Shen,
Trevizan, and Thiébaux 2020; Ferber et al. 2022; Heller
et al. 2022; Ståhlberg, Bonet, and Geffner 2022, 2023; Chen,
Thiébaux, and Trevizan 2024).

A main problem to overcome is the level of generaliza-
tion present in planning: approaches need to generalize at
least across different instances of the same domain, some
approaches even generalize across domains, similar to sym-
bolic planners in classical planning. Early approaches miti-
gated the issue by using neural network structures inspired
by Convolutional Neural Networks (e.g. Toyer et al. 2018;
2020). Weight sharing between neurons enables scaling
across instances of different size. More recent approaches

use graph structures to represent the planning model, which
are then used in combination with Graph Neural Networks
(GNNs) (e.g. Shen, Trevizan, and Thiébaux 2020, Ståhlberg,
Bonet, and Geffner 2022, or Chen, Thiébaux, and Tre-
vizan 2024).

Recently, Chen, Trevizan, and Thiébaux (2024) have
shown that a combination of features extracted from graphs
using an algorithm based on the Relational Weisfeiler-
Leman (WL) algorithm (Barceló et al. 2022) (originally in-
troduced for testing whether graphs are isomorphic) and
classical ML methods like Support Vector Machines (SVMs)
and Gaussian Processes (GPs) yield good results in learn-
ing heuristics for classical planning, with advantages over
GNN-based approaches regarding the amount of training
data needed and computational runtime. The latter is espe-
cially important when learning heuristic functions, because
these need to be computed very often during search.

However, all of this work has been done in non-
hierarchical planning, mostly in classical planning and some
extensions to numeric planning. In this paper, we describe
the first approach to learning heuristics for hierarchical plan-
ning, more precisely for Hierarchical Task Network (HTN)
planning, the most widely-used hierarchical planning for-
malism (Bercher, Alford, and Höller 2019). We base our
approach on the one introduced by Chen, Trevizan, and
Thiébaux (2024). We extend the graph structure to repre-
sent hierarchical models, extract input features using the WL
method, and learn heuristic functions in a supervised learn-
ing setting using SVMs and GPs. We generalize over differ-
ent instances of a planning domain. Second, we introduce a
novel HTN planning system for lifted heuristic search. Like
recent systems in classical planning (Corrêa et al. 2020),
it grounds the search space explored so far, but does not
ground the model prior to search.

Our empirical evaluation on the benchmarks of the track
on Totally Ordered HTN Planning of the 2023 International
Planning Competition (IPC) (Alford, Behnke, and Schreiber
2024) shows that (1) the quality of our learned heuristic is
comparable with those used by recent HTN planning sys-
tems, and that (2) our overall approach is competitive with
the current lifted HTN planning systems, while ground sys-
tems still show a better overall performance.



2 Background
Planning models are usually defined in a lifted input lan-
guage like PDDL, or, in case of hierarchical planning,
HDDL (Höller et al. 2020a). However, the currently best-
performing HTN planning systems need a ground model and
generate it before search (which might result in an expo-
nential blowup of model size). While there are also chal-
lenges for the search (Corrêa et al. 2020), the main problem
when planning directly on the lifted model are the (sym-
bolic) heuristic functions (Lauer et al. 2021; Corrêa et al.
2022; Wichlacz, Höller, and Hoffmann 2022; Wichlacz et al.
2023). Since our learned heuristic will be computed on a
lifted model, we also use a lifted search.

Next we introduce lifted HTN planning. Our formalism is
loosely based on the one introduced in the HDDL standard.

A lifted HTN planning problem is defined based on a
quantifier-free first-order predicate logic L = (P, T, V,O)
consisting of a set of type symbols T , a set of (typed) vari-
ables V , a set of predicate symbols P , and a set of typed
constants (in the context of HDDL often referred to as ob-
jects) O. All these sets and also the ones introduced later in
this section are finite. Each predicate symbol has an associ-
ated arity that defines its number of parameters out of V .

A HTN planning problem includes two types of tasks,
primitive tasks (often referred to as actions) and abstract
tasks (often called compound). Actions can be executed in
the environment and cause state transition, abstract tasks
cannot be executed directly, they are decomposed into other
(primitive or abstract) tasks until only actions are left in a
process similar to the derivation of a word from a formal
grammar. We call the set of primitive and abstract tasks A
and C, respectively. The structure tasks are maintained in in
HTN planning is called task network. A task network forms
a partially ordered multiset of tasks.

Definition 1 (Task Network). A task network tn over a set
of task names X is a tuple (ID ,≺, α,B), where

1. ID is a set of task identifiers,
2. ≺ is a strict partial order over ID ,
3. α : ID → X maps task identifiers to task names,
4. B is a set of variable constraints. Each constraint can

(a) bind two variables to be equal or non-equal, or (b)
constrain a parameter to be/not to be of a certain type.

The definition via identifiers (ids) ID makes it possible to
include some task (e.g. drive(cityA, cityB )) multiple times
in the network. α maps the ids to the actual tasks. ≺ defines
the ordering in which tasks (or the tasks they are decom-
posed into) need to be present in the solution.

The ordering relation and the decomposition structure in
general are often restricted in some way to make finding a
solution (computationally) easier. A common restriction is
to only allow for totally ordered networks, which has e.g. its
own sub-track at the IPC.

Actions are triples (name, prec, eff ). The name includes
the actual name of the action, followed by a sequence of
(typed) parameter variables, e.g. drive(?a, ?b). pre is a first
order formula over literals over P and eff is a conjunction
over literals over P . We require all contained variables to

be included in name. Given an action a, we will refer to the
elements above as name(a), pre(a), and eff (a). Further let
eff +(a) and eff −(a) be the set of atoms contained in the
effect as positive and negative literals, respectively.

The grammar-like decomposition structure is defined via
abstract tasks and methods. Abstract tasks are names fol-
lowed by a list of typed parameters. Methods form a rule
on how an abstract task can be decomposed. A method m is
a triple (c, tn,B) containing the name of an abstract (com-
pound) task, a task network tn , and a set of variable con-
straints B that (co-)designate variables from c and tn .
Definition 2 (Planning Domain). An HTN planning domain
is a tuple D = (L,A,C ,M ) of the underlying logic L, the
set of primitive and abstract tasks A and C, and the set of
(decomposition) methods M .

All tasks in the methods need to be from A and C. The
set of states S of the problem is the set of all subsets of
ground predicates. We call an element (like a task network,
a primitive/abstract task, or a predicate) ground when all its
parameters have been bound to or replaced by constraints
from O, e.g., a ground predicate is a predicate symbol from
P followed by a sequence of constants (of the respective
type) taken from O.
Definition 3 (Planning Problem). An HTN planning prob-
lem is a tuple P = (D, sI , tnI , g) of a planning domain D,
an initial state sI from S, the initial task network tnI , and
the goal description g, a formula over the predicates defined
in the domain.

A lifted planning problem forms a compact representation
of a ground problem. The latter can be generated by system-
atically replacing variables by constants of their type. For
details of the grounding process, we refer to Alford, Bercher,
and Aha (2015). For an actual grounding system, we refer to
Behnke et al. (2020). We define the semantics of HTN plan-
ning problems via the ground representation.

A ground action a is executable in a state s ∈ S if and
only if s |= prec(a). The state transition function γ : S ×
A→ S is defined as follows. If an action a is applicable in a
state s then γ(s, a) = (s \ eff −(a)) ∪ eff +(a), else γ(s, a)
is undefined. The application of a sequence of actions γ∗ :
S ×A∗ → S is defined accordingly.

We call a (ground) task network tn = (ID ,≺, α) ex-
ecutable if and only if there is a sequence i1, . . . , in of
the ids ij ∈ ID with |ID | = n in line with ≺ such that
α(i1), . . . , α(in) is executable.

Please notice that no constraints are given in the ground
task network. This is because the (in-)equality relations will
be incorporated in the grounding process, and will thus hold
in the resulting model.

Next we need to define how an abstract task c in a given
task network tn can be decomposed. To do so, we need
a method m = (c, tn ′). Intuitively, decomposition is then
done by removing c from tn , adding the task network tn ′

from m to it, and maintaining the ordering constraints by in-
troducing all ordering constraints to the new tasks that have
been in the network for c.

Formally, a task network tn1 = (ID1,≺1, α1) with a task
id t ∈ ID1 with α1(t) = c can be decomposed by a method



m = (c, tn). Let tn ′ =
(
ID ′,≺′, α′) be a copy of tn that

uses ids not contained in ID1. The task network tn2 result-
ing from the decomposition is defined as follows:

tn2 =
(
(ID1 \ {t}) ∪ ID ′,≺′ ∪ ≺D, (α1 \ {t 7→ c}) ∪ α′)

≺D = {(t1, t2) | (t1, t) ∈ ≺1, t2 ∈ ID ′} ∪
{(t1, t2) | (t, t2) ∈ ≺1, t1 ∈ ID ′} ∪
{(t1, t2) | (t1, t2) ∈ ≺1, t1 ̸= t ∧ t2 ̸= t}

When a task network tn can be decomposed into a task
network tn ′ by decomposing a task t using a method m, we
will write tn −−→t,m tn ′.

Definition 4 (Solution). Let P = (D, sI , tnI , g) be a plan-
ning problem, D = (L,A,C ,M ) the underlying domain,
and tnS = (IDS ,≺S , αS) a (ground) task network. tnS is a
solution to the planning problem if and only if the following
conditions hold.

• There is a sequence of decompositions from tnI to a task
network tn = (ID ,≺, α) such that ID = IDS ,≺ ⊆ ≺S ,
and α = αS .

• tnS only contains primitive tasks and has an executable
linearization (i.e., it is executable) that, when executed,
leads to a state s with s |= g.

3 Learning HTN Heuristic Functions
Next we describe our learning process, starting with the
graph structure we use, followed by the feature extraction.

3.1 A Graph Representation for HTN Planning
Our graph structure builds on the Instance Learning Graph
for classical planning, the following definition is the one
given by Chen, Trevizan, and Thiébaux (2024, Def. 3.1)
adapted to our notation.

Definition 5 (Instance Learning Graph (ILG)). Let L =
(P, T, V,O) be a logic, D = (L,A, ·, ·) a planning domain,
and P = (D, sI , ·, g) a planning problem1. The ILG is de-
fined as a graph G = (V,E, c, l) where V is the set of ver-
tices, E the set of edges, c a function coloring the vertices,
and l a function labeling the edges.

• V = O ∪ sI ∪ g
• E =

⋃
p=P (o1,...,on)∈(sI∪g) {(p, o1), . . . , (p, on)}

• c : V → ({ag , ap, ug} × P ) ∪ {ob} with

u 7→


ob, if u ∈ O

(ag , P ) if u = P (o1, . . . , on) ∈ sI ∩ g

(ap, P ) if u = P (o1, . . . , on) ∈ sI \ g
(ug , P ) if u = P (o1, . . . , on) ∈ g \ sI

• l : E → N with (p, oi) 7→ i

The graph contains nodes for the objects as well as the
atoms contained in the initial state and the goal of the plan-
ning model. The nodes are colored based on whether they
are contained only in the goal (ug unachieved goal), in both

1Since this definition was given for classical planning, we do
not need all elements and omitted the unnecessary ones.

at (l1 ) at (p1 , l1 ) at (p1 , l2 )

l1 p1 l2

load (l1 , p1 ) getto (l2 ) unload (l2 , p1 )

Figure 1: Example for an HILG.

(ag achieved goal) or only in sI (ap achieved predicate).
Atoms are connected by edges with the objects in their pa-
rameter list. Edges are label with their position in this list.

Interestingly, the graph encoding does not include any in-
formation about the actions in the domain/the actual transi-
tion system. This needs to be learned implicitly by the ML-
approach applied to the graph, resulting in a compact repre-
sentation and (at least to us) elegant approach not relying on
much graph tailoring towards the benchmark set.

We want to extend the graph in the same, simplistic way to
the setting of HTN planning. Further, we see from heuristics
successfully used in the IPC’23 (Olz, Höller, and Bercher
2023) that incorporating only the tasks contained in the cur-
rently task network seems to be enough information to ex-
tract good heuristic values in many domains (i.e., without
incorporating e.g. ordering information). Thus we define our
graph representation as follows:
Definition 6 (HTN Instance Learning Graph (HILG)). Let
L = (P, T, V,O) be a logic, D = (L,A,C ,M ) a planning
domain, and P = (D, sI , tnI , g) a planning problem with
tnI = (ID ,≺, α). The HILG is defined as a graph G =
(V,E, c, l) where V is the set of vertices, E the set of edges,
c a function coloring the vertices, and l a function labeling
the edges.

• V = O ∪ sI ∪ g ∪ TS , with TS = {{α(t) | t ∈ ID}}
• E =

⋃
p=P (o1,...,on)∈(sI∪g) {(p, o1), . . . , (p, on)}

∪
⋃

p=N(o1,...,on)∈TS {(p, o1), . . . , (p, on)}
• c : V → ({ag , ap, ug}×P )∪{ob}∪({t}×(C∪A)) with

u 7→



ob, if u ∈ O

(ag , P ) if u = P (o1, . . . , on) ∈ sI ∩ g

(ap, P ) if u = P (o1, . . . , on) ∈ sI \ g
(ug , P ) if u = P (o1, . . . , on) ∈ g \ sI
(t , N) if u = N(o1, . . . , on) ∈ TS

• l : E → N with (p, oi) 7→ i

We added the set of tasks in the current task network as
nodes to the graph, and connected them in a similar way to
the objects of the model. Be aware that a task might be in the
network multiple times, so that we used a multiset (which we
denoted by {{}}).

Figure 1 shows an example for an HILG for a simple
transport problem where a single truck needs to deliver
packages. The green nodes at the top left encode that both
the truck and package p1 are currently at location l1. The



goal location for the package is l2, as encoded by the yellow
goal node. The nodes in the middle represent the objects
in the model. The nodes at the bottom represent the tasks
from the current task network: the actions load (l1 , p1 ) and
unload (l2 , p1 ), as well as the abstract task getto (l2 ) in the
middle. Every node that represents an atom or a task is con-
nected to the nodes represeting the objects in its parameter
list. The color of the edges represent the respective position
in the parameter list.

3.2 Training
Next we describe the training process; we build our learn-
ing framework on the WLPlan framework (Chen 2024). We
implement a domain-specific, supervised learning setup.

Benchmark Set. We use the benchmark set of the track
on Totally Ordered HTN (TOHTN) planning of the IPC’23.
While our approach is not limited to this setting, it is the
most widely-used HTN problem class, comes with a large
benchmark set and more planning systems to compete with
than the general track. We had to exclude the Monroe do-
mains, which encode an plan recognition as planning ap-
proach (Höller et al. 2018a). This leads to a very diverse set
of tasks included in the solutions that needs to be learned
based on a much larger training set to even include all tasks
in the training data.

Training Data. For each domain, we generated optimal
solutions for the up to 10 smallest instances using an opti-
mal configuration of the PANDA planning system (Höller
2023), the winner of the respective track of the IPC. How-
ever, we were not able to generate all 10 solutions for all
domains, in Minecraft (pl) and Snake we train on only 3 in-
stances, in Assembly, Multiarm-BW, and BW-HPDDL on 5,
in Factories on 6, Satellite on 7, Rover and SharpSAT on
8, and Transport on 9. For Freecell, PANDA did not find
optimal plans at all and we trained on 10 (potentially) sub-
optimality ones. We also evaluated weather it is helpful to
include sub-optimal plans when we were not able to find all
10 optimal solutions, but this did not reflect in coverage.

Next we go through the solutions. For each intermediate
step, we store pairs (hilg(tn, s), h∗(tn, s)) that contain the
graph representation of the intermediate task network and
state, together with its optimal goal distance.

The number of graphs was between a minimum of 140
and a maximum of 5245 with a median of 582 (depending
on the number of solutions as well as the solution length).

Feature Generation. Based on the graph representation
we generate the learning input. We used the Relational
Weisfeiler-Leman (WL) method (Barceló et al. 2022) from
the WLPlan framework. The algorithm was originally intro-
duced to test graph isomorphism. Based on their initial col-
oring, it updates the colors of nodes by incorporating the col-
ors of their neighbors for several iterations. The result can be
represented as histogram of the colors, which has been used
as input features for machine learning. The method needs a
hyperparameter that specifies the number of iterations of the
algorithm, which we set to 1− 3.

assembly barman freecell multi.-bw

Figure 2: PCA-based visualization of the embeddings of the
task networks. Colors indicate the heuristic values.

As proposed by Chen, we visualize the feature vectors by
using Principal Component Analysis (PCA) to project them
to two-dimensional space. The result can be seen in Figure 2,
where colors represent the corresponding heuristic values.
As can be seen, in several domains there seems to be a quite
good structure in the features, indicating that they could en-
able the prediction of the respective heuristic values. We in-
cluded Freecell as negative example with less structure.

Training. Like Chen, Trevizan, and Thiébaux, we train
two kinds of regression models based on the resulting fea-
tures: support vector regression with the dot product ker-
nel (SVR) and Gaussian process regression (Rasmussen and
Williams 2006) with the dot product kernel (GPR).

4 The LION Planning System
Our search is based on the progression algorithm introduced
by Höller et al. (2020b). A progression search only pro-
cesses tasks from a task network that have no predecessor
in their ordering relation. This makes it possible to main-
tain the current state during search, which enables the effec-
tive application of heuristics. While this search was used by
several systems at the IPC’23, those systems required a pre-
ground model because they used heuristic functions based
on a ground model. Since our heuristic is applicable to the
lifted model, we do not need to ground the model and im-
plemented a lifted variant, which is outlined in Algorithm 1.
We call our system LION, lifted progression.

Search nodes are triples containing the current state s ∈
S, the current task network, and the sequence of actions ap-
plied so far. Initially (Line 1), the fringe contains a single
search node consisting of the initial state sI , the initial task
network tnI , and the empty sequence ε of actions. Wlog, we
make the following assumption:

Assumption 1. All search nodes initially contained in the
fringe are ground.

If the assumption does not hold, we compile the (then
lifted) initial task network tnI away by introducing a new
task tn and a method decomposing tn into tnI , and set the
new initial task network to the network only containing tn.

The main loop of the algorithm starts by removing a node
n = (s, (ID ,≺, α) , π) from the fringe (Line 3). If n is a
solution, it is returned. A node is a solution if and only if
ID = ∅ and s |= g. From the contained task network, the
unconstrained tasks U = {t | t ∈ ID ,¬∃(t′, t) ∈ ≺}
are split into abstract UC and primitive UA tasks. When



1 fringe ← {(sI , tnI , ε)}
2 while fringe ̸= ∅ do
3 n← fringe.pop()
4 if isGoal(n) then return n′

5 (UC , UA)← n.unconstrainedNodes()
6 if UC = ∅ then
7 for t ∈ UA do
8 if isApplicable(t) then
9 n′ ← n.apply(t)

10 fringe.add(n ′)

11 else
12 t← selectAbstractTask(UC )
13 for m ∈ {m | m ∈M decomposes t} do
14 GM ← n.ground(t ,m)
15 for gm ∈ GM do
16 n′ ← decompose(t , gm)
17 fringe.add(n ′)

Algorithm 1: Lifted progression algorithm.

there are unconstrained abstract tasks, one of them is se-
lected2 (Line 12), and all applicable methods are system-
atically grounded and applied (Lines 13, 14).

Assume that the task network in n is ground (which is
shown later in Theorem 1), then we can apply decomposition
as defined by Höller et al. (2020b, Def. 4):

Definition 7. Given a search node (s, (ID ,≺, α) , π), an
unconstrained task id t ∈ ID with α(t) = c, and a method
(c, tn), the search node n′ that results from decomposing t
is defined as n′ = (s, tn ′, π) with tn −−→t,m tn ′.

Since we ground methods, the following trivially holds:

Lemma 1. Given that the task network in n is ground, all
task networks contained in nodes inserted into the fringe in
Line 17 are ground.

In case all tasks in U are primitive, we remove them
in turn and apply them (starting in Line 6). Assume n is
ground, then we can apply progression as defined by Höller
et al. (2020b, Def. 3):

Definition 8. Given a search node (s, (ID ,≺, α) , π) and
a task t ∈ UA that is mapped to an applicable action
a = α(t), the search node resulting from progressing t is de-
fined as n′ = (γ(a, s), tn ′, π ◦ a) with tn ′ = (ID \ {t},≺ \
{(t, t′) | t′ ∈ ID}, α \ {t 7→ a}).

In this case, we need to apply all actions in turn, because
by the application of an action, we commit do its position in
the solution and do not know which is the right one.

Lemma 2. Given that n is ground, all task networks in
nodes inserted into the fringe in Line 10 are ground.

Now we know that we start with a ground fringe (As-
sumption 1) and that both operations leading to new nodes
added to the fringe return ground search nodes when applied
to a ground search node. Thus the following holds:

2This is no non-deterministic choice, we can choose randomly.

Theorem 1. All search nodes contained in the fringe during
search are ground.

This means that, like recent systems in classical planning,
we apply a lazy-grounding approach, i.e., while the model
is not pre-grounded before search, all search nodes that have
been explored so far are fully ground. Further we do not need
to adapt the definitions of goal test, unconstrained tasks, ac-
tion applicability and application, and decomposition known
from the ground case (and given above).

The only change concerns method decomposition
(Lines 13 and 14). While in the ground setting, the model
contains a set of ground methods applicable to a given ab-
stract task, we now have a set of lifted methods that we sys-
tematically ground during search.

We call a grounding function complete if and only if it re-
turns all ground methods that may be part of a solution. As-
suming a complete grounding function, the following holds:
Theorem 2. Given a complete grounding function is used,
Algorithm 1 is sound and complete.

Proof. Whether the algorithm is sound depends on the def-
inition of action application, decomposition, and goal test,
which are unchanged compared to the ground case. Since
we assume that the grounding function is complete, com-
pleteness also follows from the ground case.

5 Empirical Evaluation
We evaluate our approach against two groups of planning
systems from the 2020 and 2023 IPCs: systems that ground
the HTN model before search, and those that solve the prob-
lems based on the lifted model. Conceptually, our system
belongs to the second group.

Ground Systems. PANDA (Höller et al. 2018b, 2020b),
which is a heuristic search-based system, in its original con-
figuration and in the version that won the IPC’23 (Olz,
Höller, and Bercher 2023). The TOAD (Höller 2021, 2024)
system and the HTN2SAS (Behnke et al. 2022) system,
which are different translations to classical planning.

Lifted Systems. The winner and runner-up of the IPC’20,
HyperTensioN (Magnaguagno, Meneguzzi, and de Silva
2021) and LiloTane (Schreiber 2021a,b). HyperTensioN
uses problem transformations and a lifted search; LiloTane a
translation to propositional logic that does not rely on a pre-
ground model. Further we included SIADEX (Fernández-
Olivares, Vellido, and Castillo 2021), which is also based on
a lifted search, and Lifted Tree Path (Quenard, Pellier, and
Fiorino 2023), a SAT-based planner building on LiloTane.

All experiments ran on Intel Xeon E5-2650 CPUs with
2.30 GHz (one core per job, no GPU). Coverage tests ran
with a time limit of 30 minutes and 8 GB memory. Training
ran on the same machines (one core, no GPU), but with more
time and memory; its resource consumption is discussed in
Section 5.2.

5.1 LION Configurations
Table 1 compares the coverage of different LION configu-
rations. In general, Greedy Best First Search (GBFS) per-
forms best, which is in line with results of other systems



search: gbfs weighted A∗ A∗

model: svr gpr svr gpr svr gpr
WL iterations: 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

Assembly 30 7 5 6 5 5 8 4 5 4 4 4 4 3 3 3 3 3 3
Barman 20 20 20 19 20 20 19 16 10 10 16 10 10 7 7 7 7 7 7
Blocksworld-GTOHP 30 28 28 28 29 28 29 28 28 28 29 28 29 24 26 24 25 26 24
Blocksworld-HPDDL 30 20 21 21 20 20 21 20 20 20 20 20 20 7 7 7 7 6 7
Depots 30 22 22 22 22 22 22 22 22 22 22 22 22 16 16 17 16 16 17
Factories 20 5 8 8 4 8 8 4 5 5 4 5 5 4 4 4 4 4 4
Freecell-Learned 60 – – – – – – – – – – – – – – – – – –
Hiking 30 11 10 10 16 15 11 5 8 9 7 8 10 5 5 5 6 6 6
Lamps 30 16 17 17 17 18 18 16 17 17 17 16 16 16 16 16 16 16 16
Logistics-Learned 80 38 37 38 35 35 39 35 31 31 28 28 31 28 28 28 28 28 28
Minecraft-Player 20 5 5 5 4 4 4 5 4 4 4 4 4 4 4 4 4 4 4
Minecraft-Regular 59 44 46 45 36 35 35 41 42 41 35 35 34 35 33 34 35 34 35
Multiarm-BW 74 26 74 74 9 71 74 72 61 59 74 59 61 23 22 20 19 21 19
Robot 20 20 20 20 19 20 20 12 13 12 12 12 12 11 11 11 11 11 11
Rover 30 30 30 27 30 30 28 20 18 18 21 18 18 8 8 8 8 8 8
Satellite 20 15 15 14 15 15 14 14 12 13 14 12 13 7 8 8 7 8 8
SharpSAT 21 13 12 11 10 12 11 9 9 9 9 9 9 9 9 9 9 9 9
Snake 27 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Towers 20 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13
Transport 40 8 13 16 – 15 14 23 29 29 7 28 28 15 14 14 10 14 15
Woodworking 30 7 7 6 7 7 6 7 7 7 7 7 6 6 6 6 6 6 6

721 350 405 402 313 395 396 368 356 353 345 340 347 243 242 240 236 242 242

Table 1: Coverage of different LION configurations. Domains in which all systems reached the same coverage are given in gray,
the best coverage per domain is given bold. In this table, all instances are included (also those used for training).

Domain #inst lion pandaipc pandagbfs
rc toad htn2sas

Assembly 30 5 0.17 30 1.00 30 1.00 30 1.00 30 1.00
Barman 20 20 1.00 16 0.80 15 0.75 15 0.75 14 0.70
BW-GTOHP 30 28 0.93 29 0.97 30 1.00 20 0.67 26 0.87
BW-HPDDL 30 21 0.70 30 1.00 27 0.90 21 0.70 20 0.67
Depots 30 22 0.73 22 0.73 22 0.73 24 0.80 22 0.73
Factories 20 8 0.40 10 0.50 8 0.40 5 0.25 6 0.30
Freecell 60 – – 11 0.18 14 0.23 – – – –
Hiking 30 10 0.33 25 0.83 25 0.83 12 0.40 22 0.73
Lamps 30 17 0.57 18 0.60 16 0.53 18 0.60 16 0.53
Logistics 80 37 0.46 80 1.00 47 0.59 47 0.59 72 0.90
Minec.-Pl 20 5 0.25 1 0.05 1 0.05 1 0.05 1 0.05
Minec.-Reg 59 46 0.78 41 0.69 41 0.69 39 0.66 41 0.69
Multia.-BW 74 74 1.00 74 1.00 74 1.00 74 1.00 71 0.96
Robot 20 20 1.00 20 1.00 20 1.00 20 1.00 20 1.00
Rover 30 30 1.00 27 0.90 29 0.97 9 0.30 17 0.57
Satellite 20 15 0.75 16 0.80 16 0.80 19 0.95 17 0.85
SharpSAT 21 12 0.57 10 0.48 10 0.48 1 0.05 9 0.43
Snake 27 2 0.07 4 0.15 3 0.11 4 0.15 3 0.11
Towers 20 13 0.65 13 0.65 13 0.65 12 0.60 15 0.75
Transport 40 13 0.33 22 0.55 25 0.62 8 0.20 31 0.78
Woodw. 30 7 0.23 28 0.93 23 0.77 30 1.00 24 0.80

721 405 11.93 527 14.82 489 14.11 409 11.71 477 13.42

#inst lion pandaipc pandagbfs
rc toad htn2sas

25 – – 25 1.00 25 1.00 25 1.00 25 1.00
10 10 1.00 6 0.60 5 0.50 5 0.50 4 0.40
20 18 0.90 19 0.95 20 1.00 10 0.50 16 0.80
25 16 0.64 25 1.00 22 0.88 16 0.64 15 0.60
20 12 0.60 12 0.60 12 0.60 14 0.70 12 0.60
14 3 0.21 4 0.29 2 0.14 – – – –
50 – – 2 0.04 4 0.08 – – – –
20 2 0.10 15 0.75 15 0.75 5 0.25 12 0.60
20 7 0.35 8 0.40 6 0.30 8 0.40 6 0.30
70 27 0.39 70 1.00 37 0.53 37 0.53 62 0.89
17 2 0.12 – – – – – – – –
49 36 0.73 31 0.63 31 0.63 29 0.59 31 0.63
69 69 1.00 69 1.00 69 1.00 69 1.00 66 0.96
10 10 1.00 10 1.00 10 1.00 10 1.00 10 1.00
22 22 1.00 19 0.86 21 0.95 1 0.05 9 0.41
13 8 0.62 9 0.69 9 0.69 12 0.92 10 0.77
12 3 0.25 1 0.08 1 0.08 – – – –
24 – – 1 0.04 – – 1 0.04 – –
10 3 0.30 3 0.30 3 0.30 2 0.20 5 0.50
31 7 0.23 13 0.42 16 0.52 3 0.10 22 0.71
20 – – 18 0.90 13 0.65 20 1.00 14 0.70

560 264 9.75 369 12.95 330 12.00 268 9.46 328 11.29

Table 2: Coverage of LION as well as several ground systems. On the full benchmark set (left), and on the benchmark set
without training instances (right). For each domain and system, the absolute as well as the normalized coverage are given.

Domain #inst lion hypert . LiloTane ltp siadex
Assembly 30 5 0.17 3 0.10 5 0.17 2 0.07 – –
Barman 20 20 1.00 20 1.00 16 0.80 17 0.85 20 1.00
BW-GTOHP 30 28 0.93 15 0.50 21 0.70 22 0.73 11 0.37
BW-HPDDL 30 21 0.70 30 1.00 1 0.03 – – – –
Depots 30 22 0.73 24 0.80 22 0.73 22 0.73 22 0.73
Factories 20 8 0.40 3 0.15 4 0.20 4 0.20 – –
Freecell 60 – – 3 0.05 7 0.12 – – – –
Hiking 30 10 0.33 25 0.83 20 0.67 15 0.50 – –
Lamps 30 17 0.57 1 0.03 19 0.63 – – – –
Logistics 80 37 0.46 22 0.28 41 0.51 1 0.01 – –
Minec.-Pl 20 5 0.25 5 0.25 1 0.05 1 0.05 3 0.15
Minec.-Reg 59 46 0.78 56 0.95 22 0.37 28 0.47 33 0.56
Multia.-BW 74 74 1.00 8 0.11 3 0.04 – – 1 0.01
Robot 20 20 1.00 20 1.00 11 0.55 5 0.25 – –
Rover 30 30 1.00 30 1.00 19 0.63 19 0.63 30 1.00
Satellite 20 15 0.75 20 1.00 14 0.70 12 0.60 – –
SharpSAT 21 12 0.57 15 0.71 8 0.38 4 0.19 1 0.05
Snake 27 2 0.07 3 0.11 – – 1 0.04 – –
Towers 20 13 0.65 20 1.00 9 0.45 4 0.20 10 0.50
Transport 40 13 0.33 40 1.00 34 0.85 32 0.80 1 0.03
Woodw. 30 7 0.23 7 0.23 30 1.00 30 1.00 3 0.10

721 405 11.93 370 12.11 307 9.59 219 7.33 135 4.50

#inst lion hypert . LiloTane ltp siadex
25 – – – – – – – – – –
10 10 1.00 10 1.00 6 0.60 7 0.70 10 1.00
20 18 0.90 5 0.25 11 0.55 12 0.60 2 0.10
25 16 0.64 25 1.00 – – – – – –
20 12 0.60 14 0.70 12 0.60 12 0.60 13 0.65
14 3 0.21 – – – – – – – –
50 – – 3 0.06 – – – – – –
20 2 0.10 15 0.75 10 0.50 8 0.40 – –
20 7 0.35 – – 9 0.45 – – – –
70 27 0.39 12 0.17 31 0.44 – – – –
17 2 0.12 2 0.12 – – – – – –
49 36 0.73 46 0.94 12 0.24 18 0.37 23 0.47
69 69 1.00 4 0.06 1 0.01 – – 1 0.01
10 10 1.00 10 1.00 1 0.10 – – – –
22 22 1.00 22 1.00 11 0.50 11 0.50 22 1.00
13 8 0.62 13 1.00 7 0.54 5 0.38 – –
12 3 0.25 6 0.50 – – – – – –
24 – – – – – – – – – –
10 3 0.30 10 1.00 – – – – – –
31 7 0.23 31 1.00 25 0.81 23 0.74 – –
20 – – – – 20 1.00 20 1.00 – –

560 264 9.75 237 10.76 164 6.73 120 5.48 72 3.28

Table 3: Coverage of LION as well as several lifted systems. On the full benchmark set (left), and on the benchmark set without
training instances (right). For each domain and system, the absolute as well as the normalized coverage are given.
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Figure 3: Length of shortest solution found by any system/configuration compared to the initial heuristic value.

like PANDA. An exception is the Transport domain, where
Weighted A∗ (WA∗) search (we used a weight of 2) performs
better. This domain has a left-recursive decomposition struc-
ture (see Höller 2024), which leads to cycles of decomposi-
tions in which all unconstrained tasks are abstract. It seems
that LION is less good in escaping such structures. WA∗

seems to mitigate this problem. Overall, A∗ search reaches
the lowest coverage.

Configurations using SVR perform better than those us-
ing GPR, though there are exceptions like the Assembly,
Lamps, Logistics and especially the Hiking domain. Con-
figurations with 2 WL iterations reach the highest coverage,
though there are exceptions where either more seem to be
helpful (e.g. Assembly) or only one is needed (SharpSAT).

In the following, we use LION with GBFS, 2 WL itera-
tions, and SVR model.

5.2 Resource Consumption During Training
For the used configuration (2 WL iterations, SVR model),
the training process took between a minimum of 5.3 seconds
and a maximum of 19 minutes and 36.5 seconds, with a me-
dian of 16.3 seconds. Memory usage was between 180MB
and 64.7GB with a median of 574MB.

5.3 Comparison to State of the Art
Next we investigate the quality of the learned heuristics. We
compare it with the RC heuristic of the PANDA system,
which won the respective track in the IPC’23. We computed
the heuristic values of both heuristics on all initial states. We
compare them with the best (i.e., shorted) solution found
by any system or configuration in our evaluation. We plot
the heuristic value against the best solution found (see Fig-
ure 3). All points being on the diagonal would mean that
the estimate was perfect, points below the diagonal mean
that solution length was overestimated, points above mean
they are underestimated. We highlighted the more interest-
ing domains, all others are represented by dots (◦). In some
domains, our heuristic is closer to solution length (e.g. in
Towers and especially in Logistics). However, in others (es-
pecially Minecraft Reg.), the RC heuristic is closer.

Table 2 gives the coverage for LION as well as several
ground systems from the literature. On the left, you see the

results for the entire benchmark set (including the training
instances), on the right, you see the results without training
instances. The best ground systems have the highest cover-
age. We assume this is due to the presence of dead ends in
the benchmarks, which can be detected by techniques like
the RC heuristics. We have no dead end detection and thus
cannot prune those leafs during search. However, there are
also domains where LION reaches the highest coverage like
Barman the two Minecraft domains, or SharpSAT.

Table 3 compares LION with several lifted systems. It
performs similar to the best lifted system, HyperTensioN,
which is the winner of the IPC’20. Compared to the lifted
systems, LION performs especially well in Blocksworld-
GTOHP, Factories, and Multiarm-Blocksworld. Interest-
ingly, there are some domains (e.g. Lamps, Logistics) where
it performs more similar to the SAT-based LiloTane system
than the search-based HyperTensioN.

Overall, we conclude that our learned heuristic is similar
informed as the RC heuristic used by the winner of the last
IPC, and that our overall system is on par with the best lifted
HTN planning systems. However, it outperforms both the
grounded as well as the lifted systems in certain domains,
adding value to the overall planner portfolio.

6 Conclusion
While learned heuristic functions have gained performance
in classical planning during the last years, there are no such
approaches in hierarchical planning yet. In this paper, we in-
troduced the first approach towards this end. We introduced
a graph structure to represent planning models, extracted
WL-based feature vectors, and learned heuristic functions in
a supervised learning setting. Further, we introduced a lifted
variant of the progression search algorithm underlying the
winner of the IPC’23. Our combined system does not yet
reach the overall performance of the best ground systems,
but it is competitive to the best lifted systems like the win-
ner and runner-up of the IPC’20; and it outperforms both the
ground and the lifted systems in certain domains.
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