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Abstract
Science operations scheduling is crucial for any spacecraft
to deliver high-value scientific results after launch. Unfor-
tunately, finding the optimal operations schedule that maxi-
mizes science return is very difficult (NP-hard) due to com-
plexities arising from a wide range of operational constraints
including power, thermal, telemetry, target visibility, in addi-
tion to constraints arising from the science objectives them-
selves. The scale of the scheduling problem is far too large to
optimize manually or via traditional methods such as mixed-
integer linear programming or even classical reinforcement
learning methods. We introduce a deep reinforcement learn-
ing framework based on the Maskable Proximal Policy Op-
timization (MPPO) algorithm to perform science operations
scheduling and demonstrate its application to NASA’s up-
coming Carruthers Geocorona Observatory mission, where
science returns are maximized by enhancing the absolute sen-
sitivity characterization achieved via optimal scheduling of
stellar calibration observations. Our approach is fast (training
and scheduling all in under 6 hours), reliable, and represents,
to our knowledge, the first demonstration of a deep reinforce-
ment learning framework for science operations scheduling
on a large-scale NASA heliophysics mission.

Introduction
Spacecraft science operations scheduling to maximize the
science return of the overall mission is an NP-hard prob-
lem (Garey and Johnson 2002) due to many overlapping
constraints and the large number of tasks that need to
be scheduled. Common constraints include power budgets
that restrict spacecraft pointing to a certain angular win-
dow, target visibility windows due to the spacecraft’s or-
bit geometry, inter-observation setup/teardown times, ac-
commodations for mission-critical operations, and science-
specific constraints. Traditionally, much of this planning
has been done manually or with ad hoc tools, which are
highly labor-intensive. Exact optimization methods, such
as mixed-integer programming, constraint programming,
graph search, or even classical reinforcement learning ap-
proaches have been explored, but these approaches either de-
mand significant domain expertise, lack the speed necessary
for time-critical replanning, or do not scale to the complex-
ity and size of the Carruthers mission scheduling problem.
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Heuristic methods offer the scalability but at the cost of op-
timality (Jacquet et al. 2024).

Deep reinforcement learning (DRL) has recently shown
great promise for tackling large-scale scheduling tasks by
combining neural network function approximation with re-
inforcement learning to construct schedules by sequentially
choosing the best operation to schedule at particular points
in time (Herrmann and Schaub 2023). Although prior stud-
ies have demonstrated encouraging results on satellite obser-
vation scheduling benchmarks (Liu et al. 2025), in realistic
mission scenarios these approaches often demand days of
training to fully enforce complex constraints. This is an im-
practical requirement when constraint sets and science prior-
ities can quickly evolve due to new telemetry, science targets
of opportunity, or anomaly responses.

In this work, we introduce a DRL framework built on the
Maskable Proximal Policy Optimization (MPPO) algorithm
that guarantees per-step compliance with hard constraints
via dynamic action masking. We demonstrate the framework
on NASA’s upcoming Carruthers Geocorona Observatory
mission set to launch in September 2025. The Carruthers
mission is a dual-camera ultraviolet observatory with six
configurable filters per camera, where precisely scheduling
stellar observations is essential for accurately characterizing
absolute sensitivity across every camera–filter combination,
all while respecting power, telemetry, and visibility budgets.

Crucially, our MPPO-based scheduler meets stringent op-
erational demands: in pre-launch stress tests simulating a
mission anomaly that required a constraint change, our
scheduler retrained and replanned a feasible three-month op-
erations sequence composed of 1216 science operations in
under six hours. This rapid, reliable replanning capability
is an advance over existing DRL and classical scheduling
methods and represents, to our knowledge, the first demon-
stration of a deep reinforcement learning framework for sci-
ence operations scheduling on a large-scale NASA helio-
physics mission.

Problem Statement
Suppose we have J activity blocks aj , 1 ≤ j ≤ J , where
each activity block represents a science operation that may
contain multiple science targets of interest, described by the
tuple (i, p, q, ℓ, dmin, dmax, b1, bn, T1, T2, T3), where



• i denotes the sequence of images to be taken.
• p is the minimum number of times activity block aj

needs to be scheduled.
• q is the maximum number of times activity block aj

needs to be scheduled.
• ℓ is the length of time, in seconds, of the activity block.
• dmin is the required minimum time, in seconds, between

different scheduled instances of this activity block.
• dmax is the required maximum time, in seconds, between

different scheduled instances of this activity block.
• b1 and bn describe the first and last target coordinates for

the spacecraft to point in for this activity block.
• Tx for x = 1, 2, 3 is a list of visibility intervals in which

power regime x applies.
The power-use regimes are as follows:

1. Regime 1: No restriction.
2. Regime 2: Only 8 hours of continuous imaging per 24

hours allowed.
3. Regime 3: Only 8 hours of continuous imaging at a time

allowed, and only 12 hours of imaging every four weeks
is allowed.

Note that the same activity block can be part of multiple
different power-use regimes, which complicates the overall
problem even further. For example, the first science target of
an activity block may be part of power regime 1, but the last
science target of an activity block can be in power regime
3. Additionally, the schedule must satisfy the following re-
quirement motivated by power: ‘For all instances in time,
there must exist a continuous block of at least 8 hours spent
within power regime 1 in the last 24 hours.’

In order to accommodate communications with NASA’s
Deep Space Network (DSN), the schedule cannot have sci-
ence operations overlap with predetermined 6-hour windows
that occur about twice a week. Moreover, within 8 hours of
one of these predetermined windows, only activity blocks
completely within power regime 1 are allowed to be sched-
uled in order to conserve power for the power-hungry DSN
pass.

Finally, whenever adjacent blocks involve different point-
ing targets, the intervening slew duration must be included
in the schedule. The slew period is subject to the most re-
strictive power-use regime (in order to be conservative).

Science constraints for the Carruthers mission are rela-
tively straightforward - there are some blocks that should
only be scheduled after 21 hours have been spent observing
Earth, while others should be scheduled at least once daily.
Numerous other science constraints (for example, an image
must be taken with one of the filters on both cameras every
three hours of imaging) are dealt with within each activity
block and are thus not within the scope of the scheduling
algorithm.

Any schedule that meets all of the above constraints is de-
noted as a feasible schedule. The optimal schedule is the fea-
sible schedule that yields the best science. In the Carruthers
mission’s case, the best science is defined as the most ac-
curate estimation of absolute sensitivity (least mean percent
error) for each camera–filter pair after all operations are ex-
ecuted when evaluated by the mission’s absolute sensitivity

characterization algorithm (i.e., the real calibration routine
used onboard and in ground processing) (Zhang et al. 2025).

Approach
In order to solve the scheduling problem defined in the previ-
ous section, we adopt a DRL approach using Masked Prox-
imal Policy Optimization (MPPO), an extension of PPO
(Schulman et al. 2017) that guarantees compliance with hard
constraints by dynamically masking invalid actions from the
policy’s output distribution (Huang and Ontañón 2020). Due
to the high number of constraints, standard PPO proved in-
effective in our setting since it required excessive training
time to obtain a feasible schedule, much less attempt to find
the optimal schedule. In our approach, actions correspond
to selecting the next activity block (or waiting), while states
encode the current time, the number of times each activity
block has already been scheduled, power regime usage, and
upcoming DSN pass windows. We implemented a custom
environment using the OpenAI Gymnasium interface (Tow-
ers et al. 2024), which handles state transitions, action mask-
ing for each state, and reward computation.

Reward-shaping is the most difficult part of any reinforce-
ment learning application. In our case, we formulate a com-
posite reward. First, the agent is given a large reward for ac-
tivity blocks that need to be scheduled and a penalty once the
required activity block can no longer be scheduled while still
respecting constraints. If any of the daily activity blocks are
missed, then a penalty is added at the end of each scheduled
day. Finally, at the end of every three scheduled days, the ab-
solute sensitivity characterization algorithm is used to obtain
an estimate of the absolute sensitivity for each camera-filter
pair based on all operations scheduled so far. Rewards are
given for improvement on prior estimations, while a penalty
is given on the first run if the error exceeds a certain thresh-
old to prevent rewards-gaming. Regular monitoring of ab-
solute sensitivity is critical for maintaining training stability,
given that the algorithm is tasked with scheduling operations
over extended periods spanning three months to a year. All
other constraints are enforced via the action mask, thus elim-
inating the need for additional penalty terms.

For training, 24 independent instances of the environment
are created and simulated in parallel. Training proceeds for
107 steps total, with updates to the policy and value neu-
ral networks every 256 steps. Once training is complete,
we execute multiple Monte-Carlo rollouts of the stochastic
policy and the best-performing schedule is selected as the
final schedule. This approach hedges against the random-
ness in the learned policy and aims to further optimize the
final schedule. On Ubuntu 22.04 with AMD Threadripper
5995WX (128GB RAM) and NVIDIA RTX 4070 (12GB
VRAM) with CUDA 12.4 and PyTorch 2.2.2., the training
takes nearly 5.5 hours while the evaluation takes under 25
minutes, bringing the total time needed to run the entire
scheduling pipeline to under 6 hours. On-orbit, schedule re-
plans can be expedited by skipping the training step if there
is no major change to any constraints, thus dropping the re-
quired time to 25 minutes. The latter has not been fully op-
timized and can likely be made faster.
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