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Abstract

Pathfinding problems are found through computing, chem-
istry, mathematics, and robotics. Solving pathfinding prob-
lems is typically achieved through heuristic search, which is
guided by a heuristic function that can be learned using deep
neural networks. However, since deep neural networks are
typically not explainable, the extraction of new knowledge
from these learned heuristic functions is cumbersome. On the
other hand, to the best of our knowledge, it has yet to be
shown how heuristic functions represented as logic programs,
which have been shown to be explainable, can be learned. In
this work, we present an algorithm to learn heuristic functions
represented as logic programs using dynamic programming
and inductive logic programming. Furthermore, we build on
dynamic programming concepts to improve the learned logic
programs by reusing predicates learned for solving simpler
pathfinding problem instances to solve more complex in-
stances. We use the 8-puzzle to demonstrate the effectiveness
of our algorithm.

Code — https://github.com/Rojina99/HeurSearchILP

Introduction
Pathfinding problems are a class of sequential decision mak-
ing problems where the objective is to find a sequence of
actions (i.e., a path) that transforms a start state into a goal
state. Heuristic search is one of the most prominent meth-
ods for solving pathfinding problems such as puzzle solv-
ing (Korf and Taylor 1996; Korf 1997), chemical synthesis
(Chen et al. 2020), quantum circuit synthesis (Qiuhao et al.
2024), and robot control (Tian et al. 2021). A core com-
ponent of heuristic search is the heuristic function, which
maps states to the estimated cost to reach a closest goal
state from the given state via a shortest path, also known as
the “cost-to-go”. While constructing an informative heuris-
tic function may require significant domain-specific knowl-
edge, research has shown that informative domain-specific
heuristic functions can be automatically constructed using
deep reinforcement learning (RL) (Agostinelli et al. 2019).
However, since deep RL uses RL (Sutton and Barto 2018)
to train a heuristic function represented as a deep neural
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network (DNN) (Schmidhuber 2015), the learned heuris-
tic function is not explainable. In this paper, we seek to
show that inductive logic programming (ILP) (Muggleton
1991a; Cropper and Dumančić 2022), which has already
been proven effective in enhancing planning and RL per-
formances (Meli, Castellini, and Farinelli 2024; Veronese,
Meli, and Farinelli 2025) can be combined with heuristic
search to train a heuristic function represented as a logic pro-
gram.

The ability to automatically construct an informative
domain-specific heuristic function from just a description
of a pathfinding problem allows one to solve pathfinding
problems without having to manually acquire the neces-
sary domain-specific knowledge. While this can lead to
rapid advancements in fields with pathfinding problems, this
domain-specific knowledge could be relevant to other open
problems in related fields. For example, heuristic informa-
tion for the cheapest way to synthesize certain molecules
could be relevant to the importance of molecular functional
groups for treating other diseases. While extracting such
knowledge from DNNs has proven difficult, it has been
shown that humans can learn from logic programs (Mug-
gleton et al. 2018; Ai et al. 2023; Veronese et al. 2023).
Therefore, representing a heuristic function as a logic pro-
gram opens up new possibilities for learning new informa-
tion about pathfinding problems, and ILP allows us to learn
these domain-specific heuristic functions.

Background
Pathfinding
The objective of pathfinding is to find a sequence of ac-
tions (e.g. a path) that transforms a start state into a
goal state. Formally, a pathfinding problem is defined as a
weighted directed graph (Pohl 1970), where nodes represent
states, edges represent actions that transition between states,
weights on the edges represent transition costs, a given node
represents the start state, and a given set of nodes represents
the goal states. T represents the transition function where
s′ = T (s, a) for some action, a, corresponds to an edge that
connects s and s′ in the weighted directed graph. c repre-
sents the transition cost function where c(s, a), the cost of
taking action a in state s, corresponds to the weight on the
edge from s for action a. The cost of a path is the sum of



transition costs and solutions with a lower path cost are pre-
ferred over those with a higher path cost.

Heuristic Search
Heuristic search is a widely used approach for solving
pathfinding problems. Heuristic search uses a heuristic func-
tion, which maps states to their estimated cost-to-go, to
guide a search from a given start state to a given goal. One
of the most notable heuristic search algorithms, A* search
(Hart, Nilsson, and Raphael 1968), maintains a search tree,
where nodes represent states and edges represent actions.
The path cost of a node is the sum of transition costs from
the start node to that node and its heuristic value is the out-
put of heuristic function when applied to the state associated
with that node. A node is expanded by applying every possi-
ble action to the state associated with that node and creating
a child node from the resulting states. A* search maintains a
priority queue of leaf nodes in the search tree, where nodes
with lower cost get higher priority. The cost of a node is the
sum of its path cost and its heuristic value. A* search also
maintains a dictionary, called “CLOSED”, that maps states
that have been seen during the search to the shortest path
found to that state. A* search iteratively selects the node
with the lowest cost from the priority queue, expands the
node, and evaluates child nodes with the heuristic function.
A* search only puts child nodes in the priority queue if their
associated state is not in CLOSED or has been reached via
a shorter path. A* search terminates when a node associated
with a goal state is selected for expansion and returns the
path to that node.

Learning Heuristic Functions with Deep
Reinforcement Learning
On a high level, the algorithm to learn heuristic functions
with deep reinforcement learning and using our algorithm
for logic programming follows Algorithm 1. In domains
with reversible actions, such as the 8-puzzle, states are gen-
erated by taking actions in reverse from the goal. The main
differences come in the step to compute updated heuristic
values and the step to update the heuristic functions based
on states and their updated heuristic values. For deep rein-
forcement learning, computing updated heuristic values is
done using value iteration and updating the heuristic func-
tion is done using gradient descent.

Approximate value iteration (AVI) (Bertsekas and Tsit-
siklis 1996), a dynamic programming (Bellman 1957) and
core reinforcement learning algorithm, can be used to learn
a heuristic function for heuristic search. The value iteration
update, in the context of pathfinding, is shown in Equation
1, where A is the set of all possible actions. For large state
spaces, this value iteration update can be approximated by a
function with parameters, θ. When the function is a DNN,
Equation 2 can be used as the loss function to train the pa-
rameters using gradient descent. In this equation, θ− repre-
sents the parameters of a target network (Mnih et al. 2015)
whose parameters are periodically updated to θ to stabi-
lize training in the presence of a non-stationary learning tar-
get. The DeepCubeA algorithm combined AVI with heuris-
tic search to solve puzzles such as the Rubik’s cube and

Sokoban (Agostinelli et al. 2019). This approach has since
been extended to pathfinding problems such as quantum al-
gorithm compilation (Zhang et al. 2020; Bao and Hartnett
2024; Qiuhao et al. 2024), cryptography (Jin and Kim 2020),
parking lot optimization (Siddique, Gue, and Usher 2021),
reaction mechanisms (Panta et al. 2024), and generalizing
over goals (Agostinelli, Panta, and Khandelwal 2024).

h′(s) = min
a∈A

c(s, a) + h(T (s, a)) (1)

L(θ) =
1

N

N∑
i

min
a∈A

(c(si, a) + hθ−(T (si, a))− hθ(T (si, a)))
2

(2)

Inductive Logic Programming
Inductive Logic Programming (ILP) is a symbolic machine
learning framework that induces logical rules from struc-
tured data using a background theory and a formal hypothe-
sis space. A generic ILP task under a logical formalism F is
defined as the tuple: T = ⟨B,SM , E⟩, where B is the back-
ground knowledge, a set of known logical statements (e.g.,
type constraints or static facts), SM is the search space, i.e.,
the set of all axioms expressible in F that conform to a mode
declaration M (Muggleton 1995), and E is the set of exam-
ples to be covered by a learned hypothesis H ⊆ SM . The
objective is to find a hypothesis H such that B ∪ H |= E,
where |= denotes logical entailment (Muggleton 1991b).

In this work, we perform ILP with Popper (Cropper and
Morel 2021), a state-of-the-art ILP tool. Popper synthesizes
logic programs with a learning-from-failure strategy, by pro-
gressively increasing the size of H when a conflict with
one example arises (either e ∈ E+ : H ∪ B ̸|= e or
e ∈ E− : H ∪ B |= e). The optimal solution found by
Popper is then defined as the smallest hypothesis that, to-
gether with the background knowledge, entails all positive
examples and does not entail any negative examples.

Methods
Heuristic Function Representation
The logic program heuristic function, h, is represented as
a dictionary that maps cost-to-go values to logic programs.
Therefore h[c], for some cost-to-go, c, represents a logic
program. States are represented as predicates in first-order
logic, as they would be for examples in an inductive logic
programming task. The heuristic value for a given state, s, is
computed by returning the largest cost-to-go whose program
entails that state. That is, the largest c such that h[c]∪B |= s.
If no c is found then a value of 0 is returned. We find this
c using binary search (see Appendix). When learning, the
heuristic function is initialized as an empty dictionary.

Computing Updated Heuristic Values
Following Algorithm 1, we now describe how updated
heuristic values are obtained. While we can use Equation 1,
as is done with deep reinforcement learning, the ILP system
we are using, Popper, only returns hypotheses that entail all



positive examples and do not entail any negative examples.
Therefore, it is possible that, for a particular cost-to-go, we
fail to learn a logic program. In this scenario, we would then
fail to learn logic programs for any larger cost-to-go values
since Equation 1 is simply a one-step lookahead. To over-
come this, we use A* search as our update method, which
is effectively a multi-step lookahead. Given the generated
states, we run an A* search with the current learned heuris-
tic function for a fixed number of iterations. For the states
where a path is found, we set their updated heuristic value
to be that of the path cost found. We remove states where a
path cost is not found from the dataset1.

Algorithm 1: Training a Heuristic Function
Input: initial heuristic function h, number of iterations I
for i in [0, I) do
D ← {}
Si ← generate states()
for s ∈ Si do

h′ ← compute updated heur val(s, h)
D ← D ∪ (s, h′)

end for
h← update heur func(h,D)

end for
return h

Algorithm 2: Updating Logic Program Heuristic Function
Input: dataset D, target cost-to-go c
E+ = {}
E− = {}
for (s, h′) ∈ D do

if h′ >= c then
E+ ← E+ ∪ {s}

else
E− ← E− ∪ {s}

end if
end for
h[c]← ILP (E+, E−)
return h

Heuristic Function Update
To update the heuristic function, we will add another entry to
the heuristic function dictionary. The key will be the small-
est heuristic value, h′, amongst the updated heuristic values
such that h′ is greater than all other heuristic value keys cur-
rently in the dictionary. We will refer to this as our target
cost-to-go. We then generate positive and negative examples
by comparing the updated heuristic values to the target cost-
to-go. For each state, if its updated heuristic value is greater
than or equal to the target cost-to-go, it is a positive exam-
ple; otherwise, it is a negative example. We then use Popper
to learn a logic program for the target cost-to-go. The logic
program heuristic function update is outlined in Algorithm
2.

1An alternative approach would be to use the nodes expanded
so far to compute a lower bound, which we will explore in future
work.

Predicate Reuse We can build on the given background
knowledge by allowing predicates learned from a lower cost-
to-go value to be used to learn logic programs for a higher
cost-to-go value. In our approach, when learning a logic pro-
gram in Algorithm 2, we reuse each clause learned for the
logic program for the previous target cost-to-go by renaming
each clause and adding it to the background knowledge and
hypothesis space. We view this process as a kind of predicate
invention that builds on the dynamic programming concept
of solving problems by reusing solutions to subproblems.

Experiments
Domain Formalization We test our algorithm to learn
heuristic functions for logic programs on the 8-puzzle,
which is a 3 × 3 grid sliding tile puzzle often used for val-
idating pathfinding algorithms. Since the state space of this
puzzle is relatively small (181,440 states), we obtain the
true cost-to-go for all states and compare this to the learned
heuristic values. We then test how the learned heuristic func-
tion performs when used with A* search. Finally, we test the
performance of a heuristic function learned using supervised
learning on all states in the state space. Our background file
contains basic information about the 8-puzzle, such as tiles,
rows, and columns. It contains relations between these enti-
ties, such as adjacency and a tile being on a particular row
on in its correct place. It also contains predicates that define
when a row or column is complete. More detail can be found
in the Appendix.

Training While training the heuristic function, we con-
ducted five experiments for both predicate reuse and no
predicate reuse. For each scenario, we ran experiments for
5 values for the number of generated states, ranging from 50
to 2000. Since the states are generated randomly, the results
could be different across runs; therefore, we ran each exper-
iment five times, resulting in a total of 50 experiments. We
provide a timeout of 4 hours to A* while updating the heuris-
tic values and also run A* for a maximum of 1000 iterations.
We also include a comparison to a supervised learning case
where we obtain the true cost-to-go for all 181,440 states
and run Algorithm 2 to train the heuristic function with all
possible target cost-to-go values and a time limit of 1 hour
for learning rules with Popper in case of predicate reuse. The
time limit varies from 30 minutes to 120 hours in case of no
predicate reuse.

Testing During testing, we test the accuracy of the heuris-
tic function at predicting the true cost-to-go using 942 states
with cost-to-go values ranging from 1 to 31. From figure
1, we show the mean and standard deviation of both R2

and Mean Squared Error (MSE) between the predicted and
ground-truth cost-to-go on this test set for sampled states.
We also show R2 and MSE for supervised dataset with pop-
per time limit of 1 hour. The test result for the same 942
states with different time limits and supervised learning is
shown in Table 1. We also evaluate the performance of the
learned heuristic function combined with A* search to solve
50 test states. We run A* search for 10,000 iterations with a
time limit of 1,000 seconds. The results of the sample states



States Predicate Reuse Time limit(hour/s) R2 Score MSE
181440 Yes 1 −0.004 59.803
181440 No 0.5 −1.267 134.997
181440 No 1 −1.245 133.717
181440 No 2 −0.712 101.986
181440 No 4 −0.637 97.479
181440 No 8 −0.419 84.506
181440 No 120 0.360 38.090

Table 1: R2 score and Mean Squared Error (MSE) computed for 181440 states, which is the total number of solvable states in
8-Puzzle, with a time limit of 1 hour for predicate reuse and 30 minutes, 1, 2, 4, 8, and 120 hour/s without predicate reuse.

Figure 1: (a)R2 score and (b) Mean Squared Error for supervised learning (popper time limit 1 hr) and their mean and standard
deviation for the dynamic programming (popper time limit 1200s) case across 5 sample sizes with and without predicate reuse.

States per cost-to-go Predicate Reuse Len
(Mean ± SD)

Nodes
(Mean ± SD)

Secs
(Mean ± SD)

Nodes/Sec
(Mean ± SD)

Solved (%)
(Mean ± SD)

Optimal (%)
(Mean ± SD)

1000 Yes 18.96± 0.33 166.53± 7.49 86.06± 4.39 2.65± 0.16 99.60± 0.89 64.30± 6.18
1000 No 19.18± 0.28 250.16± 43.51 53.40±10.97 5.30± 0.47 100.0 62.40± 9.40
2000 Yes 18.38± 0.05 136.39± 11.39 117.93± 8.24 1.57± 0.14 98.40± 1.67 78.40± 5.17
2000 No 18.38± 0.12 234.04± 63.85 69.62±12.89 3.74± 0.51 100.0 80.80± 4.09

Table 2: Heuristic search with the learned heuristic function for sample sizes 1000 and 2000. Metrics reported include mean
and standard deviation of average path length (Len), the number of expanded nodes (Nodes), solve time in seconds (Secs),
search speed (Nodes/Sec), the percentages of problems solved and optimally solved problems. Values are only for states that
were solved.

for this are shown in Table 2, and for the supervised learning
case, are shown in Table 3.

Comparative Analysis of Learned Heuristic Function
In Figure 2, we present the median R2 values computed
over 942 test state samples, using heuristic function learned
across five different runs for each sample state size (i.e., 50,
100, 500, 1000, 2000). The experiments were conducted un-
der two conditions: with and without predicate reuse, result-
ing in a total of 10 plots.

From Figure 2(a), we can see the trend that as the sample
dataset size increases, the median R2 increases, and the me-

dian Mean Squared Error (MSE) decreases. Figure 2(b) also
shows a similar trend up to a sample size of 500. However,
the median R2 drops after state size 1000, and the median
MSE increases. We can also see in Figure 2 that for state
size 50, the heuristic function can predict some of the cost-
to-go correctly up to 16 for predicate reuse and 15 for no
predicate reuse, whereas, in the case of size 2000, it goes
up to 26 for predicate reuse and up to 21 for no predicate
reuse. Similarly, for sizes 100, 500, and 1000, the values in-
crease to 18, 26, and 25 for predicate reuse and 18, 23, and
22 for no predicate reuse, respectively. We can observe that



(a) (b)

Figure 2: (a) Median of R2 score and Mean Squared Error (MSE) against five runs each for sample state sizes 50, 100, 500,
1000, and 2000, with predicate reuse (b) without predicate reuse.



Figure 3: (a,b,c,d,e) R2 score and Mean Squared Error (MSE) for 181400 states without predicate reuse for time limits of half
an hour, 1 hour, 4 hours, 8 hours, and 120 hours, (f) with predicate reuse for a limit of 1 hour.



States (hour/s) Predicate Reuse Len Nodes Secs Nodes/Sec Solved (%) Optimal (%)
181440 (1 hour) Yes 17.27 118.33 155.58 1.02 90.0 100.0
181440 (0.5 hours) No 17.73 1357.49 117.61 11.65 98.0 100.0
181440 (1 hours) No 17.73 1332.29 132.59 10.21 98.0 100.0
181440 (2 hours) No 17.73 560.18 97.54 6.00 98.0 100.0
181440 (4 hours) No 17.73 499.61 111.39 4.53 98.0 100.0
181440 (8 hours) No 17.73 347.76 91.18 3.89 98.0 100.0
181440 (120 hours) No 17.92 112.28 90.43 1.33 100.0 100.0

Table 3: Heuristic search with the learned heuristic function for 181400 states. Metrics reported include the average path length
(Len), the number of expanded nodes (Nodes), solve time in seconds (Secs), search speed (Nodes/Sec), the percentages of
problems solved and optimally solved problems. Values are only for states that were solved.

the range of values for accurate prediction of cost-to-go does
not increase monotonically. However, in the case of predi-
cate reuse, Median R2 shows a monotonic increment order.
From this, we can conclude that even though the maximum
range of correct prediction for cost-to-go is higher for state
size 500, the heuristic learned with sample size 1000 pre-
dicts more cost-to-go correctly.

The result of testing 942 sample states with supervised
learning is shown in Table 1. We experiment with no-
predicate reuse, using time limits that range from 30 min-
utes to 120 hours. Since there is no variation in sample
data size, we do not take the mean of R2 like in the case
of sampled states. We also show the results for predicate
reuse learned with a time limit of 1 hour. Since the size of
the background file increases with predicate reuse, result-
ing in approximately 6,000 new rules learned, we could not
learn rules beyond a cost-to-go of 21. Results from Table 1
are also shown in Figure 3 with a time limit of 2 hours ex-
cluded. From Figure 3(e), we can see that for no predicate
reuse, there are some correct predictions up to cost-to-go 17,
whereas, from 3(f), we can see that it can predict some sam-
ples up to cost-to-go 21 correctly.

Table 3 presents the results of 50 test samples run with
A* search, utilizing a heuristic function learned from a full
dataset under various time limits. We allocate a time limit of
1,000 seconds for each state while running the A* algorithm,
which is set to execute for a maximum of 10,000 iterations.
We only take the average of solved instances into account
and omit the unsolved ones. From the table, we can observe
that the solved percentage for a time limit of 120 without
predicate reuse is the highest, whereas that of 1 hour with
predicate reuse is the lowest. However, the percentage of op-
timal problems solved is 100% for all variations of heuristic
functions.

Discussion and Future Work
Figure 1 shows that predicate reuse results in a more ac-
curate heuristic function, as measured by R2 and mean
squared error, in almost every case. Furthermore, increasing
the number of states generated with reinforcement learning
tends to lead to a more accurate heuristic function. How-
ever, from Table 1 we see that in the supervised learning
case, the heuristic function is less accurate. We believe this
is due to the fact that, since we are using the entire dataset,
there are more negative examples and, therefore, Popper re-

quires more time to find a hypothesis that does not entail any
negative examples. The provided time limit of 1200 seconds
might not be sufficient to learn rules that do not entail nega-
tive examples. In fact, when increasing the time limit of the
supervised learning case from 1 hour to 120 hours, the ac-
curacy of the heuristic function improves. Future work can
use ILP methods that attempt to find the most accurate hy-
pothesis while allowing for misclassifications, such as those
that learn from noisy data (Oblak and Bratko 2010; Hoc-
quette et al. 2024). We also observe that with sample sizes
of 50 and 100, the heuristic function can accurately predict
only smaller cost-to-go values. This may be because there
are not enough positive samples at a higher cost-to-go val-
ues. Once the sample size is increased, we can observe that
the heuristic function can also correctly predict larger cost-
to-go which can be observed with Figure 2.

Table 2 shows that predicate reuse results in the search
algorithm expanding fewer nodes, which is expected for
more accurate heuristic functions. However, the number of
nodes processed per second and the time required to solve
problems increases for predicate reuse. As a result, predi-
cate reuse solves fewer problems. This may be because the
heuristic function is slower when reusing predicates from
prior target cost-to-go values. Furthermore, DNN heuristic
functions often expand more nodes per second by several or-
ders of magnitude (Agostinelli et al. 2019) because they ex-
ploit graphics processing units for parallelism. Future work
can look for ways to speed up the application of logic pro-
grams by exploiting parallelism.

Related Work
The method of bias reformulation is explored in the paper
(Lin et al. 2014) to build reusable abstractions across tasks
by permanently adding the learned predicates to the hypoth-
esis space. In contrast, the predicate reuse reformulates bias
more indirectly, where clauses learned at lower depths are
added to background knowledge. Similarly, (Nakano et al.
1998) learns heuristic functions in an adversarial setting in
a domain with a two-player game, Shogi, where a player
is trying to win against an active opponent, but they first
learn local move comparisons, then convert them into global
heuristics. They also include restrictions for the game so that
a player has to continue to check the opponent’s King in the
game, which is not easily transferable to other search prob-
lems without similar properties. In contrast, we formulate



learning heuristics in terms of cost-to-go that is not depen-
dent on any unique property of the 8-puzzle and can be trans-
ferable to any pathfinding domain where the domain can be
expressed in logical predicates.

Using ILP to learn robot strategies is discussed in (Crop-
per and Muggleton 2015), where strategies are represented
as recursive logic programs corresponding to sets of possible
plans. The paper mainly focuses on finding efficient strate-
gies with program learning entirely based on logic programs
rather than search algorithms. Our paper focuses on learn-
ing heuristics for pathfinding problems that are represented
as logic programs.

Conclusion
We present a novel algorithm for learning domain-specific
heuristic functions represented as logic programs. We also
introduce a method to reuse predicates to obtain more accu-
rate heuristic functions. This work introduces new possibil-
ities for learning explainable heuristic functions and discov-
ering new knowledge from pathfinding problems.
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Appendix A: Binary Search over Logic
Program

We use binary search to obtain the heuristic value for the
input state. Algorithm 3 provides an overview of the under-
lying working principle to obtain heuristic value. Given a
state as input, we search for the logic program with maxi-
mum cost-to-go that entails the state. Logic program heuris-
tic function h is represented as a dictionary to map the logic
programs with cost-to-go values. ctgs sorted is the list of
cost-to-go values for which the logic program is already
learned, initially empty. Similarly, h[c] refers to the logic
program learned for the cost-to-go of c, and B is the back-
ground file updated for each cost-to-go.

Appendix B: Background File
The provided background file defines the predicates to
model the 8-puzzle domain for ILP. We define tile/1
predicates to represent all the tiles in the puzzle, where
tile(b) denotes the blank tile, and tile(t1) through
tile(t8) correspond to tiles numbered 1 through 8,
respectively. These are mapped to numeric identifiers
using predicates like tile0(b), tile1(t1) up to
tile8(t8) for convenience in indexing. The 8-puzzle
grid is represented using the indx/1, which ranges from
idx1 to idx9, corresponding to the nine positions in
the 3 × 3 grid, indexed row-wise from left to right and
top to bottom. For example, idx1 is the top-left cor-
ner, and idx9 is the bottom-right. To capture relation-
ships among the indices, we define predicates such as
beforeto(I1, I2), which represents the information
that index I1 appears before I2 in the left-to-right read-
ing of the flattened puzzle grid, adjacent horiz(I1,

Algorithm 3: h(s) via Binary Search over Logic Program

low ← 0
ctgs sorted← keys(h)
high← |ctgs sorted| − 1
best← None
while low ≤ high do
mid← ⌊(low + high)/2⌋
c← ctgs sorted[mid]
if h[c] ∪B |= s then

best← c
low ← mid+ 1

else
high← mid− 1

end if
end while
if best ̸= None then

return best
else

return 0
end if

I2) for indices that are horizontally adjacent, above(I1,
I2) to represent index I1 is directly above I2 in
the grid. To locate tiles within a puzzle state (repre-
sented as a 9-element list), we use the onrow(State,
Tile, Index) predicate to identify the index where a
given tile appears. We define inplace clause(State,
Tile) to denote that a tile is in its correct position and
not inplace clause(State, Tile) to indicate it
is not.

We also define predicates to check whether rows and
columns are completed. The predicates row1 comp/1,
row2 comp/1, and row3 comp/1 verify that all tiles in
the first, second, and third rows are correctly placed. Also,
col1 comp/1, col2 comp/1, col3 comp/1 verify
column-wise correctness. The background file we use to de-
scribe the 8-puzzle domain is outlined below.

% background file starts

tile(b).
tile(t1).
tile(t2).
tile(t3).
tile(t4).
tile(t5).
tile(t6).
tile(t7).
tile(t8).

tile0(b).
tile1(t1).
tile2(t2).
tile3(t3).
tile4(t4).
tile5(t5).
tile6(t6).
tile7(t7).
tile8(t8).



indx(idx1).
indx(idx2).
indx(idx3).
indx(idx4).
indx(idx5).
indx(idx6).
indx(idx7).
indx(idx8).
indx(idx9).

indx1(idx1).
indx2(idx2).
indx3(idx3).
indx4(idx4).
indx5(idx5).
indx6(idx6).
indx7(idx7).
indx8(idx8).
indx9(idx9).

beforeto(idx1, idx2).
beforeto(idx2, idx3).
beforeto(idx3, idx4).
beforeto(idx4, idx5).
beforeto(idx5, idx6).
beforeto(idx6, idx7).
beforeto(idx7, idx8).
beforeto(idx8, idx9).

adjacent_horiz(idx1, idx2).
adjacent_horiz(idx2, idx3).
adjacent_horiz(idx4, idx5).
adjacent_horiz(idx5, idx6).
adjacent_horiz(idx7, idx8).
adjacent_horiz(idx8, idx9).

nextto_horiz(I1, I2) :- adjacent_horiz(I1,
I2).

nextto_horiz(I1, I2) :- adjacent_horiz(I2,
I1).

above(idx1, idx4).
above(idx2, idx5).
above(idx3, idx6).
above(idx4, idx7).
above(idx5, idx8).
above(idx6, idx9).

nextto_vert(I1, I2) :- above(I1, I2).
nextto_vert(I1, I2) :- above(I2, I1).

nextto(I1, I2) :- nextto_horiz(I1, I2).
nextto(I1, I2) :- nextto_vert(I1, I2).

onrow([Tile,_,_,_,_,_,_,_,_],Tile, idx1).
onrow([_,Tile,_,_,_,_,_,_,_],Tile, idx2).
onrow([_,_,Tile,_,_,_,_,_,_],Tile, idx3).
onrow([_,_,_,Tile,_,_,_,_,_],Tile, idx4).
onrow([_,_,_,_,Tile,_,_,_,_],Tile, idx5).
onrow([_,_,_,_,_,Tile,_,_,_],Tile, idx6).
onrow([_,_,_,_,_,_,Tile,_,_],Tile, idx7).
onrow([_,_,_,_,_,_,_,Tile,_],Tile, idx8).
onrow([_,_,_,_,_,_,_,_,Tile],Tile, idx9).

valid_var(T):- tile(T).

after_tile(t1, t2).
after_tile(t2, t3).
after_tile(t3, t4).
after_tile(t4, t5).
after_tile(t5, t6).
after_tile(t6, t7).
after_tile(t7, t8).

last_tile(t8).

goal([b, t1, t2, t3, t4, t5, t6, t7, t8]).

goal_index(Tile, GoalIndex) :-
goal(GoalState),
onrow(GoalState, Tile, GoalIndex).

inplace_clause(S, T) :-
goal_index(T, GoalIndex),
onrow(S, T, GoalIndex).

not_inplace_clause(S, T) :-
goal_index(T, I_goal),
onrow(S, T, I_current),
distinct_indices(I_current, I_goal).

is_distinct(idx1, idx2).
is_distinct(idx1, idx3).
is_distinct(idx1, idx4).
is_distinct(idx1, idx5).
is_distinct(idx1, idx6).
is_distinct(idx1, idx7).
is_distinct(idx1, idx8).
is_distinct(idx1, idx9).
is_distinct(idx2, idx3).
is_distinct(idx2, idx4).
is_distinct(idx2, idx5).
is_distinct(idx2, idx6).
is_distinct(idx2, idx7).
is_distinct(idx2, idx8).
is_distinct(idx2, idx9).
is_distinct(idx3, idx4).
is_distinct(idx3, idx5).
is_distinct(idx3, idx6).
is_distinct(idx3, idx7).
is_distinct(idx3, idx8).
is_distinct(idx3, idx9).
is_distinct(idx4, idx5).
is_distinct(idx4, idx6).
is_distinct(idx4, idx7).
is_distinct(idx4, idx8).
is_distinct(idx4, idx9).
is_distinct(idx5, idx6).
is_distinct(idx5, idx7).
is_distinct(idx5, idx8).
is_distinct(idx5, idx9).
is_distinct(idx6, idx7).
is_distinct(idx6, idx8).
is_distinct(idx6, idx9).
is_distinct(idx7, idx8).
is_distinct(idx7, idx9).
is_distinct(idx8, idx9).

distinct_indices(I1, I2) :- is_distinct(I1,



I2).
distinct_indices(I1, I2) :- is_distinct(I2,

I1).

inplace_from(S, T) :-
last_tile(T),
inplace_clause(S, T).

inplace_from(S, T) :-
\+ last_tile(T),
after_tile(T, T_next),
inplace_clause(S, T),
inplace_from(S, T_next).

row1_comp(S) :- inplace_clause(S, b),
inplace_clause(S, t1), inplace_clause(S,
t2).

row2_comp(S) :- inplace_clause(S, t3),
inplace_clause(S, t4), inplace_clause(S,
t5).

row3_comp(S) :- inplace_clause(S, t6),
inplace_clause(S, t7), inplace_clause(S,
t8).

col1_comp(S) :- inplace_clause(S, b),
inplace_clause(S, t3), inplace_clause(S,
t6).

col2_comp(S) :- inplace_clause(S, t1),
inplace_clause(S, t4), inplace_clause(S,
t7).

col3_comp(S) :- inplace_clause(S, t2),
inplace_clause(S, t5), inplace_clause(S,
t8).

%background file ends

Appendix C: Learned Rules with Sample State
of Size 100 and Predicate Reuse

We show logic program rules obtained by one of the heuris-
tic functions learned with a sample state of size 100 to pro-
vide an idea of learned rules with predicate reuse. We chose
this version because it shows predicate reuse for some of
the cost-to-go and is comprehensible. Other rules learned
for higher sample sizes are longer, with approximately 1100
new rules for sample sizes of 500 and higher, so they are
omitted here. The depth here refers to the lower bound
on the cost-to-go from goal states. In depth 1, we can see
the rule learned is clause depth 1 rule 1(V0) :-
tile(V1), not inplace clause(V0,V1) states
that if it is a tile and not in place, then we can have a cost-to-
go value of at least one. We can also observe that the rules
are learned up to depth 22 with Popper, with a time limit of
1200 seconds for each cost-to-go.

========================================
Final Logic Program Rules Learned by Depth
========================================

% Rules from depth 1
clause_depth_1_rule_1(V0) :- tile(V1),

not_inplace_clause(V0,V1).

% Rules from depth 2
clause_depth_2_rule_1(V0) :- tile4(V1),

not_inplace_clause(V0,V1).
clause_depth_2_rule_2(V0) :- tile1(V1),

not_inplace_clause(V0,V1).

% Rules from depth 3
clause_depth_3_rule_1(V0) :- tile(V2),

not_inplace_clause(V0,V2),
after_tile(V2,V1),not_inplace_clause(V0,V1).

% Rules from depth 4
clause_depth_4_rule_1(V0) :- tile6(V1),

not_inplace_clause(V0,V1).
clause_depth_4_rule_2(V0) :- tile5(V2),

not_inplace_clause(V0,V2),tile1(V1),
not_inplace_clause(V0,V1).

% Rules from depth 5
clause_depth_5_rule_1(V0) :- tile1(V1),

not_inplace_clause(V0,V1),
clause_depth_4_rule_1(V0).

clause_depth_5_rule_2(V0) :- tile2(V2),
not_inplace_clause(V0,V2),after_tile(V2,
V1),not_inplace_clause(V0,V1).

clause_depth_5_rule_3(V0) :- tile(V2),
after_tile(V2,V3),not_inplace_clause(V0,
V2),indx8(V1),onrow(V0,V3,V1).

% Rules from depth 6
clause_depth_6_rule_1(V0) :-

clause_depth_5_rule_1(V0).
clause_depth_6_rule_2(V0) :- indx8(V2),tile3

(V1),onrow(V0,V1,V2).
clause_depth_6_rule_3(V0) :- indx3(V1),tile4

(V2),onrow(V0,V2,V1).
clause_depth_6_rule_4(V0) :- tile3(V1),

not_inplace_clause(V0,V1),tile8(V2),
not_inplace_clause(V0,V2).

% Rules from depth 7
clause_depth_7_rule_1(V0) :-

clause_depth_6_rule_1(V0).
clause_depth_7_rule_2(V0) :- tile(V4),

after_tile(V4,V1),after_tile(V1,V3),
goal_index(V4,V2),onrow(V0,V3,V2).

clause_depth_7_rule_3(V0) :- indx3(V1),tile5
(V3),indx(V2),onrow(V0,V3,V2),
is_distinct(V2,V1).

% Rules from depth 8
clause_depth_8_rule_1(V0) :-

clause_depth_7_rule_3(V0).
clause_depth_8_rule_2(V0) :- tile8(V1),

not_inplace_clause(V0,V1).
clause_depth_8_rule_3(V0) :- tile1(V1),indx4

(V2),onrow(V0,V1,V2).

% Rules from depth 9
clause_depth_9_rule_1(V0) :- indx5(V1),tile3

(V2),onrow(V0,V2,V1).
clause_depth_9_rule_2(V0) :- tile(V2),

after_tile(V2,V3),indx9(V1),onrow(V0,V2,
V1).



% Rules from depth 10
clause_depth_10_rule_1(V0) :- col1_comp(V0).
clause_depth_10_rule_2(V0) :- tile5(V1),

indx4(V2),onrow(V0,V1,V2).
clause_depth_10_rule_3(V0) :- tile8(V2),

not_inplace_clause(V0,V2),tile0(V1),
not_inplace_clause(V0,V1).

% Rules from depth 11
clause_depth_11_rule_1(V0) :- tile6(V2),indx

(V1),onrow(V0,V2,V1),indx4(V3),
is_distinct(V1,V3).

clause_depth_11_rule_2(V0) :- tile2(V2),indx
(V1),onrow(V0,V2,V1),indx4(V3),nextto(V3
,V1).

clause_depth_11_rule_3(V0) :- tile(V1),
goal_index(V1,V2),after_tile(V1,V4),
after_tile(V4,V3),not_inplace_clause(V0,
V4),onrow(V0,V3,V2).

% Rules from depth 12
clause_depth_12_rule_1(V0) :- row1_comp(V0).
clause_depth_12_rule_2(V0) :- indx8(V1),

tile2(V2),onrow(V0,V2,V1).
clause_depth_12_rule_3(V0) :- indx9(V1),

tile1(V2),onrow(V0,V2,V1).
clause_depth_12_rule_4(V0) :- indx4(V3),tile

(V1),indx7(V2),onrow(V0,V1,V2),
goal_index(V1,V4),is_distinct(V4,V3).

clause_depth_12_rule_5(V0) :- indx2(V2),
tile7(V3),tile(V1),onrow(V0,V1,V2),
goal_index(V1,V4),onrow(V0,V3,V4).

% Rules from depth 13
clause_depth_13_rule_1(V0) :-

clause_depth_12_rule_2(V0).
clause_depth_13_rule_2(V0) :- indx6(V1),

tile6(V2),onrow(V0,V2,V1).
clause_depth_13_rule_3(V0) :- tile8(V1),

tile2(V2),not_inplace_clause(V0,V2),
not_inplace_clause(V0,V1).

clause_depth_13_rule_4(V0) :- indx(V1),tile1
(V3),onrow(V0,V3,V1),indx6(V2),
is_distinct(V2,V1).

clause_depth_13_rule_5(V0) :- tile8(V3),
tile4(V2),not_inplace_clause(V0,V2),
indx8(V1),onrow(V0,V3,V1).

% Rules from depth 14
clause_depth_14_rule_1(V0) :-

clause_depth_13_rule_4(V0),tile5(V1),
not_inplace_clause(V0,V1).

clause_depth_14_rule_2(V0) :- tile2(V1),
indx6(V2),onrow(V0,V1,V2).

clause_depth_14_rule_3(V0) :- tile8(V2),
not_inplace_clause(V0,V2),tile7(V1),
inplace_clause(V0,V1).

clause_depth_14_rule_4(V0) :- tile7(V1),
indx5(V3),onrow(V0,V1,V3),tile5(V2),
not_inplace_clause(V0,V2).

clause_depth_14_rule_5(V0) :- tile(V4),
after_tile(V4,V1),goal_index(V4,V2),
goal_index(V1,V3),onrow(V0,V4,V3),onrow(
V0,V1,V2).

% Rules from depth 15
clause_depth_15_rule_1(V0) :- tile7(V1),

indx3(V2),onrow(V0,V1,V2).
clause_depth_15_rule_2(V0) :- tile6(V1),

indx5(V2),onrow(V0,V1,V2).
clause_depth_15_rule_3(V0) :- tile6(V1),

tile0(V3),not_inplace_clause(V0,V1),
indx5(V2),onrow(V0,V3,V2).

clause_depth_15_rule_4(V0) :- tile7(V3),
tile2(V1),not_inplace_clause(V0,V1),
indx4(V2),onrow(V0,V3,V2).

clause_depth_15_rule_5(V0) :- tile2(V4),tile
(V3),indx5(V2),onrow(V0,V3,V2),
goal_index(V3,V1),onrow(V0,V4,V1).

% Rules from depth 16
clause_depth_16_rule_1(V0) :-

clause_depth_15_rule_3(V0).
clause_depth_16_rule_2(V0) :-

clause_depth_15_rule_4(V0).
clause_depth_16_rule_3(V0) :- tile5(V2),

indx1(V1),onrow(V0,V2,V1).
clause_depth_16_rule_4(V0) :- tile6(V1),

not_inplace_clause(V0,V1),tile3(V2),
inplace_clause(V0,V2).

clause_depth_16_rule_5(V0) :- tile6(V3),
inplace_clause(V0,V3),tile8(V1),indx2(V2
),onrow(V0,V1,V2).

clause_depth_16_rule_6(V0) :- indx2(V2),
tile8(V3),not_inplace_clause(V0,V3),
tile3(V1),onrow(V0,V1,V2).

clause_depth_16_rule_7(V0) :- tile4(V3),
not_inplace_clause(V0,V3),tile5(V1),
indx2(V2),onrow(V0,V1,V2).

% Rules from depth 17
clause_depth_17_rule_1(V0) :-

clause_depth_16_rule_4(V0),
clause_depth_16_rule_7(V0).

clause_depth_17_rule_2(V0) :- tile8(V1),
indx4(V2),onrow(V0,V1,V2).

clause_depth_17_rule_3(V0) :- indx6(V2),
tile6(V1),onrow(V0,V1,V2).

clause_depth_17_rule_4(V0) :- tile0(V1),
indx2(V3),tile6(V2),onrow(V0,V1,V3),
not_inplace_clause(V0,V2).

clause_depth_17_rule_5(V0) :- tile5(V4),tile
(V1),goal_index(V1,V2),onrow(V0,V4,V2),
indx1(V3),onrow(V0,V1,V3).

% Rules from depth 18
clause_depth_18_rule_1(V0) :-

clause_depth_17_rule_2(V0).
clause_depth_18_rule_2(V0) :- indx5(V2),

tile1(V3),indx(V1),is_distinct(V2,V1),
onrow(V0,V3,V1).

clause_depth_18_rule_3(V0) :- indx1(V1),
tile5(V3),onrow(V0,V3,V1),tile7(V2),
not_inplace_clause(V0,V2).

clause_depth_18_rule_4(V0) :- indx8(V4),tile
(V2),after_tile(V2,V3),onrow(V0,V3,V4),
goal_index(V3,V1),onrow(V0,V2,V1).

% Rules from depth 19



clause_depth_19_rule_1(V0) :- indx4(V2),tile
(V3),after_tile(V3,V1),onrow(V0,V1,V2),
clause_depth_18_rule_2(V0).

clause_depth_19_rule_2(V0) :- indx9(V2),tile
(V1),indx1(V3),onrow(V0,V1,V3),
after_tile(V1,V4),onrow(V0,V4,V2).

% Rules from depth 20
clause_depth_20_rule_1(V0) :- indx1(V1),

tile7(V2),onrow(V0,V2,V1).
clause_depth_20_rule_2(V0) :- tile7(V1),

not_inplace_clause(V0,V1),tile0(V2),
inplace_clause(V0,V2).

clause_depth_20_rule_3(V0) :- tile5(V3),tile
(V4),indx9(V1),goal_index(V4,V2),onrow(
V0,V3,V2),onrow(V0,V4,V1).

% Rules from depth 21
clause_depth_21_rule_1(V0) :- tile2(V1),

indx8(V2),onrow(V0,V1,V2).
clause_depth_21_rule_2(V0) :- tile4(V1),

tile1(V3),indx9(V2),onrow(V0,V1,V2),
not_inplace_clause(V0,V3).

clause_depth_21_rule_3(V0) :- indx2(V2),
tile8(V3),onrow(V0,V3,V2),tile2(V1),
not_inplace_clause(V0,V1).

clause_depth_21_rule_4(V0) :- indx9(V3),
tile7(V4),onrow(V0,V4,V3),indx6(V1),
tile2(V2),onrow(V0,V2,V1).

% Rules from depth 22
clause_depth_22_rule_1(V0) :-

clause_depth_21_rule_2(V0).
clause_depth_22_rule_2(V0) :- tile5(V1),

indx2(V2),onrow(V0,V1,V2).


