
First-Order Representation Languages for Goal-Conditioned RL

Simon Ståhlberg, Hector Geffner
RWTH Aachen University, Germany

simon.stahlberg@gmail.com, hector.geffner@ml.rwth-aachen.de

Abstract

First-order relational languages have been used in MDP plan-
ning and reinforcement learning (RL) for two main pur-
poses: specifying MDPs in compact form, and representing
and learning policies that are general and not tied to spe-
cific instances or state spaces. In this work, we instead con-
sider the use of first-order languages in goal-conditioned RL
and generalized planning. The question is how to learn goal-
conditioned and general policies when the training instances
are large and the goal cannot be reached by random explo-
ration alone. The technique of Hindsight Experience Replay
(HER) provides an answer to this question: it relabels unsuc-
cessful trajectories as successful ones by replacing the origi-
nal goal with one that was actually achieved. If the target pol-
icy must generalize across states and goals, trajectories that
do not reach the original goal states can enable more data-
and time-efficient learning. In this work, we show that fur-
ther performance gains can be achieved when states and goals
are represented by sets of atoms. We consider three versions:
goals as full states, goals as subsets of the original goals, and
goals as lifted versions of these subgoals. The result is that the
latter two successfully learn general policies on large plan-
ning instances with sparse rewards by automatically creating
a curriculum of easier goals of increasing complexity. The ex-
periments illustrate the computational gains of these versions,
their limitations, and opportunities for addressing them.

1 Introduction
Reinforcement learning (RL) provides a powerful frame-
work for training agents to maximize rewards (Sutton and
Barto 1998; Bertsekas and Tsitsiklis 1996). A significant
challenge in RL arises in scenarios with large state spaces
and sparse rewards, where random exploration often fails
to achieve successful outcomes, leading to learning dead-
lock. To mitigate this issue, Hindsight Experience Replay
(HER) (Andrychowicz et al. 2017) has been proposed as an
effective technique. HER operates in the goal-conditioned
RL (GCRL) setting, where policies are developed to gen-
eralize across both states and goals (Andrychowicz et al.
2017; Nasiriany et al. 2019; Eysenbach et al. 2019, 2022;
Chane-Sane, Schmid, and Laptev 2021). The core concept
in HER involves relabeling unsuccessful trajectories: in-
stead of treating a trajectory as a failure to reach the in-
tended goal g, it is reinterpreted as successfully reaching the
goal g′ that was actually achieved. By breaking the dead-

lock caused by sparse rewards, HER significantly acceler-
ates learning, even in challenging tasks like solving the Ru-
bik’s cube (Agostinelli et al. 2019).

Interestingly, GCRL shares similarities with generalized
planning (Martı́n and Geffner 2004; Srivastava, Immerman,
and Zilberstein 2008; Hu and Giacomo 2011; Celorrio,
Segovia-Aguas, and Jonsson 2019), which focuses on learn-
ing policies that generalize across different states and goals
within a planning domain. This problem has been explored
through various approaches, including SAT-based (Bonet,
Francès, and Geffner 2019; Francès, Bonet, and Geffner
2021) and reinforcement learning approaches (Ståhlberg,
Bonet, and Geffner 2022b, 2023). In the RL context, gen-
eralized planning resembles GCRL but differs in using re-
lational, first-order languages to represent both states and
goals, akin to STRIPS (Guestrin et al. 2003; Sanner and
Boutilier 2009). Furthermore, the scope of generalization is
explicitly defined by the lifted description of the planning
domain (Haslum et al. 2019).

This paper introduces and evaluates three variants of HER
adapted for the planning setting. The first, state HER, rela-
bels goals as sets (conjunctions) of ground atoms represent-
ing full states. The second, propositional HER, limits rela-
beled goals to subsets of ground atoms found in the original
goal. The third, lifted HER, uses lifted versions of proposi-
tional goals that maintain essential structural dependencies.
Experimental results demonstrate that the latter two variants
are particularly effective, automatically constructing a learn-
ing curriculum by progressively identifying more challeng-
ing trajectories (e.g., larger goal sizes and states farther from
the initial state). Unlike previous RL approaches to general-
ized planning (Ståhlberg, Bonet, and Geffner 2023), which
were limited to small instances requiring precomputation of
optimal values V ∗(s) for uniform sampling, our approach is
scalable to billions of states without such precomputation.

The remainder of this paper is organized as follows: we
begin with a review of relevant background in classical plan-
ning and GCRL, followed by a detailed description of how
states, actions, and goals are encoded for the relational GNN
architecture, the RL algorithm used (a variant of DQN for
GCRL), and the considered HER variants. We then present
our experiments and discuss the results, interspersed with
related work throughout the introduction.

2 Background
In this section, we present a brief overview of classical plan-
ning, goal-conditioned reinforcement learning (GCRL), and
relational graph neural networks (R-GNN), which constitute
the foundation of our approach.

Classical Planning
A planning instance is defined as a tuple ⟨P, Â,O, I,G⟩. In
this paper, we use the hat notation, X̂ , to denote first-order
(lifted) constructs, which may contain variables as well as
constants. When the hat is omitted, X refers to the ground
(propositional) version, where all variables have been re-
placed by constants. We denote ⟨P, Â⟩ as the domain and
⟨O, I,G⟩ as the problem, where:

• P represents a set of predicate symbols. For each symbol
P ∈ P , there is an associated arity n. An atom is de-
noted as P (x1, . . . , xn); if no term xi is a variable (i.e.,
all terms are objects), then it is a ground atom.

• Â denotes a set of action schemas. Each action schema
â = A(X1, . . . , Xk) is defined by a name A and a list
of parameters X1, . . . , Xk (variables). An action schema
consists of a precondition, a set of atoms that must be
true in the current state for the action to be applicable,
and an effect, a set of atoms that describe how the state is
modified when the action is applied.

• O denotes a set of objects (constants).
• I is the initial state and G is the goal. Both are states,

which are sets of ground atoms over P and O. A state s
is considered a goal state if and only if G ⊆ s.

A ground action is an instantiation of an action schema
â, where all variables are replaced by objects from O, e.g.,
a = A(o1, . . . , ok). The objective in planning is to find a
sequence of ground actions that, when applied to the initial
state I, leads to a state s satisfying G ⊆ s. Each ground ac-
tion is only applicable if its precondition holds in the current
state, and its effect deterministically updates the state.

Goal-Conditioned Reinforcement Learning
We adopt a goal-conditioned RL (GCRL) framework tai-
lored to the characteristics of classical planning. In our for-
mulation, we assume that: the actions are deterministic, the
environment is fully observable, and there is a fixed initial
state. Additionally, we define a reward function r(s, a,G),
and a discount factor γ ∈ [0, 1].

In GCRL, each episode begins with an initial state s0 and
a goal G. In our setting, the initial state and the goal is always
fixed to s0 = I and G, respectively. At each time step t, the
agent selects an action at = π(st,G), at ∈ A[st], receives
an immediate reward rt = r(st, at,G), and transitions to a
new state st+1, which is obtained by applying at in st. The
objective of the agent is to maximize its return, defined as
the discounted sum of future rewards Rt =

∑∞
i=t γ

i−tri.
In planning, the primary objective is to solve problems by

reaching a goal state. This is typically modeled in one of
two ways: a reward is given only upon reaching a goal state,
or a constant negative reward is incurred until the problem

is solved. We use the latter, setting r(s, a,G) = −1. Goal
states are terminal, meaning the episode ends once a goal
is reached and no further rewards are accumulated. In states
with no applicable ground actions, a dummy action is pro-
vided that leaves the state unchanged.

The Q-value function Q(s, a,G) represents the expected
return of taking action a in state s while pursuing the goal
G. A greedy policy selects the action with the highest return:
πQ(s,G) = argmaxa∈A[s] Q(s, a,G). An optimal policy π∗

satisfies Qπ∗
(s, a,G) ≥ Qπ(s, a,G) for all states s, ground

actions a, goals G, and any policy π. Notably, all optimal
policies share the same action-value function, which in turn
satisfies the Bellman optimality equation:

Q∗(s, a,G) = r(s, a,G) + γ max
a′∈A[s′]

Q∗(s′, a′,G), (1)

where s′ denotes the state resulting from applying a in s.
This equation forms the foundation for Q-learning.

3 Learning General Policies
We begin by explaining the computation of Q-values for
each applicable action in a given state relative to a goal.
Then, we describe DQN with HER for GCRL.

Q-value Predictions
In classical planning, states are represented as sets of ground
atoms, where sizes vary across states, and the number of
applicable actions dynamically changes. In this paper, we
use a relational graph neural network (R-GNN) architec-
ture (Ståhlberg, Bonet, and Geffner 2022a) to learn Q-value
functions in classical planning domains. The R-GNN oper-
ates on relational structures and can handle variable-size in-
puts, making it suitable for classical planning. The R-GNN
architecture is a convenient choice as it can directly pro-
cess sets of ground atoms. Previous work using this architec-
ture (Ståhlberg, Bonet, and Geffner 2022a,b, 2023) focused
on learning value functions, which involves generating suc-
cessor states and computing their values. In contrast, our ap-
proach learns a Q-value function that directly estimates the
value of executing a specific action in a given state.

For brevity, we omit a detailed description of the R-GNN
architecture here. Interested readers can find description
in (Ståhlberg, Bonet, and Geffner 2022a) or in the appendix.
Conceptually, it functions as a black-box, taking sets S ′ and
O′ as inputs and generating embeddings f(o) for each ob-
ject o ∈ O′. We simply need to define the input sets S ′ and
O′ to encompass the state, applicable actions, and the goal.
Additionally, we design the input so that the Q-values for all
applicable ground actions are computed in parallel.

It is crucial that the input encoding distinguishes between
the state, applicable actions and the goal. To achieve this,
we introduce new predicate symbols and objects in the in-
put. The state uses original predicate symbols P , applicable
actions are represented by new predicate symbols PA for
each action schema A, and the goal by new predicate sym-
bols PG for each goal predicate P ∈ P . Additionally, new
objects oa are introduced for each applicable action a. The
input S ′ and O′ are defined as S ′ = Ss ∪SA[s]∪SG , where:
• Ss = s is the set of atoms true in the given state;

• SA[s] = {PA(oa , o1, . . . , on) : a = A(o1, . . . , on) ∈
A[s]}, with PA and oa representing new predicate sym-
bols and objects, respectively; and

• SG = {PG(o1, . . . , on) : P (o1, . . . , on) ∈ G}, with PG
representing a new predicate symbol.

The set of objects is O′ = O∪{oa : a ∈ A[s]}, the union of
objects in the state and new objects representing applicable
actions. Notably, the atom PA(oa, . . .) for action a includes
terms of a, indirectly connecting oa to state and goal atoms.

Initialization of the R-GNN requires knowledge of all
predicate symbols. No new predicate symbol depends on
a specific problem instance, ensuring a fixed set of new
symbols for each domain. Consequently, the model can be
trained on one instance set and applied to others within the
same domain. The output of R-GNN(S ′,O′) is a set of em-
beddings f(o) for each object o ∈ O′. To compute the Q-
value for a specific action, the embedding of the correspond-
ing action object oa is used alongside a state summary. The
Q-value function is defined as:

Q(s, a,G) = MLP

(
f(oa),

∑

o∈O
f(o)

)
. (2)

Here, the sum encompasses embeddings of original state ob-
jects (excluding action objects), ensuring the Q-value is con-
ditioned on both action and overall state context, where the
goal is implicit. Although using only f(oa) is possible, it
empirically leads to poorer generalization.

Deep Q-Network for GCRL
The presented Q-value function is differentiable and train-
able using standard deep reinforcement learning methods. In
this section, we briefly outline the training process for the Q-
value function using a variant of the DQN algorithm (Mnih
et al. 2015); a more detailed description is provided in the
appendix. DQN involves two primary stages: (1) experience
generation by interacting with the environment, and (2) Q-
value function training using the gathered experience. These
stages are interleaved, allowing the agent to learn from its
interactions while exploring the environment.

Experience Generation The initial step involves collect-
ing experience tuples ⟨st, at, rt, st+1,G⟩ through policy ex-
ecution in the environment. These tuples are stored in a re-
play buffer, a finite-memory structure holding recent expe-
riences. Here, individual transition steps are stored in the
replay buffer rather than entire trajectories. This decorrela-
tion is safe in our context as classical planning adheres to
the Markov property. This step also entails an exploration-
exploitation trade-off; we use Boltzmann exploration where
the probability of choosing action a in state s with goal G is:

π(a | s,G) = exp (Q(s, a,G)/T)∑
a′∈A[s] exp (Q(s, a′,G)/T) , (3)

with T > 0 regulating exploration versus exploitation, with
higher T increasing exploration.

Optimization The subsequent step optimizes Q(st, at,G)
via mini-batch gradient descent on the loss:

L = (Q(st, at,G)− yt)
2 , (4)

yt = rt + γ max
a′∈A[st+1]

Q(st+1, a′,G) , (5)

where yt is the target value and γ is the discount factor. The
value of yt is computed using a target network that is up-
dated every k episodes using the weights of the main net-
work, with k set to 1 in our experiments. The mini-batch is
sampled from the replay buffer.

Experience Refinement Though the prior steps suffice
for training a Q-value function, experience quality can be
improved. Hindsight Experience Replay (HER) is one ap-
proach, generating extra experience by reinterpreting tra-
jectories with different goals (Andrychowicz et al. 2017).
Here, the refinement step is a function REFINE operating
on a trajectory τ and a problem, yielding refined trajecto-
ries τ1, . . . , τm. The input includes the problem for problem-
specific strategies, like those discussed later. The refined tra-
jectories are stored in the replay buffer.

4 Hindsight Experience Replay Variations
Hindsight Experience Replay (HER) is a technique designed
to improve sample efficiency in environments with sparse re-
wards. The core idea is to reinterpret unsuccessful episodes
by substituting the original goal with an alternative goal that
was achieved during the episode. This allows the agent to
learn from every experience, regardless of whether the orig-
inal goal was met. More precisely, an experience tuple is
stored as ⟨s, a, r, s′,G⟩, where G is the original goal. HER
then generates additional transitions by: sampling a new goal
G′ from states encountered later in the same episode; re-
calculating the reward using G′; and augmenting the replay
buffer with these hindsight experiences. This procedure is
implemented by the aforementioned REFINE function.

We introduce three variants of HER tailored to the clas-
sical planning setting: state HER, propositional HER, and
lifted HER. State HER closely mirrors the original HER al-
gorithm, whereas propositional and lifted HER exploit the
structure of the goal to generate more informative hindsight
experiences. The only difference between the three variants
is the definition of the HINDSIGHTGOAL function, which
determines the hindsight goal for each subtrajectory. In all
three cases, the algorithm greedily extracts the longest possi-
ble non-overlapping, cycle-free subtrajectories that achieve
the hindsight goal only at their final states. Although it is
possible to allow overlapping subtrajectories, this may re-
duce the diversity of experiences in the replay buffer.

State HER
In standard HER (Andrychowicz et al. 2017), the hindsight
goal is defined as the state achieved at the end of the subtra-
jectory. Formally,

HINDSIGHTGOAL(s,G) = s. (6)

This approach treats the entire final state, including both flu-
ent and static atoms, as the new goal. While static atoms are
always satisfied and could be omitted for conciseness, we
retain them here to remain consistent with the original HER
formulation.

Propositional HER
Propositional HER differs from state HER by exploiting the
structure of the original goal rather than ignoring it entirely.

Algorithm 1: Generation of lifted goals.
1: Input: Grounded goal G
2: Output: Lifted goals Ĝ
3: Initialize Ĝ← ∅
4: Construct a goal-dependency graph G(G) = (V,E):
5: Identify connected components C1, . . . , Ck of G
6: Let C∗

i be the set of all subgraphs of Ci containing at most one
connected component

7: Compute the cartesian product C∗ = C∗
1 × · · · × C∗

k , and
combine subgraphs

8: for each (V ′, E′) ∈ C∗, V ′ ̸= ∅ do
9: Let Ĝ be V ′ with objects replaced by variables

10: For each pair of variables in Ĝ, add X ̸= Y to Ĝ
11: Add Ĝ to Ĝ
12: end for

Instead of substituting the goal with the final state, propo-
sitional HER constructs a new goal by selecting the largest
subset of the original goal that is achieved at the end of the
subtrajectory. For instance, in the Blocks domain, if the orig-
inal goal is to build a tower of blocks but only a partial stack
is achieved, the hindsight goal becomes the maximal subset
of goal atoms satisfied in the final state. Formally, the hind-
sight goal is defined as:

HINDSIGHTGOAL(s,G) = arg max
G′⊆G

{
|G′| : G′ ⊆ s

}
. (7)

This method is especially useful in domains where goals are
expressed as conjunctions of atoms, letting the agent to learn
from partial achievements. However, in cases where the goal
consists of a single atom, propositional HER offers no ad-
vantage over the original goal, as no proper subset exists.

Lifted HER
The limitations of propositional HER can be addressed by
lifting goals to the first-order level, enabling the generation
of analogous hindsight goals that capture structural similar-
ities rather than requiring exact matches. For example, in
the Blocks domain, a trajectory may construct a tower us-
ing blocks different from those specified in the original goal.
Such a trajectory is still valuable, as it demonstrates the abil-
ity to achieve the underlying goal structure. To achieve this,
lifted HER lifts the original goal to a first-order represen-
tation by replacing constants with variables, allowing for al-
ternative groundings. However, this process requires making
implicit constraints explicit, such as ensuring variables are
assigned to distinct objects and that the goal forms a similar
structure (e.g., a tower).

The first step is to construct a goal-dependency graph
for G, which captures the relationships between atoms in
the grounded goal based on shared objects. For example,
consider a goal that requires building a single tower in the
Blocks domain. We want to avoid generating lifted subgoals
such as ON(X,Y) ∧ ON(Z,W), where all four variables
can be bound to different objects. In practice, such subgoals
are likely to correspond to disconnected structures, which
are not meaningful in the context of the original goal. The
goal-dependency graph prevents the enumeration of these
structurally irrelevant subgoals by ensuring that only con-

nected subgraphs, corresponding to coherent goal structures,
are considered during lifted goal generation.
Definition 1. A goal-dependency graph G(G) = (V,E) is
an undirected graph where each vertex v ∈ V corresponds
to an atom in G, and an edge (p, p′) ∈ E exists if and only if
p and p′ share at least one object in its arguments.

The second step is to identify subgraphs of G(G) that do
not split any existing connected components into multiple
components. In the Blocks example, this means that the sub-
graph ON(a, b)∧ON(b, c) is valid, while ON(a, b)∧ON(c, d)
is not as it splits the goal into two disconnected components.
Note that G(G) may contain multiple connected compo-
nents, we generate valid subgoals for each connected com-
ponent separately and later combine them.

The third step is to lift the propositional subgoals to first-
order representations. This is done by replacing the con-
stants in the subgraph with variables, and adding inequal-
ity constraints to ensure that the variables are distinct. For
example, the propositional subgoal ON(a, b) ∧ ON(b, c) is
lifted to ON(X,Y) ∧ ON(Y,Z) ∧ (X ̸= Y) ∧ (Y ̸= Z).

Algorithm 1 outlines the procedure for generating lifted
goals. Given a grounded goal G, the algorithm produces a
set of lifted goal schemas Ĝ. We define GROUND(Ĝ, s) as a
grounding of the goal schema Ĝ that is satisfied in the state
s, or ⊥ if no such grounding exists. In other words, this op-
eration returns a propositional instantiation of Ĝ that holds
in s. The HINDSIGHTGOAL function for lifted HER is then
defined as follows:

Ĝ∗ = argmax
Ĝ∈Ĝ

{
|Ĝ| : GROUND(Ĝ, s) ̸= ⊥

}
(8)

HINDSIGHTGOAL(s,G) = GROUND(Ĝ∗, s) (9)
If there is no grounding, then HINDSIGHTGOAL(s,G) = ⊥.

Example
Consider a goal in the Blocks domain that requires stacking
blocks b1, b2, b3, and b4 in the specific order, with b1 on top
and b4 at the bottom. Propositional HER would generate the
following subgoals:

• ON(b1, b2) ∧ ON(b2, b3) ∧ ON(b3, b4),
• ON(b1, b2) ∧ ON(b2, b3), ON(b2, b3) ∧ ON(b3, b4),
• ON(b1, b2), ON(b2, b3), ON(b3, b4).

In contrast, lifted HER generates subgoal schemas that
generalize beyond the specific blocks b1, b2, b3, and b4. The
resulting lifted subgoals are:

• ON(X,Y) ∧ ON(Y,Z) ∧ ON(Z,W) ∧X ̸= Y ∧ . . . ,
• ON(X,Y) ∧ ON(Y,Z) ∧X ̸= Y ∧ . . . ,
• ON(X,Y) ∧X ̸= Y .

In state HER, the hindsight goal is the entire final state
of the subtrajectory, including atoms such as CLEAR(b1)
and ON-TABLE(b4) that are unrelated to the original goal.
Including these extra atoms might result in a goal that is
harder to achieve than the original, since all blocks must be
arranged in the specified configuration.

5 Experiments
We first describe the benchmark used in the experiments,
then explain how the training and testing were set up. Fi-
nally, we discuss the results of the experiments.

Domain Train Validation Test

Blocks 2 – 14 blk 15 – 19 blk 20 – 50 blk
Childsnack 1 – 6 chd 7 – 12 chd 13 – 50 chd
Childsnack-AF 1 – 10 chd 11 – 19 chd 20 – 119 chd

Delivery 2 – 5 grd,
1 – 5 pkg

6 – 9 grd,
1 – 7 pkg

10 – 25 grd,
6 – 10 pkg

Gripper 1 – 19 bal 20 – 29 bal 30 – 129 bal

Hiking 1 – 6 cpl,
1 – 4 loc

6 – 10 cpl,
2 – 5 loc

10 – 26 cpl,
5 – 7 loc

Miconic 1 – 19 ppl,
2 – 20 flr

20 – 29 ppl,
21 – 30 flr

30 – 80 ppl,
31 – 81 flr

Reward 2 – 12 grd,
1 – 7 rwd

13 – 15 grd,
8 – 13 rwd

16 – 29 grd,
8 – 14 rwd

Spanner 1 – 14 nut 15 – 24 nut 25 – 50 nut
Visitall 2 – 12 grd 13 – 15 grd 16 – 30 grd

Table 1: Overview of the training, validation, and test sets for each
domain. The training set is used to fit the models, the validation set
to select hyperparameters and the best checkpoint, and the test set
to assess final performance. Instances are generated using one or
two scaling parameters with even distribution. The parameters are
as follows: balls (bal), children (chd), couples (cpl), floors (flr), grid
size (grd), locations (loc), nuts (nut), packages (pkg), people (ppl),
and rewards (rwd). The suffix ”AF” denotes allergy-free instances
(i.e., without gluten-intolerant children).

Domains
The domains used in the experiments are those from Drexler
et al. (2024), where C2 expressiveness is sufficient to distin-
guish all non-isomorphic states. Models based on R-GNN
architecture cannot fit the training data if there are value
conflicts; however, the absence of value conflicts does not
guarantee that a general policy can be learned. To conserve
space, we refer the reader to Drexler et al. (2024) for the do-
main descriptions. The datasets used are shown in Table 1.

In addition, we also evaluate on a Maze domain. In this
domain, the task is to navigate a grid to reach a specific loca-
tion. This domain illustrates the limitaions of propositional
HER, as it fails to relabel trajectories in this domain.

Setup
We now describe the experimental setup for training and
evaluation. This includes details of the architecture, hyper-
parameters, and the training and testing procedures. The
methods were implemented using PyTorch, and used a lifted
successor generator to ground goals (Ståhlberg 2023).1

Model In contrast to the original RNN (Ståhlberg, Bonet,
and Geffner 2022a), we use residual updates and layer nor-
malization. Furthermore, we use a readout from a random
layer in addition to the readout from the last layer (Bansal
et al. 2022), imposing the same loss on both. This was nec-
essary to train networks with 100 layers.

Hyperparameters The embedding size was set to 32, us-
ing hard maximum for aggregation. The learning rate started
at 10−3 and decayed linearly to 10−6 over 300 episodes.
The Boltzmann temperature decayed from 1.0 to 0.1 linearly

1Code and data will be made available upon publication.

LAMA

Plan Length

Domain # Cov. Total Median Mean

Blocks 100 100 23250 218.0 232.5
Childsnack 100 24 2361 89.0 98.4
Childsnack-AF 100 65 16965 261 261.0
Delivery 100 99 27337 276 276.1
Gripper 100 100 23800 238.0 238.0
Hiking 100 26 2038 77.5 78.4
Miconic 100 100 19556 195.5 195.6
Reward 100 99 12054 116 121.8
Spanner 100 0 0 0 0.0
Visitall 100 100 53004 475.0 530.0

Total 1500 1212 312029 213.5 257.4

Table 2: The coverage and the plan length (total, median, and
mean) for each domain for LAMA. The plan length is for the first
solution found. LAMA solved 80.8% of the instances.

over 600 episodes. The discount factor was 0.999. Each
episode included 32 optimization steps with a batch size of
32. Huber loss (Huber 1964) (delta = 1.0) was used instead
of MSE. The replay buffer size was 1000, with prioritized
experience replay (Schaul et al. 2016) (priority exponent 0.6,
priority weight 0.4). We generated 4 trajectories per episode,
each up to 100 steps. The target network was updated after
each episode using the main network’s weights.

Training We trained 10 models per method and domain,
each with a unique random seed, to compute mean and stan-
dard deviation of coverage. Training was performed on a
system with an Intel Xeon Platinum 8352M CPU, 16 GB
RAM, and an NVIDIA A10 GPU with 24 GB VRAM, last-
ing up to 12 hours per model. Model selection was based
on validation coverage; in case of ties, shortest total solution
length was used, and then randomly selected.

Testing We evaluated the learned Q-value functions using
a greedy policy: at each step, the action with highest Q-value
was selected, i.e., a∗ = argmaxa∈A[s] Q(s, a,G). Only the
current state s was used—no lookahead or backtracking. The
action a∗ updated the state s, repeated until G ⊆ s or after
1000 steps. Actions leading to previously visited states were
excluded to avoid cycles.

Baselines
Learning general policies for planning domains with rein-
forcement learning (RL) is difficult because rewards are ex-
tremely sparse: agents usually receive no reward until the
goal is reached, so random exploration almost never pro-
duces successful episodes and learning stalls. Consequently,
standard RL methods such as REINFORCE (Williams 1992)
and Actor-Critic (Sutton et al. 1999) generally fail to learn
useful policies without a carefully designed curriculum.

To address reward sparsity, Gehring et al. (2022) propose
domain-independent heuristic reward shaping. This tech-
nique is orthogonal to our approach and could be combined
with it; we therefore omit it from our baselines.

Lifted HER Propositional HER State HER

Plan Length Plan Length Plan Length

Domain Cov. Total Median Mean Cov. Total Median Mean Cov. Total Median Mean

Blocks 100 9672 98.0 96.7 100 10730 100.0 107.3 98 10876 112.0 111.0
Blocks-L 100 9692 97.0 96.9 100 9802 98.0 98.0 78 11456 95.0 146.9
Childsnack 56 4358 69.0 77.8 100 9263 90.5 92.6 59 6309 111 106.9
Childsnack-AF 100 23424 211.5 234.2 100 21150 211.5 211.5 53 8240 141 155.5
Delivery 12 3506 243.5 292.2 11 1837 137 167.0 0 0 0 0.0
Gripper 100 23800 238.0 238.0 100 23988 238.0 239.9 100 24400 238.0 244.0
Gripper-L 100 23800 238.0 238.0 100 23858 239.0 238.6 100 23950 238.0 239.5
Hiking 0 0 0 0.0 0 0 0 0.0 0 0 0 0.0
Miconic 100 15999 159.0 160.0 100 15837 158.5 158.4 100 17955 180.5 179.6
Miconic-L 100 15870 158.5 158.7 100 15929 159.0 159.3 0 0 0 0.0
Reward 58 5564 86.5 95.9 72 6596 87.5 91.6 0 0 0 0.0
Reward-L 85 7941 89 93.4 78 7139 89.0 91.5 26 2566 95.5 98.7
Spanner 100 9555 94.0 95.5 100 9555 94.0 95.5 74 6766 90.0 91.4
Visitall 100 45329 409.0 453.3 88 34546 363.0 392.6 49 32018 654 653.4
Visitall-L 68 26247 340.0 386.0 87 36119 368 415.2 28 13706 483.0 489.5

Total 1179 224757 136 190.6 1236 226349 136.5 183.1 765 158242 148 206.9

Table 3: The number of solved instances and the plan length (total, median, and mean) for each domain for the learned models. There are
100 test instances per domain and 15 domains, resulting in a total of 1500 instances. See Table 1 for the training, validation, and test sets. The
suffix ”L” indicates that training instances too large to be fully expanded were excluded. When generating a solution, a maximum of 1000
steps was allowed, and actions leading to previously visited states were explicitly excluded. Models trained with lifted HER solve 78.6% of
instances, while those trained with propositional HER solve 82.4%. In contrast, models trained with state HER solve only 51.0% of instances.
The quality of the solutions can be compared to the solutions produced by LAMA (Table 2).

Related work by Ståhlberg, Bonet, and Geffner (2023)
learns general policies with RL but is limited to very small
state spaces and thus does not scale to the larger instances
we consider. Their method also assumes the ability to sam-
ple arbitrary initial states, whereas we always start from a
fixed initial state.

Our primary baseline is state HER, an adaptation of
HER (Andrychowicz et al. 2017) to planning. We compare
our lifted and propositional HER variants against this base-
line, and we evaluate the resulting plan quality against that of
the LAMA planner (Richter, Westphal, and Helmert 2011).

Results
The main results are presented in Table 3, which reports the
number of solved instances and plan lengths (total, median,
and mean) for each domain. Lifted HER solves 78.6% of in-
stances, while propositional HER achieves 82.4%. In com-
parison, state HER solves only 51.0%.

Table 2 shows the performance of the baseline planner,
LAMA. Notably, the learned models often produce signifi-
cantly shorter solutions than LAMA, indicating that they do
not rely on random exploration. Moreover, the learned mod-
els solve more instances than LAMA (82.4% vs. 80.8%), de-
spite being restricted to a greedy policy without backtrack-
ing, whereas LAMA is allowed to backtrack. Nevertheless,
it is clear that the learned models learn general policies that
can solve much larger instances, as shown in Table 1.

Failures
There are several domains where learning a general policy
failed. In Delivery, all packages must be delivered to the

same location, but the truck can carry only one package at a
time. Random exploration can occasionally deliver a single
package, but the likelihood of delivering multiple packages
to the same location in a single trajectory is extremely low.
As a result, the models typically learn to deliver just one
package, failing to generalize to the full task.

In the Hiking domain, a similar issue arises: the proba-
bility of generating informative trajectories through random
exploration is simply too low for effective learning.

For Childsnack, and to some extent Spanner, learning
a general policy is problematic. Although coverage is high,
this is due to selecting the best model across runs using the
validation set. The issue appears to be the handling of dead-
end states: every trajectory ending in a dead-end is relabeled
as a success for the relabeled goal. In Childsnack, dead-ends
occur when gluten-free ingredients run out; since some chil-
dren have been fed, the state matches a subgoal. Similarly,
in Spanner, if some nuts have been tightened, the trajectory
is relabeled as a success. Consequently, there is no training
data on how to avoid dead-ends for the original goal.

In Reward and Visitall, coverage decreases as the grid
size increases. This may be due to the model’s depth: with
larger grids, distant cells may not communicate effectively,
limiting the model’s ability to tackle larger instances.

Training Curves
Figure 1 shows the number of episodes required by each
method to learn a model that achieves a given coverage on
the test set of the Blocks domain. Lifted HER learns models
that reach nearly 100% coverage with fewer episodes than
propositional HER, and exhibits lower variance, especially

0

50

100

C
ov

er
ag

e
(%

)
Blocks

Lifted
Propositional

State

0 200 400 600 800 1,000
0

2

4

6

Episode

G
oa

lS
iz

e

0

10

20

Tr
aj

ec
to

ry
L

en
gt

h

Figure 1: The x-axis shows the episode number during training.
In the upper plot, the solid line indicates the mean coverage on
the test set achieved by the best model up to each episode. In this
plot, cycle avoidance is not used when solving the instance; if the
policy enters a cycle, the episode is terminated. The shaded area
represents the standard deviation. In the bottom plot, the solid line
(left y-axis) indicates the mean goal size, while the dashed line
(right y-axis) shows the mean trajectory length. In both plots, 10
different seeds are used.

in later episodes. In contrast, state HER requires substan-
tially more episodes to achieve comparable coverage, and
its variance remains high throughout training.

We note that lifted HER and propositional HER have the
ability to automatically generate a curriculum of increasing
difficulty. Figure 1 illustrates this by plotting the mean goal
size and trajectory length during training. Both lifted HER
and propositional HER show a clear increase in goal size
and trajectory length over time, indicating that the models
are exposed to progressively harder tasks. For lifted HER,
the mean goal size initially decreases as it learns to decon-
struct towers, but later increases as the model learns to solve
the original task. State HER is partially omitted from this
figure, as its goal sizes remain large and relatively constant
throughout training (varying with instance size). However,
state HER shows only a modest increase in mean trajectory
length, indicating limited curriculum learning.

Due to space constraints, the figures for the remaining do-
mains can be found in the appendix, illustrating that this ef-
fect is not limited to the Blocks domain.

Automatic curriculum learning is not a new concept
(Portelas et al. 2020), although it often requires a specific
mechanism to implement it. In our method, the curriculum
emerges naturally through the relabeling process, which fo-
cuses on the largest subgoals that can be achieved at any
given time. While this is partially present in state HER and
in the original formulation of HER, it becomes significantly
more evident in propositional and lifted HER.

0 200 400 600 800 1,000 1,200 1,400 1,600

0

50

100

Episode

C
ov

er
ag

e
(%

)

Maze

Lifted
State

Figure 2: See Figure 1 for a description of the plot. Propositional
HER is not shown, as not a single trajectory could be relabeled.

Propositional vs. Lifted HER
A noteworthy limitation of propositional HER is its reliance
on achieving smaller subsets of the original goal. This limi-
tation appears in the Maze domain, where the goal is to reach
a specific location. The shortest path to the goal in the train-
ing set is approximately 65 steps, but with a horizon of 100
steps and the possibility of backtracking or taking dead-end
branches, random exploration is unlikely to succeed. Indeed,
after running propositional HER for 120 hours (across 10
runs), not a single successful trajectory was found.

In contrast, lifted HER relabels the goal to the actual lo-
cation reached by the agent. This allows the model to learn a
general policy, as demonstrated in Figure 2, where it consis-
tently achieves 100% coverage. State HER can relabel the
goal, but these goals include static atoms, which appear to
hinder learning; as a result, coverage never reaches 100%.

Propositional HER also has difficulty with tasks such
as picking up a particular item among countless others, or
clearing a specific block in Blocks when there are hundreds
of blocks. The probability of randomly generating a trajec-
tory that achieves the precise goal is extremely low. Lifted
HER overcomes this by relabeling which object or block the
agent was supposed to target, enabling it to start learning.

6 Conclusions
In this paper, we introduced three variants of Hindsight
Experience Replay (HER) for generalized planning: state
HER, propositional HER, and lifted HER. These variants
adapt HER to the planning setting, where states and goals
are represented using first-order languages. State HER re-
labels goals as full states, propositional HER restricts rela-
beled goals to subsets of ground atoms that appear in the
original problem goal, and lifted HER uses lifted versions
of these propositional goals that preserve suitable structural
dependencies. We showed that these HER variants can sig-
nificantly improve the data efficiency and scalability of RL
approaches to generalized planning. In particular, they en-
able general policies to be learned in domains where it is
not possible to precompute optimal values for all states. We
also demonstrated that these HER variants can automatically
construct a more diverse and effective curriculum for learn-
ing, leading to faster convergence and better performance.

Acknowledgements
The research has been supported by the Alexander von Humboldt
Foundation with funds from the Federal Ministry for Education
and Research, Germany, by the European Research Council (ERC),
Grant agreement No. 885107, and by the Excellence Strategy of the
Federal Government and the NRW Länder, Germany.

References
Agostinelli, F.; McAleer, S.; Shmakov, A.; and Baldi, P. 2019.
Solving the Rubik’s cube with deep reinforcement learning and
search. Nature Machine Intelligence, 1: 356–363.

Andrychowicz, M.; Wolski, F.; Ray, A.; Schneider, J.; Fong, R.;
Welinder, P.; McGrew, B.; Tobin, J.; Abbeel, P.; and Zaremba, W.
2017. Hindsight Experience Replay. In Proc. of the 31st Conf. on
Neural Information Processing Systems (NIPS 2017), volume 30,
5048–5058.

Bansal, A.; Schwarzschild, A.; Borgnia, E.; Emam, Z.; Huang, F.;
Goldblum, M.; and Goldstein, T. 2022. End-to-end Algorithm Syn-
thesis with Recurrent Networks: Extrapolation without Overthink-
ing. In Proc. of the 36th Annual Conf. on Neural Information Pro-
cessing Systems (NeurIPS 2022).

Bertsekas, D. P.; and Tsitsiklis, J. N. 1996. Neuro-Dynamic Pro-
gramming. Athena Scientific.

Bonet, B.; Francès, G.; and Geffner, H. 2019. Learning Features
and Abstract Actions for Computing Generalized Plans. In Proc. of
the 33rd AAAI Conf. on Artificial Intelligence (AAAI 2019), 2703–
2710.

Celorrio, S. J.; Segovia-Aguas, J.; and Jonsson, A. 2019. A Review
of Generalized Planning. Knowledge Engineering Review, 34.

Chane-Sane, E.; Schmid, C.; and Laptev, I. 2021. Goal-
Conditioned Reinforcement Learning with Imagined Subgoals. In
Proc. of the 38th International Conf. on Machine Learning (ICML
2021), volume 139, 1430–1440.

Drexler, D.; Ståhlberg, S.; Bonet, B.; and Geffner, H. 2024. Sym-
metries and Expressive Requirements for Learning General Poli-
cies. In Proc. of the 21st International Conf. on Principles of
Knowledge Representation and Reasoning (KR 2024).

Eysenbach, B.; Gupta, A.; Ibarz, J.; and Levine, S. 2019. Diversity
is All You Need: Learning Skills without a Reward Function. In
Proc. of the 7th International Conf. on Learning Representations
(ICLR 2019).

Eysenbach, B.; Zhang, T.; Levine, S.; and Salakhutdinov, R. 2022.
Contrastive Learning as Goal-Conditioned Reinforcement Learn-
ing. In Proc. of the 36th Annual Conf. on Neural Information Pro-
cessing Systems (NeurIPS 2022), volume 35, 35603–35620.

Francès, G.; Bonet, B.; and Geffner, H. 2021. Learning General
Planning Policies from Small Examples Without Supervision. In
Proc. of the 35th AAAI Conf. on Artificial Intelligence (AAAI 2021),
11801–11808.

Gehring, C.; Asai, M.; Chitnis, R.; Silver, T.; Kaelbling, L. P.;
Sohrabi, S.; and Katz, M. 2022. Reinforcement Learning for Clas-
sical Planning: Viewing Heuristics as Dense Reward Generators.
In Proc. of the 32nd International Conf. on Automated Planning
and Scheduling (ICAPS 2022).

Guestrin, C.; Koller, D.; Gearhart, C.; and Kanodia, N. 2003. Gen-
eralizing Plans to New Environments in Relational MDPs. In Pro-
ceedings of the 18th International Joint Conference on Artificial
Intelligence (IJCAI 2003), 1003–1010.

Haslum, P.; Lipovetzky, N.; Magazzeni, D.; and Muise, C. 2019.
An Introduction to the Planning Domain Definition Language, vol-
ume 13 of Synthesis Lectures on Artificial Intelligence and Ma-
chine Learning. Morgan & Claypool.
Hu, Y.; and Giacomo, G. D. 2011. Generalized Planning: Syn-
thesizing Plans that Work for Multiple Environments. In Proc. of
the 22nd International Joint Conf. on Artificial Intelligence (IJCAI
2011), 918–923.
Huber, P. J. 1964. Robust Estimation of a Location Parameter. The
Annals of Mathematical Statistics, 35(1): 73–101.
Martı́n, M.; and Geffner, H. 2004. Learning Generalized Policies
from Planning Examples Using Concept Languages. Applied In-
telligence, 20(1): 9–19.
Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A. A.; Veness, J.;
Bellemare, M. G.; Graves, A.; Riedmiller, M. A.; Fidjeland, A. K.;
Ostrovski, G.; Petersen, S.; Beattie, C.; Sadik, A.; Antonoglou, I.;
King, H.; Kumaran, D.; Wierstra, D.; Legg, S.; and Hassabis, D.
2015. Human-level control through deep reinforcement learning.
Nature, 518: 529–533.
Nasiriany, S.; Pong, V. H.; Lin, S.; and Levine, S. 2019. Planning
with Goal-Conditioned Policies. In Proc. of the 33rd Annual Conf.
on Neural Information Processing Systems (NeurIPS 2019), vol-
ume 32, 14814–14825.
Portelas, R.; Colas, C.; Weng, L.; Hofmann, K.; and Oudeyer, P.
2020. Automatic Curriculum Learning For Deep RL: A Short Sur-
vey. In Proc. of the 29th International Joint Conf. on Artificial
Intelligence (IJCAI 2020), 4819–4825.
Richter, S.; Westphal, M.; and Helmert, M. 2011. LAMA 2008 and
2011 (planner abstract). In IPC 2011 Planner Abstracts, 50–54.
Sanner, S.; and Boutilier, C. 2009. Practical Solution Techniques
for First-Order MDPs. Artificial Intelligence, 173(5-6): 748–788.
Schaul, T.; Quan, J.; Antonoglou, I.; and Silver, D. 2016. Priori-
tized Experience Replay. In Proc. of the 4th International Conf. on
Learning Representations (ICLR 2016).
Srivastava, S.; Immerman, N.; and Zilberstein, S. 2008. Learning
Generalized Plans Using Abstract Counting. In Proc. of the 23rd
AAAI Conf. on Artificial Intelligence (AAAI 2008), 991–997.
Ståhlberg, S. 2023. Lifted Successor Generation by Maximum
Clique Enumeration. In Proc. of the 26th European Conf. on Arti-
ficial Intelligence (ECAI 2023), 2194–2201.
Ståhlberg, S.; Bonet, B.; and Geffner, H. 2022a. Learning General
Optimal Policies with Graph Neural Networks: Expressive Power,
Transparency, and Limits. In Proc. of the 32nd International Conf.
on Automated Planning and Scheduling (ICAPS 2022), 629–637.
Ståhlberg, S.; Bonet, B.; and Geffner, H. 2022b. Learning Gener-
alized Policies without Supervision Using GNNs. In Proc. of the
19th International Conf. on Principles of Knowledge Representa-
tion and Reasoning (KR 2022), 474–483.
Ståhlberg, S.; Bonet, B.; and Geffner, H. 2023. Learning General
Policies with Policy Gradient Methods. In Proc. of the 20th In-
ternational Conf. on Principles of Knowledge Representation and
Reasoning (KR 2023).
Sutton, R. S.; and Barto, A. G. 1998. Reinforcement Learning: An
Introduction. Cambridge, MA, USA: MIT Press.
Sutton, R. S.; McAllester, D.; Singh, S.; and Mansour, Y. 1999.
Policy Gradient Methods for Reinforcement Learning with Func-
tion Approximation. In Proc. of the 13th Annual Conf. on Neural
Information Processing Systems (NIPS 1999), 1057–1063.
Williams, R. J. 1992. Simple statistical gradient-following algo-
rithms for connectionist reinforcement learning. Machine Learn-
ing, 8(3-4): 229–256.

First-Order Representation Languages for Goal-Conditioned RL: Appendix

Algorithm 1: R-GNN
1: Input: Ground atoms S, objects O
2: Output: Embeddings fL(o) for each o ∈ O
3: Initialize f0(o) ∼ 0k for each o ∈ O
4: for i ∈ {0, . . . , L− 1} do
5: for each atom q := P (o1, . . . , om) ∈ S do
6: mq,oj := [MLPP (f i(o1), . . . ,f i(om))]j
7: end for
8: for each o ∈ O do
9: mo := max

(
{{mq,o : o∈ q, q ∈S}}

)

10: f i+1(o) := f i(o)+LN
(
MLPU

(
f i(o),mo

))
11: end for
12: end for

A Introduction
This appendix complements the paper First-Order Repre-
sentation Languages for Goal-Conditioned RL. It provides
further details on three core components: relational graph
neural networks, deep Q-networks with experience refine-
ment, and automated curriculum learning. The appendix in-
cludes pseudo-code and plots that illustrate the impact of
curriculum learning observed in our experiments. Addition-
ally, a miscellaneous section presents further details.

B Relational Graph Neural Network
Graph Neural Networks (GNNs) operate on graphs, whereas
planning states are represented as relational structures with
predicates of varying arities. To bridge this gap, the Rela-
tional Graph Neural Network (R-GNN) (Ståhlberg, Bonet,
and Geffner 2022) adapts GNNs to handle such relational
structures by exchanging information between objects based
on the ground atoms that are true in the state. In a R-GNN,
each object o ∈ O is associated with an embedding f i(o) ∈
Rk, where k is the embedding dimension and i denotes the
iteration. Initially, all embeddings are set to zero vectors:
f0(o) = 0k. The R-GNN updates these embeddings itera-
tively as follows:

f i+1(o) := f i(o)+ combi

(
f i(o),mo

)
, (1)

where mo is the aggregated message received by object
o, and combi(·) is a combination function. The aggregated

Copyright © 2026, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Algorithm 2: Deep Q-Network (DQN). The pseudo-code omits
mini-batches for clarity; in practice, mini-batches are used for both
problems and replay buffer transitions. Line 9 is not part of the
original DQN algorithm.
1: Input: Problems P1, . . . ,Pn, and refinement strategy REFINE
2: Output: Policy πθ

3: Initialize policy parameters θ randomly
4: Initialize target network parameters θtarget ← θ
5: Initialize replay buffer D
6: for each episode do
7: Sample Pi = ⟨P, Â,O, I,G⟩, i ∼ Uniform(1, n)
8: Generate trajectory τ using πθ from I
9: Refine experience τ1, . . . , τm = REFINE(τ,Pi)

10: Store all transitions from τ1, . . . , τm in D
11: Sample transition (st, at, rt, st+1,G) from D
12: Compute target:

yt = rt + γ max
a′∈A[st+1]

Q(st+1, a′,G; θtarget)

13: Update policy parameters θ by minimizing:

L = (Q(st, at,G; θ)− yt)
2

14: Update θtarget ← θ every k episodes
15: end for

message is defined as:

mo := agg
(
{{mq,o : o∈ q, q ∈S}}

)
, (2)

where mq,o is the message sent from atom q to object o,
computed by:

mq,oj := [combP (f i(o1), . . . ,f i(om))]j , (3)

with q = P (o1, . . . , om) and oj = o. The notation [·]j se-
lects the j-th output, corresponding to the position of o in q.
Messages are computed for each true atom, and mo aggre-
gates all messages received by o.

Algorithm 1 outlines the procedure. In our implementa-
tion, we use the max function for aggregation, and all com-
bination functions combi(·) are implemented as multilayer
perceptrons (MLPs) consisting of a non-linear layer with
Mish activation (Misra 2020) followed by a linear layer. Un-
like (Ståhlberg, Bonet, and Geffner 2022), we use a residual
connection (He et al. 2016) to combine the current embed-
ding f i(o) with the aggregated message.

Algorithm 3: Template for the REFINE function. The selection
and construction of hindsight goals is delegated to the HINDSIGHT-
GOAL function. This procedure greedily extracts the longest non-
overlapping, cycle-free subtrajectories where the hindsight goal is
achieved only at the end.
1: Param.: Function HINDSIGHTGOAL : S × S → S ∪ {⊥}
2: Input: Trajectory τ = ⟨s0, a0, r0, s1, . . . , sn⟩, and goal G
3: Output: Trajectories τ1, . . . , τm
4: end← n
5: while end > 0 do
6: start← end− 1
7: G′ = HINDSIGHTGOAL(send,G)
8: if G′ ̸= ⊥ then
9: τ ′ ← ⟨⟩

10: visited← {send}
11: while (start ≥ 0) ∧ (G′ ̸⊆ sstart) ∧ (sstart ̸∈ visited) do
12: r′start ← . . . {Recompute reward w.r.t. G′}
13: τ ′ ← ⟨⟨sstart, astart, r

′
start, sstart+1,G′⟩⟩ ⊕ τ ′

14: visited← visited ∪ {sstart}
15: start← start− 1
16: end while
17: if τ ′ ̸= ⟨⟩ then
18: output τ ′

19: end if
20: end if
21: end← start
22: end while

C DQN with Experience Refinement
In addition to the description in the main text, Algorithm 2
presents the corresponding pseudo-code for the DQN pro-
cedure. Here, on Line 9, the refinement step is applied to
the trajectory τ and problem P, yielding refined trajectories
τ1, . . . , τm. The refinement step is detailed in Algorithm 3,
which serves as a template for the REFINE function used
in our experiments. This REFINE function acts as a generic
placeholder for a task-specific refinement strategy that mod-
ifies the trajectory generated by the policy. The main text in-
troduces three such refinement methods: state HER, propo-
sitional HER, and lifted HER. These three only differ in how
they implement the HINDSIGHTGOAL function.

D Curriculum Learning Curves
The main text presented curves for the Blocks domain, illus-
trating how the size of goals and trajectory lengths evolve
during training. To illustrate that this effect is not limited to
the Blocks domain, we provide additional plots in this sec-
tion. We note that state HER is omitted from these plots,
as its goal size remains a large constant, which hinders the
visualization of trends in the other HER variants.

Figures 1 and 2 illustrate the average goal size and trajec-
tory length for different HER approaches across a variety of
domains. The trend discussed in the main text is clearly evi-
dent not only in the Blocks domain but also in other environ-
ments such as Childsnack, Childsnack-allergy-free, Gripper,
Miconic, Reward, and Visitall. However, this effect is not
consistently observed in all domains–for example, Delivery,
Hiking, and Spanner show limited or no such progression.

Figure 3 offers additional insights into trajectory lengths

for selected domains, this time including state HER. In do-
mains like Miconic, Reward, and to a lesser extent Visitall,
lifted HER and propositional HER exhibit increasing trajec-
tory lengths over the course of training, while state HER
remains relatively unchanged. This suggests that lifted and
propositional HER are more effective in creating a curricu-
lum. The reason lifted HER performs worse than proposi-
tional HER in Visitall is due to the restrictions imposed on
the size of lifted goals, as discussed below, which indirectly
limit the length of the trajectories.

E Miscellaneous Details
Grounding Unlike state HER or propositional HER, lifted
HER involves grounding lifted goals, which is a computa-
tionally intensive process. The complexity increases expo-
nentially with the number of variables involved. To maintain
feasibility, we cap the size of lifted goals (excluding inequal-
ity constraints) at a maximum of 10 atoms. In addition, we
limit the number of lifted goals considered per size, as the
Cartesian product of subgraphs can result in an exponen-
tial number of possible combinations. For further efficiency,
we restrict our search to a single grounding per lifted goal
within the state, in order to avoid generating an exponen-
tial number of groundings. These limitations are essential to
ensure that the algorithm remains viable for real-world use.

References
He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016. Deep Residual Learn-
ing for Image Recognition. In Proc. of the 2016 IEEE Confer-
ence on Computer Vision and Pattern Recognition, 770–778. IEEE
Computer Society.
Misra, D. 2020. Mish: A Self Regularized Non-Monotonic Activa-
tion Function. In Proceedings of the 31st British Machine Vision
Conference (BMVC 2020). BMVA Press.
Ståhlberg, S.; Bonet, B.; and Geffner, H. 2022. Learning General
Optimal Policies with Graph Neural Networks: Expressive Power,
Transparency, and Limits. In Proc. of the 32nd International Con-
ference on Automated Planning and Scheduling (ICAPS 2022),
629–637. AAAI Press.

0 500 1,000 1,500

2

4

6

Episode

G
oa

lS
iz

e

Blocks

Lifted Propositional 5

10

15

20

Tr
aj

ec
to

ry
L

en
gt

h

0 500 1,000 1,500

2

4

6

8

Episode

G
oa

lS
iz

e

Blocks-large

Lifted Propositional
10

20

Tr
aj

ec
to

ry
L

en
gt

h

0 500 1,000 1,500
1.5

2

2.5

Episode

G
oa

lS
iz

e

Childsnack

Lifted Propositional
4

6

8

10

Tr
aj

ec
to

ry
L

en
gt

h

0 500 1,000 1,500

3

4

5

6

Episode
G

oa
lS

iz
e

Childsnack-allergy-free

Lifted Propositional
5

10

15

20

Tr
aj

ec
to

ry
L

en
gt

h

0 200 400 600 800
2

4

6

8

Episode

G
oa

lS
iz

e

Gripper

Lifted Propositional
10

20

Tr
aj

ec
to

ry
L

en
gt

h

0 200 400 600 800

2

4

6

8

10

Episode

G
oa

lS
iz

e
Gripper-large

Lifted Propositional
10

20

30

Tr
aj

ec
to

ry
L

en
gt

h
0 200 400 600 800 1,000

1

2

Episode

G
oa

lS
iz

e

Delivery

Lifted Propositional
2

4

6

8

Tr
aj

ec
to

ry
L

en
gt

h

0 200 400 600 800 1,000

0

0.2

0.4

0.6

Episode

G
oa

lS
iz

e

Hiking

Lifted Propositional
0

0.5

1

1.5

Tr
aj

ec
to

ry
L

en
gt

h

Figure 1: The x-axis shows the episode number during training. The solid line (left y-axis) indicates the mean goal size, while the dashed
line (right y-axis) shows the mean trajectory length. 10 different seeds are used to compute the mean. State HER is not shown as it tends
to yield a constant goal size, making it difficult to visualize the other variations. Curves are smoothed using a moving average to make the
figures more visible.

0 200 400

2

4

6

Episode

G
oa

lS
iz

e

Miconic

Lifted Propositional 6

8

10

12

Tr
aj

ec
to

ry
L

en
gt

h

0 200 400 600
1

2

3

4

5

Episode

G
oa

lS
iz

e

Miconic-large

Lifted Propositional
6

8

10

Tr
aj

ec
to

ry
L

en
gt

h

0 200 400 600

2

2.5

Episode

G
oa

lS
iz

e

Reward

Lifted Propositional
6

8
Tr

aj
ec

to
ry

L
en

gt
h

0 100 200 300 400 500

2

3

4

Episode

G
oa

lS
iz

e

Reward-large

Lifted Propositional 5

10

15

Tr
aj

ec
to

ry
L

en
gt

h

0 500 1,000 1,500
5

10

15

20

Episode

G
oa

lS
iz

e

Visitall

Lifted Propositional 10

20

30

Tr
aj

ec
to

ry
L

en
gt

h

0 200 400 600 800

10

20

30

Episode

G
oa

lS
iz

e
Visitall-large

Lifted Propositional
20

40

Tr
aj

ec
to

ry
L

en
gt

h
0 500 1,000 1,500 2,000

0.9

1

1.1

1.2

Episode

G
oa

lS
iz

e

Maze

Lifted
0

20

40

Tr
aj

ec
to

ry
L

en
gt

h

0 200 400 600 800 1,000 1,200
0

2

4

Episode

G
oa

lS
iz

e

Spanner

Lifted Propositional
10

20

Tr
aj

ec
to

ry
L

en
gt

h

Figure 2: The x-axis shows the episode number during training. The solid line (left y-axis) indicates the mean goal size, while the dashed
line (right y-axis) shows the mean trajectory length. 10 different seeds are used to compute the mean. State HER is not shown as it tends
to yield a constant goal size, making it difficult to visualize the other variations. Curves are smoothed using a moving average to make the
figures more visible.

0 200 400 600 800 1,000 1,200

10

20

Episode

Tr
aj

ec
to

ry
L

en
gt

h

Blocks

Lifted Propositional State

0 200 400 600 800 1,000 1,200
0

10

20

Episode

Tr
aj

ec
to

ry
L

en
gt

h

Childsnack-allergy-free

Lifted Propositional State

0 200 400 600
0

10

20

30

Episode

Tr
aj

ec
to

ry
L

en
gt

h

Gripper

Lifted Propositional State

0 200 400

5

10

15

Episode

Tr
aj

ec
to

ry
L

en
gt

h

Miconic

Lifted Propositional State

0 200 400 600

5

10

Episode

Tr
aj

ec
to

ry
L

en
gt

h

Reward

Lifted Propositional State

0 500 1,000 1,500
0

20

40

Episode

Tr
aj

ec
to

ry
L

en
gt

h

Visitall

Lifted Propositional State

Figure 3: The x-axis shows the episode number during training. The line shows the mean trajectory length for selected domains. 10 different
seeds are used to compute the mean. Unlike Figure 1 and 2, the curves are not smoothed and contain state HER as well.

