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Abstract

The effectiveness of heuristic search when solving pathfind-
ing problems often relies on the accuracy of the heuristic
function. While it has been shown that heuristic functions
can be learned using deep reinforcement learning, it is as-
sumed that learning is only performed once and that the
heuristic function remains fixed when attempting to solve a
problem instance. However, heuristic search, itself, produces
data from which a heuristic function can learn. For exam-
ple, given the nodes expanded during search, Bellman up-
dates of the states associated with those nodes can be quickly
computed. In this paper, we introduce Learning to Learn
from Search (L2LFS), an algorithm that trains a sequence of
heuristic functions, where each heuristic function in the se-
quence learns from data obtained when performing heuristic
search with the previous heuristic function. We will show that
data obtained during search can be encoded into a fixed length
encoding and that this data can be used to train a subsequent
heuristic function that better estimates Bellman updates when
compared to one that does not use this encoding. Future work
will refine and repeat this process multiple times in hopes of
yielding iteratively improving heuristic functions.

Introduction

Heuristic search, a widely used approach for solving
pathfinding problems (Hart, Nilsson, and Raphael 1968;
Bonet and Geffner 2001a), is guided by a heuristic func-
tion that approximates the cost-to-go, which is the cost of
a shortest path from a given start state to a given goal. Given
a heuristic function that accurately estimates the cost-to-go,
heuristic search can quickly solve problems optimally (i.e.,
via a shortest path) or close to optimally. On the other hand,
inaccurate heuristic functions can result in significantly sub-
optimal solutions or solutions not being found due to im-
practically slow search or all available memory being con-
sumed by search. However, data generated from heuristic
search can be used to improve the heuristic function for a
subsequent search. In particular, after performing A* search
(Hart, Nilsson, and Raphael 1968), a Bellman update for the
states associated with expanded nodes can quickly be ob-
tained using their child nodes, which will have already been
generated and for which heuristic values have already been
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computed. This data can be used to improve a subsequent
heuristic function that would then be used in a subsequent
search. This process can then be repeated with the objective
of yielding iteratively improving heuristic functions.

In this paper, we introduce learning to learn from
search (L2LFS), an algorithm that builds on DeepCubeA
(Agostinelli et al. 2019) to train heuristic functions to im-
prove their cost-to-go estimation (i.e., learn) based on data
obtained from search. Data obtained during search that is
used to improve a subsequent heuristic function is referred to
as the search summary. A heuristic function that also takes
a search summary as an input is referred to as a summary-
aware heuristic function (SAHF). In this paper, we make
the following contributions:

» Showing that search summaries can be encoded into a
fixed-length representation.

* Leveraging this encoding to train SAHFs that learn from
search.

* Showing that SAHFs better estimate the Bellman updates
of states seen during a subsequent search when compared
to a heuristic function that is not summary-aware.

Related Work

Learning Heuristic Functions. Heuristic functions have
traditionally been derived using domain knowledge or auto-
mated methods such as pattern databases (PDBs)(Culberson
and Schaeffer 1998), transformations (Mostow and Priedi-
tis 1989), or delete relaxations (Bonet and Geffner 2001b).
While these approaches offer theoretical guarantees, their
scalability is often limited by computational resources, es-
pecially in high-dimensional or complex domains (Mup-
pasani et al. 2023). An alternative direction aims to learn
heuristic functions, often at the cost of admissibility guar-
antees. Supervised approaches use expert-generated cost-to-
go values (Samadi et al. 2008; Chrestien et al. 2021; Toyer
et al. 2020), while other approaches improve heuristics by
iteratively using the results of previous searches (Bramanti-
Gregor and Davis 1993; Fink 2007; Arfaee, Zilles, and Holte
2011; Orseau and Lelis 2021). However, these methods typ-
ically ignore expanded nodes that do not contribute to the
final solution and struggle when no solutions are found, lim-
iting sample efficiency.



Recent work explores using large language models
(LLMs) to generate heuristic functions without hand-crafted
domain knowledge (Ling et al. 2025; Corréa, Pereira, and
Seipp 2025). While promising, these methods often rely on
prompt engineering to inject domain-specific cues and re-
main largely untested across diverse and complex planning
domains. A more efficient strategy learns from all expanded
nodes by applying Bellman updates to estimate cost-to-go
values (Thayer, Dionne, and Ruml 2011). These updates re-
quire only the child nodes of expanded states, making them
fast to compute during A* search. Such updates can be used
as training targets in approximate dynamic programming
frameworks (Bertsekas and Tsitsiklis 1996), enabling the
learning of more accurate heuristics without requiring ex-
pert demonstrations or solved instances. A notable exam-
ple of this approach is DeepCubeA (Agostinelli et al. 2019),
which we describe in more detail in the Background section.

Our work builds on these ideas by introducing summary-
aware heuristic functions that leverage encoded representa-
tions of Bellman updates from prior search episodes. This al-
lows the heuristic to generalize not just from states but from
search summaries, effectively learning to learn from search.

Meta-Learning. Meta-learning (Hospedales et al. 2021),
often described as "learning to learn," is a subfield of ma-
chine learning that focuses on building models capable of
acquiring knowledge from a distribution of tasks to enable
rapid adaptation to new ones. Unlike traditional models that
are trained for a single, specific task, a meta-learning sys-
tem is trained to be a generalist. Its goal is to leverage "meta
knowledge" extracted from a variety of learning episodes to
solve a new problem more effectively and with less data than
a model trained from scratch. This capability is especially
valuable in domains where data is scarce, such as medicine
or robotics.

While both L2LFS and meta-learning aim to produce
a generalizable learning system, their core objectives and
operational paradigms are distinct. Meta-learning’s central
goal is to train a model that can rapidly adapt to a new
and unseen task from a different distribution using mini-
mal data. The learning process focuses on acquiring "meta
knowledge" that enables this fast adaptation. L2LFS, on the
other hand, is designed to learn an effective heuristic func-
tion for search by observing the search process, itself, within
a continuous stream of attempts on problems from a single
domain. Its learning is not about adapting to a new task but
about a continuous refinement of the search process for a
given class of problems. The "learning" that is being learned
is the ability to generate a more accurate heuristic functions
given the search history, rather than the ability to adapt to a
novel problem domain.

Background
Pathfinding

A pathfinding domain is defined as a weighted directed
graph (Pohl 1970), where nodes represent states, edges rep-
resent actions that transition between states, and weights on
the edges represent transition costs. The transition function
is represented by T', where s’ = T'(s, a) if and only if there

exists an edge connecting states s and s’ for some action,
a. The transition cost function is represented by c, where
¢(s, a) is the transition cost when taking action « in state s.
The set of all possible actions is denoted 4. A pathfinding
problem instance is defined by a tuple (D, s, g), where D
is the domain, sq is the start state, and g is the set of goal
states. Given a pathfinding problem, the objective is to find
a path, which is a sequence of actions, that transforms the
start state into a goal state while attempting to minimize the
path cost, where the path cost is the sum of transition costs.
A shortest path (i.e., an optimal path) is a path from a given
state to a given goal that has the lowest path cost possible.

Heuristic Search

Heuristic search is a widely used approach for solving
pathfinding problems that is guided by a heuristic function,
h, that maps a state, s, and a goal, g, to an estimate of its cost-
to-go, which is the cost of a shortest path from s to a closest
goal state in g. The most notable heuristic search algorithm,
A* search (Hart, Nilsson, and Raphael 1968), maintains a
search tree, where nodes represent states and edges repre-
sent actions. A* search iteratively selects nodes for expan-
sion prioritized by their cost, which is the sum of their path
cost from the start node (i.e., cost-to-come computed by the
sum of transition costs) and their heuristic value (i.e., cost-
to-go computed by h). A node is expanded by applying ev-
ery possible action to the state associated with that node and
creating a child node from the resulting states. A* search ter-
minates when a node associated with a goal state is selected
for expansion and returns the path to that node.

DeepCubeA

DeepCubeA (Agostinelli et al. 2019) learns a heuristic func-
tion represented as a DNN (Schmidhuber 2015; LeCun,
Bengio, and Hinton 2015), hg, with parameters, 6. The
learned heuristic function is then used with batch weighted
A* search (BWAS) that selects a batch of B nodes for expan-
sion at each iteration of search while performing weighted
A* search (Pohl 1970). DeepCubeA generates states by
starting from the goal and taking actions in reverse, which
assumes the goal is known before training and that a reverse
transition function exists . Therefore, the heuristic function
does not need to be given a goal since it is implicitly given
during training. The heuristic function is trained using ap-
proximate value iteration (Bertsekas and Tsitsiklis 1996),
a dynamic programming algorithm and foundational rein-
forcement learning algorithm (Bellman 1957; Sutton and
Barto 2018). Approximate value iteration iteratively trains
a neural network with gradient descent to approximate a
Bellman update, h'(s), for each state, s, in a given batch of
states, using the loss function in Equation 1, where NV is the
batch size. The Bellman update in the context of pathfinding
is shown in Equation 2, where g is the goal. The heuris-
tic function used for the Bellman update in Equation 2 is
hg-, where 6~ is the parameters of the target network (Mnih

'Extensions of DeepCubeA have removed the need for both
of these assumptions (Agostinelli, Panta, and Khandelwal 2024;
Agostinelli and Soltani 2024).



et al. 2015) which are periodically updated to 6. Approxi-
mate value iteration with deep neural networks is referred to
as deep approximate value iteration (DAVI).
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Learning to Learn from Search

The L2LFS algorithm learns an initial heuristic function,
hg,, with parameters, 6y, with DAVI. Next, a search sum-
mary encoder, fig,, With parameters, ¢, is trained to en-
code search summaries. From this search summary encoder,
a SAHF, hy,, is trained with DAVI. This process can be
performed for I iterations, yielding a sequence of heuris-

tic functions, i = [hg,, ..., hg,_], and summary encoders,
L= [{téy, ---» Ies, ). h and [i can then be used in sequence
to solve problems, as shown in Algorithm 1. To train the
summary encoders and SAHFs, we build on Algorithm 1 to
generate training data for the summary encoders, which is
then used to train the SAHFs, as shown in Algorithm 2.

The summary we obtain from search is a set of tuples,
where each tuple contains a state associated with an ex-
panded node and its Bellman update. We choose this be-
cause:

* Given a set of states and their Bellman updates, it is pos-
sible that a SAHF could learn to generalize beyond this
and approximate a Bellman update for similar states.

* The Bellman update of states associated with expanded
nodes can quickly be obtained since Equation 2 uses the
child nodes, which A* search will have already gener-
ated, and for which heuristic values will have already
been computed. Therefore, the Bellman update for these
states amounts to performing a simple one-step backup
in the search tree for each expanded node.

Algorithm 1: L2LFS_solve

Input: domain D, start state sq, heur fns h, summary encs
i1, max A* search itrs [ 4
7 = None //initial summary encoding
path = None
for k € [0,1en(h)) do -
path,r = A*search(D, so, h[k],7, L4)
if £ < (len(h) — 1) then
P = alk](r)
end if
end for
return path, r

Training the Initial Heuristic Function

To train the initial heuristic function, we follow a similar ap-
proach to DeepCubeA by starting from the goal state and

Algorithm 2: L2LFS_train

Input: domain D, summ itrs I, max A* search itrs I4
=
[
= gen_instances(D)
7P = None //previous summaries encodings
hg, = train_init_heur(D,§)
h.append(hg,)
for k € [0, ;) do
=
for s € 5do -
_,7 =L2LFS_solve(s, h, fi,14)
7.append(r)
end for -
Pe, = train_summ_enc(7, h[k])
=
for r € ¥ do
T = [ig,, (7")
7.append(7)
end for ~
ho,., = train_SAHF(D, 5,7, h[k], P)
fi-append(fi¢, )
h.append(h, . )
=7
end for_
return h, i

1=
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taking actions in reverse. However, we also generate ad-
ditional data by performing A* search for a set maximum
number of iterations, [4, and add states associated with
nodes selected for expansion to the training set. Further-
more, DeepCubeA updated the parameters of the target net-
work when the loss went below a pre-determined threshold.
We update the parameters of the target network after a set
number of iterations. To account for the fact that this could
lead to instability during training due to the fact that the tar-
get cost-to-gos may fluctuate more severely, we include the
use of a replay buffer (Mnih et al. 2015) that is a first-in-first-
out queue of a fixed size that stores the latest training exam-
ples. We do not update the cost-to-go targets of the states
in the replay buffer, even though they may have been gen-
erated by a previous target network, as we found that this
helped stabilize training. We also found that adding states
seen during A* search to the training set helped improve the
performance of A* search.

Since the SAHF has an additional input of a summary en-
coding, we train the initial heuristic function with this input
and set the summary encoding to be zero all the time. The
trained initial heuristic function will then be re-used to train
the summary encoder.

Training the Summary Encoder

A search summary, r, is a a set of tuples,
{..; (8i, R/ (s;)), ...}, of states associated with the nodes
expanded during search and their corresponding Bellman
updates. We seek to train a summary encoder, ug, with
parameters, ¢, to map r to a summary encoding, 7, such that



we can accurately recover any h'(s;) € r given s; and 7.

To obtain a summary encoding, 7, from a search summary,
r, we use the deep set architecture (Zaheer et al. 2017) for y14
to map r to a vector, 7, of size N. The deep set architecture
independently processes each element in the set separately
and combines them with a permutation invariant operator,
such as a max or mean operator. In our work, each state and
Bellman update pair are concatenated and given to a fully-
connected residual network (He et al. 2016) with an output
of size 2N. Half of this 2N vector is used to compute soft-
max values over the N; entries for the final encoding and the
other half are multiplied by the computed softmax values.

To ensure that we can recover Bellman updates for states
in the summary given the summary encoding and state, we
copy the parameters of the most recently trained heuristic
function, hg, to obtain the decoder h ;. For each element in
a summary, the decoder is trained to predict the Bellman
update from the corresponding state and summary encoding.
Both ¢ and 6 are trained together with gradient descent using
the loss function in Equation 3.

hg(s, pe(ri)))?
3)

Training the Summary-Aware Heuristic Function

Given the trained summary encoder, pi4,, We can now train
the SAHF, hy, , ,. The SAHF is initialized with the param-
eters of hg, . For each training state and its corresponding
summary encoding, we perform A* search for a maximum
of I 4 iterations and add each state associated with a node se-
lected for expansion to a replay buffer along with the given
summary encoding. We then randomly sample from this re-
play buffer and train kg,  , to approximate the Bellman up-
date for each state using gradient descent using the loss func-
tion in Equation 4. We then repeat this process and perform
A* search with the updated hy, , and add the resulting data
to the replay buffer. Each summary encoding, 7, given as
input to hg,,, has a corresponding previous summary en-
coding, 7P, given as input to hg,. We use this, along with
he, , to compute the Bellman update as shown in Equation

Lo NZM > (W=

(s,h'(s))€ET;
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The states and summary encodings used for training will
be correlated, since they are both produced from the same
start state. As aresult, the trained SAHF may perform poorly
if it sees states outside of the distribution of states it saw dur-
ing training, which come from nodes expanded during A*
search. Therefore, states on which it may perform poorly in-
clude states associated with nodes that were generated, but

not selected for expansion, as well as states associated with
nodes seen when training a subsequent SAHF, hy, ,,, for
which hg, ., will be used to compute the Bellman update.
To address this, with a given random probability, states sam-
pled for training will be given a summary encoding selected
randomly from the replay buffer.

Experiments

We use the Rubik’s cube to evaluate the performance of
L2LFS. The Rubik’s cube is represented to a DNN using
a flat one-hot representation of the 54 stickers. The input
is given to a linear layer of size 1,000, and then a residual
neural network (He et al. 2016) with four residual blocks of
size 1,000. This is finally given to an output linear layer of
size 1. Layer normalization (Ba, Kiros, and Hinton 2016) is
used in the residual layers along with the SPLASH activa-
tion function with a single hinge (Tavakoli, Agostinelli, and
Baldi 2021). The summary encoder for the deep set also pro-
cesses each element in the search summary independently
using a network of the same architecture, with an additional
input of the Bellman update. The size of the summary en-
coding is 1,000. The input to the SAHF is the concatenated
state and summary encoding.

When training heuristic functions, starting states are gen-
erated for training by starting from the goal and, for each
state, taking between 0 and 100 random actions. The maxi-
mum number of A* search iterations, I 4, is set to 200. For
each training iteration, 50 searches are performed and the
training batch size is 10,000. The size of the replay buffer
is 1 million for the initial heuristic function and 10 million
for the SAHFs. When training the initial heuristic function,
the target network is updated every 100 iterations. The ini-
tial heuristic function is trained for 1 million iterations and
the SAHFs are trained for 100,000 iterations. The summary
encoders are trained for 100,000 iterations and use a batch
size of 200 summaries®. The neural networks are trained
with ADAM (Kingma and Ba 2014) optimizer with a start-
ing learning rate of 0.001 and a decay rate of 0.9999993.

Initial Heuristic Function Training

The initial heuristic function was trained by using A* search
to add states to the training set. The performance of the
heuristic function when used with A* search is shown as
a function of training iteration in Figure 1. The figure shows
that the number of states solved increases as training itera-
tion increases and the number of search iterations decreases.
The number of solved states manages to almost reach 100%.
The average path cost initially increases as the number of
states solved increases and then decreases after the number
of states solved approaches 100%.

In terms of BWAS, we are using a search batch size of 1
and a weight of 1, which is A* search. Note that previous
approaches used BWAS to solve instances with a batch size
of 10,000 and a weight of 0.6. The supplementary material
of DeepCubeA showed that BWAS was not able to find paths

Note that the batch size for the summary encoder is signifi-
cantly smaller because each example can contain up to 14 states,
which is set to 200.
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Figure 1: Performance of A* search as a function of training iteration when training the initial heuristic function. The percentage
of states solved increases as training increases. Since path cost is only reported for solved states, it initially increase, and then
decreases as the heuristic function successfully solves close to 100% of instances.

Summary Encoder Performance

—— proposed
=== w/o summ enc
N w/o heur init
0% - w/o heur init and w/o summ enc
(9]
%]
9 A’\
10%4 TN R e,
= IMN A N ‘\"“"’\\-"”\.J\'»
0|
10 N Xt R L U e i e L T e

0 2000 4000 6000 8000 10000
Training Iteration

Figure 2: An ablation study when training the summary en-
coder. The proposed method uses the outputs of the sum-
mary encoder and initializes the decoder with the most re-
cently trained heuristic function. Other methods are a com-
bination of multiplying the output of the encoder by 0 (w/o
summ enc) and using a random initialization for the decoder
(w/o heur init). The plot shows that both using a summary
encoder and heuristic function initialization for the decoder
results in a more accurate prediction.

with a search batch size of 1 and a weight of 0.6 or greater
(Agostinelli et al. 2019). This indicates that our approach to
training the heuristic function improves performance on A*
search compared to previous approaches. Future work will
include more detailed comparisons.

Summary Encoder Performance

To ensure that our summary encoder encodes information
relevant to the search summary, we perform an ablation
study by comparing the performance of the summary en-
coder to the performance when the output of the summary
encoder in Equation 3 is always multiplied by 0. Further-
more, we also examine the impact of initializing the decoder
with the parameters of the most recently trained heuristic
function, as opposed to a random initialization, both with
the summary encoder and when multiplying its output by

0. The results of the ablation study are shown in Figure 2.
Note that the y-axis is on a log-scale. The figure shows that
loss is larger without the summary encoder, both with and
without heuristic function initialization for the decoder. This
indicates that the summary encoder learns to encode infor-
mation relevant to the search summary. Furthermore, when
not using the heuristic function initialization, the loss is sig-
nificantly higher.

Summary-Aware Heuristic Function Performance

We now examine the performance of hg,, which is the
heuristic function that learns from the initial heuristic func-
tion, hg,. To examine the effect of learning from a search
summary encoding, we also train a heuristic function with
effectively no summary encoding by always multiplying the
summary encoding by O before giving it as input to the
heuristic function. To examine the effect of training state
correlation with the summary encoding, we train different
SAHFs with probabilities 0.0, 0.5, and 1.0 for sampling a
random summary encoding from the replay buffer.

We compare the performance of A* search during training
for the different heuristic functions in Figure 3. The figure
shows that the percentage solved increases and the number
of search iterations decreases with lower summary encod-
ing randomness. It also shows that the SAHFs outperform
the heuristic function with no summary encoding in almost
all cases. The path cost of states is similar for all cases, how-
ever, the path cost is only computed for states that are solved.
So, the path cost may be higher for the SAHFs due to them
solving a higher percentage of states.

While the results in Figure 3 indicate the SAHFs perform
better when performing A* search, we also must consider
how well they estimate the Bellman update, in general. This
is especially important if we use hg, to compute Bellman
updates for hg,, since the states used for training hg, are
determined by performing A* search with hy,. The distribu-
tion of these states will probably differ from the states hg,
obtained for training. To investigate this, we compared all
four heuristic functions to each other by generating a dataset
with A* search with each heuristic function, using hyg, to
compute a Bellman update, and comparing their accuracy at
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Figure 3: Performance of A* search as a function of training iteration when training the heuristic function that learns from
the initial heuristic function. Training a SAHF with encodings that are not sampled completely randomly (i.e. heurl_rand0.0
and heurl_rand0.5) increases percentage of states solved and decreases search iterations when compared to training a heuristic
function with no summary encoding (i.e. heurl_ns). The lower the randomness the better the performance.

estimating the Bellman update for each dataset. For each A*
search, we obtain a dataset of states associated with nodes
expanded during search (popped) and with nodes not ex-
panded during search (open). We also include a dataset of
randomly generated states. The results in Figure 4 show that,
for the popped dataset, SAHFs perform significantly better
compared to the heuristic function with no summary encod-
ing, with the one with no randomness performing the best.
However, for the open dataset, the SAHFs only slightly out-
perform the heuristic function with no summary encoding
in most cases. Notably, for the random dataset, the SAHF
trained with a random state encoding probability of 0.0 per-
forms significantly worse than all other heuristic functions.

Discussion and Future Work

The performance of the L2LFS depends on how effectively
a search summary can be encoded so that it can be used
to train a subsequent heuristic function. The lowest mean
squared error obtained from our set encoder is around (.34,
which indicates there is a lot of room for improvement. Our
current summary is a set of state and Bellman update tu-
ples and our current approach for encoding them is using
the deep set architecture. However, each element in the set
is processed independently, which may make it difficulty to
determine which parts of the encoding each element should
affect. One way to addressing this could be to process each
element relative to the start state. This way, the parts of
the encoding that are affected by a given element could be
more consistent across problem instances. Another approach
is to use set encodings, such as the set transformer (Lee
et al. 2019), that involve interaction amongst the elements
in the set. Finally, additional information can be added to
the search summary that may be relevant to approximating
a Bellman update. For example, it has been shown that ele-
ments in the open list and closed set are relevant to improv-
ing search performance (Felner, Shperberg, and Buzhish
2021).

Figure 4 shows that performance decreases when data is
obtained from the open set instead of the popped nodes.
While this may indicate a limitation of the ability to learn

from a search summary, this decrease in performance is also
present for the heuristic function that is trained without a
search summary. This indicates that the distribution of states
seen during training should be modified to include other rel-
evant states. While randomly sampling summary encodings
during training partially addresses this, this is not likely to
improve the performance on states closely related to a start
state that could be seen when training a subsequent heuris-
tic function. Therefore, future work could also obtain related
states by performing stochastic versions of A* search, such
as selecting nodes for expansion with a probability inversely
proportional to their cost.

Once the issue of improving summary encoding and im-
proving performance of SAHFs on states other than the ones
from expanded nodes, we can repeat the training process
shown in 2 to obtain subsequent summary encoders and sub-
sequent heuristic functions. This will hopefully lead heuris-
tic functions that iteratively improve in their estimate of the
true cost-to-go. This work could also be extended to other
kinds of heuristic search that can make use of learned heuris-
tic functions, such as Q* search (Agostinelli et al. 2024).

Conclusion

We introduce L2LFS, an algorithm for learning to learn
from search. We showed that an encoding of a search sum-
mary could be obtained and our experiments indicate that
the encoding preserves information relevant to the search
summary. We then show that this search summary could be
used to train a subsequent summary-aware heuristic func-
tion (SAHF). Our experiments showed that this led to better
estimations of the Bellman update and better A* search per-
formance when compared to not using a summary encoding.
Our experiments also indicate that future work should focus
on improving the summary encoding as well as varying the
distribution of states seen when training the SAHF to better
train subsequent SAHFs.
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a summary when tested on data from nodes expanded, but do not perform as well for out-of-distribution training data, such as
data from nodes not expanded or random states. This indicates that improvements can be made to the training state distribution

to better estimate the Bellman update for relevant states.
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