
Using Gradient-based Optimization for Planning with Deep Q-Networks in
Parametrized Action Spaces

Jonas Ehrhardt, Johannes Schmidt, René Heesch, Oliver Niggemann
HSU-AI Institute for Artificial Intelligence

Helmut-Schmidt-University, Hamburg, Germany
firstname.lastname@hsu-hh.de

Abstract

Many real-world planning problems feature parametrized ac-
tion spaces, where each action is augmented by continuous pa-
rameters. Though deep Reinforcement Learning has achieved
remarkable results in solving control and planning problems,
it falls short at two central challenges of real-world planning
problems with parametrized action spaces: (i) There is an in-
finite number of action-parameter candidates in every step
of solving a planning problem, (ii) interacting with the plan-
ning domain is typically prohibitively expensive and available
recordings from the planning domain are sparse. To counter
these challenges, we introduce our novel Goal-Conditioned
Model-Augmented Deep Q-Networks algorithm (GCM-DQN).
The intuition behind GCM-DQN is to use gradient-based op-
timization on the surface of the Q-Function, instead of blunt
estimators, to estimate the optimal parameters of an action in
a state. In combination with a goal-conditioning of the DQN,
and a state transition model, this allows us to find plans for
planning problems in planning domains with parametrized
action spaces. Our algorithm outperforms state-of-the-art Re-
inforcement Learning algorithms for planning in parametrized
action spaces.

1 Introduction
Planning, the combinatorial problem of finding a sequence
of actions that transitions an initial state into a goal state,
is a fundamental problem in many real-world applications
and AI (Ghallab, Nau, and Traverso 2016; Sutton and Barto
2018). Conventional planning and Reinforcement Learning
methods typically feature either purely discrete action spaces
(i.e. a finite set of actions, like moving up, down, left, or right
in a grid world) or purely continuous action spaces (i.e. an
infinite set of actions, like controlling the acceleration of a
cart on a slope) (Sutton and Barto 2018; Masson, Ranchod,
and Konidaris 2016). However, many real-world problems
feature parametrized action spaces. In a parametrized action
space, a finite set of actions is augmented by real-valued pa-
rameters, which influence the effects of the actions (Masson,
Ranchod, and Konidaris 2016; Hausknecht and Stone 2016;
Heesch, Ehrhardt, and Niggemann 2024). During planning in
parametrized action spaces, a planner hence must not only se-
lect from the finite action set, but also real-valued parameters,
to reach its goal (Masson, Ranchod, and Konidaris 2016).
For example, consider injection molding, where there is a
finite set of actions (e.g. close mold, inject, hold, cool, eject),

which are each augmented by real-valued parameters (e.g.
heating/cooling energy, velocity, pressure, etc.). Both the
combinatorial aspect of finite action selection, e.g., injecting
material before closing the mold would lead to a mess, as well
as the parametrization aspect, e.g., injecting too cold material
leads to poor surface characteristics of the molded product
majorly, have a major influence on the molded product. Get-
ting both aspects right is the task of planning in parametrized
action spaces. Besides this simplified example, many other
real-world problems, from robotics to factory planning, fea-
ture parametrized action spaces (Hausknecht and Stone 2016;
Masson, Ranchod, and Konidaris 2016; Xiong et al. 2018;
Ehrhardt, Heesch, and Niggemann 2024; Heesch et al. 2024).

There are two central challenges in solving planning prob-
lems in real-world parametrized action spaces: (i) Due to
the continuous nature of the parameter space, there is an
infinite number of action-parameter tuples a planner has to
choose from in every state. This infinite branching of action-
parameter tuples in every state poses a challenge for selecting
the optimal action-parameter tuple (Wu, Say, and Sanner
2020). Typically, infinite branching is either countered by
parameter estimators (Lillicrap et al. 2016), which have the
risk of being imprecise, or search (Ma et al. 2023), which
has the risk of being computationally expensive. (ii) Often
there is no sufficient model of the planning domain available,
interaction with the domain is prohibitively expensive or un-
safe, and recorded data is scarce (Levine et al. 2020). Hence,
solving planning problems typically, either requires a man-
ually crafted, expensive, and error-prone planning domain
model (Grand, Pellier, and Fiorino 2022; Heesch, Ehrhardt,
and Niggemann 2024), or requires advanced Reinforcement
Learning algorithms which can be trained offline, meaning
without interaction with the planning domain, but strongly
rely on the assumption that the distribution of the recorded
data does not shift strongly from the application cases (Levine
et al. 2020).

In this paper, we tackle the challenges of infinite branching
and training data scarcity in real-world parametrized action
spaces. Therefore, we propose to extend the well known Deep
Q-Network (DQN) algorithm (Mnih et al. 2015). DQN uses
a Neural Network to approximate the action value function,
which returns the expected cumulative return of taking an ac-
tion in a state. In combination with a greedy policy, DQN can
solve even complex planning and control problems (Mnih

stochastic
state transition

model

goal conditioned
value function
approximator

greedy policy

state

goal

expected return

param

plan

param)(action,

gradient-based
optimization

action

Figure 1: We propose the Goal-Conditioned Model-
Augmented DQN (GCM-DQN) algorithm, an offline ex-
tension to DQN that allows for solving planning problems
in domains with parametrized action spaces (novel exten-
sion are marked in blue). GCM-DQN takes an initial state
and iteratively computes the optimal action to select via a
goal-conditioned value function approximator. For estimat-
ing the optimal parameters, it uses a gradient-based optimiza-
tion over the DQNs input. By greedily selecting the optimal
action-parameter tuple, the next state can be computed with
a stochastic state-transition model. The process stops, once a
resulting state matches the goal-state.

et al. 2015). We propose to transfer DQN into a novel, of-
fline and model-augmented Reinforcement Learning setup,
which allows us to use it for solving planning problems in
planning domains with parametrized action spaces (Masson,
Ranchod, and Konidaris 2016) (cf. Figure 1). More precisely,
we propose three extension to the DQN algorithm: (a) To
tackle infinite branching, we introduce paramOpt, a novel
gradient-based optimization algorithm, to efficiently find op-
timal parameters for a given action in a given state. (b) To
make our algorithm applicable to unseen planning problems,
we integrate a goal-conditioning to the DQN (Schaul et al.
2015). (c) To allow using the DQN for planning without
interacting with the environment, we propose a novel state-
transition model, which is trained along the DQN and allows
for planning in deterministic and probabilistic domains. We
reduce the amount of training data to fit the models, by em-
ploying Hindsight Experience Replay (Andrychowicz et al.
2017) and Conservative Q-Learning (Kumar et al. 2020).

As a result, we present our Goal-Conditioned Model Aug-
mented DQN algorithm (GCM-DQN). GCM-DQN is can
be trained on a sparse dataset of recorded plans from a plan-
ning domain. It returns a DQN which can either be used as
a policy in probabilistic scenarios, or in combination with
the parallelly trained state transition model as planner for de-
terministic domains. In contrast to estimator or search-based
algorithms for planning in parametrized action spaces, GCM-

DQN converges quickly to optimal parameters due to the
gradient-based parameter optimization. The main contribu-
tions of our paper are:

• paramOpt novel gradient-based optimization algorithm
to efficiently counter infinite branching in planning do-
mains with parametrized action spaces.

• A novel integration of paramOpt, goal-conditioning, and
a novel state-transition model into DQN to allow harness-
ing it for planning.

• A systematic and comprehensive evaluation of our ap-
proach against state-of-the-art Reinforcement Learning
paradigms for parametrized action spaces.

2 Related Work
In Deep Reinforcement Learning, there are two directions
when handling parameterized action spaces: Using Neural
Networks as estimators that suggest parameters for actions,
and using search or optimization to find optimal parame-
ters for an action. Typically, policy network approaches are
grounded in the Deep Deterministic Policy Gradient (DDPG)
paradigm (Lillicrap et al. 2016). DDPG is an Actor-Critic
approach, in which the actor is a deep policy network that,
given a state, suggests actions and the critic is a deep Q-
network that calculates the cumulative expected return of the
suggested action and state. Using backpropagation over both
networks allows for adapting their weights to converge to
an optimal policy- and Q-network. To solve planning prob-
lems in parametrized action spaces, Hausknecht and Stone
(2016) extendeded the DDPG paradigm by expanding the
deep policy network with an additional non-binary output
for suggesting parameters values, resulting in the P-DDPG
algorithm. Fan et al. (2019) propose a similar approach. They
use individual separate heads for selecting an action from the
finite action set, and individual separate heads for estimating
its numerical parameters (Fan et al. 2019). However, both
approaches neglect that there is a dependency between an ac-
tion and the numerical parameters (Li et al. 2021). Hence, Li
et al. (2021) proposed to encode the finite set of actions and
numerical parameters into a joint latent representation space
on which the policy operates, and from which discrete and
continuous components are decoded for interaction with the
environment. While the introduced approaches can handle
parametrized action spaces, they remain restricted to online
settings, which require the agent to interact directly with the
environment, and are not well suited to an offline scenario
with only little available training data.

Optimization or search-based approaches typically fol-
low a value-based paradigm, in which a greedy policy se-
lects the action-parameter tuple with the highest expected
return. While methods like (Tavakoli, Pardo, and Kormu-
shev 2018) use a divide-and-conquer approach for complex
actions-parameter tuples that operates on a joint latent rep-
resentation, Xiong et al. (2018) uses a separate parameter
estimation network which feeds into a DQN, forming a
parametrized DQN or P-DQN. Thereby, they can select a
discrete action directly using a greedy policy and do not rely
on a continuous relaxation of the discrete action components
(as, e.g., Hausknecht and Stone (2016)) (Xiong et al. 2018).

Finally, Ma et al. (2023) uses an evolutionary optimization
algorithm for estimating an optimal action from a continuous
action space. While such approaches can also be adapted to
parametrized action spaces, they are computationally expen-
sive due to the uninformed optimization paradigm.

In contrast to typical Reinforcement Learning tasks, e.g.,
like control, the reward structure in planning problems sparse.
Typically, the reward for solving a planning problem is for-
malized by a single reward signal upon reaching the goal
state. This sparse reward signal hence is exclusively depen-
dent on the goal state, and changes for planning problems
with diverging goal states. To make Reinforcement Learn-
ing agents applicable to altering reward functions, Schaul
et al. (2015) introduced Universal Value Function Approxi-
mators. Universal Value Function Approximators condition
the value function approximator on an embedding of the
goal state, hence making it generalizable across altering plan-
ning problems within the same domain (Schaul et al. 2015).
Other methods for countering sparsity of reward signals, es-
pecially in offline settings, include data augmentation, such
as Hindsight Experience Replay (Andrychowicz et al. 2017),
or regularization in training by additional loss terms, such as
Conservative Q-Learning (Kumar et al. 2020).

3 Formalization
Reinforcement Learning follows the assumption that there
is an underlying MDP within all planning domains. As we
focus on planning problems in parametrized action spaces,
we consider Parametrized Action Markov Decision Processes
(PAMDP) (Masson, Ranchod, and Konidaris 2016).

3.1 Parametrized Action Markov Decision
Processes

PAMDPs extend continuous Markov Decision Processes by
introducing a hybrid, so-called, parametrized action space.
They can be formalized as a tuple

⟨S, A,Ψ, T ,R, γ⟩, (1)

where S ⊆ Rn is the continuous state space, A =
{a0, ..., ak, ..., aK},K ∈ N is a finite set of actions, in which
each action ak is extended by a continuous parameter space
Ψk ∈ R and the union of all parameter spaces is given as
Ψ =

⋃K
k=1 Ψk. Together they form the parametrized action

space
A =

⋃
ak∈A

{(ak, ψk)|ψk ∈ Ψk}. (2)

T is the transition function T = P (st+1|st, at, ψt) that de-
scribes the probability of transitioning into state st+1 ∈ S
given state st ∈ S , action at ∈ A and a parameter ψt ∈ Ψ at
time t.R is the reward functionR : S ×A → R that returns
the scalar reward r when transitioning from st into st+1 us-
ing an action at, and γ ∈ R a discount factor. We will further
refer to T as the dynamics of the MDP.

As the transition dynamics in real-world PAMDPs
can grow very complex, large models and large datasets
are needed to properly capture them. Leveraging on the
parametrized action spaces, we propose to manage the com-
plexity of real-world dynamics by a modular factorization of

the parametrized action space. Therefore, we split T into a
finite set Td of K transition functions Tak , which each are
related to one individual action ak each:

Td = {Tak |Tak = Pak(st+1|st, ψk),
ψk ∈ Ψk, k = 1, ...,K} (3)

This allows us to model the transition dynamics for each
action in one individual model fak ≈ Tak , reducing the com-
plexity of the modeling problem, while overall not affecting
the PAMDP dynamics. We can denote the collection of all
fak as F = {fak}Kk=1. During planning, we can infer state
transitions by sampling from the transition models

st+1 ∼ fak(st, ψt). (4)

In deterministic scenarios, the transition probabilities of Tak
collapse to a Dirac delta distribution, which effectively turns
fak into a deterministic function

fak(st, ψt) = st+1. (5)

3.2 Describing Planning Problems with PAMDPs
Planning describes the task of finding a sequence τ =
{(at, ψt)}T−1

t=0 of T action-parameter tuples, that transition
an initial state s0 into a goal state g ∈ G ⊂ S. Hence, a
planning problem in a PAMDP can be denoted as

⟨S, A,Ψ,F ,RG, γ, s0, G⟩, (6)

whereRG is a goal conditioned, sparse reward function

RG(s) =
{
r, if s ∈ G
0, else

(7)

, with the numerical reward value r ∈ R.
Reinforcement Learning typically solves planning prob-

lems by iteratively applying a policy π on the planning
problem. Hence, a plan can be seen as a trajectory-level
instantiation of a policy. A policy in a PAMDP is a map-
ping from the current state st and goal state g to an action-
parameter tuple. For deterministic planning domains, the
mapping is a function π(det)(st, g) = (a, ψ), For probabilistic
planning domains, the mapping is a conditional distribution
π((a, ψ)|st, g), where st ∈ S, g ∈ G, a, ψ ∈ A.

For deterministic domains, the solution of a planning prob-
lem is a plan τ , which, when executed from s0, reaches a
g ∈ G. For probabilistic domains, the solution of a planning
problem is a proper policy π. A proper policy optimizes the
discounted return of the planning problem and results in a
goal state g ∈ G. The sequence of actions-parameter tuples
selected by the policy during execution forms a plan τ .

4 Solution
In this section, we introduce our GCM-DQN algorithm.
GCM-DQN tackles the challenges of infinite branching, pro-
hibitively expensive domain interactions, and data scarcity in
real world planning domains with parametrized action spaces.
The intuition of GCM-DQN is to leverage on the differen-
tiability of a DQN (Mnih et al. 2015) during planning for
finding the optimal parameters and actions via gradient-based

optimization, instead of using estimators or search. There-
fore, we add three extensions to the DQN algorithm (Mnih
et al. 2015): (a) To tackle the problem of infinite branch-
ing, we introduce the paramOpt algorithm, a gradient-based
optimization algorithm inspired by (Wu, Say, and Sanner
2017; Heesch et al. 2024), for finding an (leastwise locally)
optimal action-parameter tuple during planning (cf. Section
4.3). (b) To make GCM-DQN applicable to any planning
problem within the planning domain, we introduce a goal-
conditioning to the DQN, as proposed in (Schaul et al. 2015).
We tackle data scarcity in training the goal-conditioned DQN,
by using Hindsight Experience Replay (Andrychowicz et al.
2017) and Conservative Q-Learning (Kumar et al. 2020) (cf.
Section 4.2). (c) Finally, to counter prohibitively expensive
domain interaction, we propose a novel state transition model
which is parallelly trained to the DQN on the same dataset (cf.
Section 4.4), allowing to simulate state transitions without
any interaction with the planning domain.

By combining the three proposed extensions, we result
in our novel GCM-DQN algorithm (cf. Section 4.1). GCM-
DQN can operate in planning domains with parametrized
action spaces. It can either be used as a policy for probabilistic
planning domains or, when using the state transition model,
as a planner for deterministic planning domains (cf. Figure
2).

4.1 Planning with Goal-Conditioned
Model-augmented Deep Q-Networks

In this Section we provide an overview on the GCM-DQN
algorithm (cf. Algorithm 1 and Figure 2). In its essence
GCM-DQN is a goal-conditioned greedy policy, which is
trained in an offline setting. Hence, the first step includes
training the DQN Qθ and the state transition models F =
{fak |k = 1, ...,K} using a dataset of recorded plans D. Dur-
ing planning, GCM-DQN uses the paramOpt algorithm (cf.
Algorithm 2) on Qθ to calculate the optimal parameter ψ̃∗

k
for every action. To guide the selection of optimal action-
parameter tuples, we calculate a decision value δk for each
action. δk includes the Q value, the weighted variance of the
succeeding state vark (cf. Equation 18), and a potential based
shaping factor ω (Ng, Harada, and Russell 1999):

δk = Qθ(st, akt , ψ̃
∗
kt , g) + λ1varkt + λ2ω, λ1, λ2 ∈ R.

(8)
Using δk instead of the pure Q values counters, the selection
of actions which would lead into non-permissible states, e.g.,
colliding with boundaries. A greedy policy πgreedy then picks
the highest δk and adds the corresponding action-parameter
(ak, ψ̃k) tuple to the plan. By sampling from the associated
state transition model fak the next state st+1 can be inferred
and passed to the next iteration. The iterations stop, when
st+1 becomes a state within G (or G± ε, where ε is an error
margin). In cases, in which there is no solution to the planning
problem, a stopping criterion ζ can be introduced to bound
the maximum number of iterations. The complete GCM-
DQN algorithm is outlined in Algorithm 1. The following
section introduce the extensions of GCM-DQN in detail.

Algorithm 1: GCM-DQN during planning
Require :D // recorded plans

s0 // starting state
G // goal state(s)
ε, ζ // tolerance, max steps

Qθ ← TRAINGCMDQN(D) // cf. Section
4.2

1 F ← TRAINSTM(D) // cf. Section 4.4
2 τ ← ∅
3 s← s0
4 for t← 0 to ζ − 1 while s /∈ G± ε do
5 (a∗, ψ∗)←

argmax
a∈A

DECISIONVALUE
(
Qθ(s, a, PARAMOPT), s

)
// cf. Section 4.3

6 append (a∗, ψ∗) to τ
7 s← st+1 ∼ fa∗(s, ψ∗)

8 return τ // trajectory
((a0, ψ0), (a1, ψ1), . . .)

4.2 Goal-Conditioned DQN for Parametrized
Action Spaces

In this section, we describe our adaptions to DQN to allow
using it for planning in planning domains with parametrized
action spaces. We achieve this by including the goal state
into the input of the DQN, thereby conditioning it on the
goal state, and handling continuous per-action parameters via
gradient-based optimization.

The original DQN uses a Neural Network to approximate
the action value function Q(s, a) of a domain (Mnih et al.
2015), which describes the expected discounted return for
taking action a in state s, and satisfies the Bellman equation
in the optimal case

Q(st, at) = E
st+1∼P (·|st,at)

[R(st)+γ max
at+1∈A

Q(st+1, at+1)].

(9)
For our application, we expand the classical Q-function’s

input with the goal state of the planning problem (Schaul
et al. 2015) and the parametrized actions, so that

Q(s, a) ⇝ Q(s, ak, ψk, g), (10)

where ak ∈ A is an action from the finite action set, ψk is an
associated continuous parameter, and g is the goal state of the
planning problem. For our updated Q-function, the Bellman
equation becomes

Q(st, akt , ψkt , g) = E
st+1∼P (·|st,akt ,ψkt)

[Rg(st)

+ γ max
kt+1∈K

argmax
ψkt+1

∈Ψk

Q(st+1, akt+1 , ψkt+1 , g)].
(11)

As the inner maximization over ψkt+1
is non-convex when

Q is approximated by a Neural Network, solving it is in-
tractable. Hence, we propose to leverage on global optimiza-
tion algorithms for finding leastwise local optima for ψ and
solve Equation 11 in two steps. In the first step, we find op-
timal action-parameter tuples for each action in the current

greedy
policy plan

calculate
decision

value

transition
modelk

value function
approximator

Figure 2: We introduce the GCM-DQN algorithm. A goal-conditioned and model-based DQN approach for solving planning
problems in parametrized action spaces. GCM-DQN leverages on gradient-based optimization during execution (marked in blue)
to find (leastwise locally) optimal action-parameter tuples and uses a modular state transition model to sample successor states.

state,

ψ∗
k = argmax

ψk∈Ψk

Q(s, ak, ψk, g) ∀ k ∈ K, (12)

using projected gradient ascent (cf. Section 4.3). As we can-
not guarantee a global optimum, we denote the resulting
parameters with ψ̃∗

kt+1
. This first step allows us to reformu-

late Equation 11 as

Q(st, akt , ψkt , g) = E
st+1∼P (·|st,akt ,ψkt)

[Rg(st)

+γ max
kt+1∈K

Q(st+1, akt+1 , ψ̃
∗
kt+1

, g)],
(13)

which resembles the Bellman equation with a goal condition-
ing and an approximate inner maximization.

We train our goal-conditioned DQN Qθ, with parame-
ters θ ∈ R, for parametrized action spaces in an offline
Reinforcement Learning setup, to cater the restrictions on
of prohibitively expensive domain interactions in real-world
planning domains. Therefore, we assume a training dataset
of recorded plans D = {τj}Jj=0. A major problem in offline
Reinforcement Learning is the distributional shift between
training data and the application domain (Levine et al. 2020).
We counter this problem by augmenting D with Hindsight
Experience Replay (Andrychowicz et al. 2017), and Conser-
vative Action Sampling (Chebotar et al. 2021). Hindsight
Experience Replay augments the available dataset by sam-
pling sub-traces from the recorded plans, relabeling the final
state as the goal state (Andrychowicz et al. 2017). Conser-
vative Action Sampling also samples sub-trances from the
recorded plans, however, labeling their final state as miss,
therefore artificially creating negative samples for the dataset
(Chebotar et al. 2021). Using both augmentation techniques,
results in the datasets D̃ (Andrychowicz et al. 2017) and ¯̃D
(Chebotar et al. 2021).

Following (Mnih et al. 2015) we use an off-policy training
setup, using an online network Qθ and a target network Qθ− .
During training, only the weights of Qθ are updated via
gradient descent, whereas the weights of Qθ− are copied
from Qθ every η steps. We use a composite loss function

LCQL = LQ + LP (14)

consisting of the squared TD-loss LQ (Mnih et al. 2015)
and a conservative penalty term LP (Kumar et al. 2020).
The conservative penalty term LP helps to regularize Qθ to
overestimate Q-values of unseen or underrepresented actions
(Kumar et al. 2020). We denote the squared TD-loss as

LQ = E
(st,akt ,ψkt ,rt,st+1)∼ ¯̃D

[rt

+γ(1− dt) max
kt+1∈K

Qθ−(st+1, akt+1
, ψ̃∗

kt+1
, g)

−Qθ(st, akt , ψkt , g)]2,

(15)

where dt ∈ {0, 1} indicates whether the plan at time t, so
that dt = 1, if st+1 ∈ G. Following (Kumar et al. 2020), we
formulate the conservative penalty term as

LP = α[log(
∑
k∈K

1

M

M∑
m=1

exp(Qθ(st, akt , ψ
(m)
kt

, g)))

−Qθ(st, akt , ψ̃∗
kt , g)].

(16)

where α is the trade-off factor between Bellman-fit and con-
servatism, K = |A| is the number of discrete actions, and M
is the number of parameter samples per action used in the
log-sum-exp penalty. For our offline training, we draw M

samples ψ(m)
kt

uniformly from the empirical pool of parame-
ters for action ak to approximate

∫
ψ
eQθ(st,akt ,ψkt ,g)dψ.

Regarding D, three edge cases must be considered: (i) D
including no data, (ii) D including little data, and (iii) D
including infinite data. In case (i), where no data is available,
Qθ cannot be trained. Hence, data must be collected by ran-
dom exploration or through sampling state transitions from
the domain. Case (ii) describes the normal operation of GCM-
DQN. We note that the higher the variance in the dataset, the
better the approximation of Qθ to the real Q. Case (iii) de-
scribes a special case, where all data are available. Given a
large enough θ, this allows Qθ to fit Q exactly.

4.3 Gradient-based Parameter Estimation
For finding the optimal parameters for an action in a given
state, we propose to leverage on the differentiability of the
DQN and use gradient ascent in a nested optimization loop

for finding optimal parameters for a given action (cf. Equa-
tion 12). Therefore, we introduce the paramOpt algorithm,
which draws inspiration from (Kingma et al. 2014) and its
applications in (Wu, Say, and Sanner 2020; Heesch et al.
2024).

The idea of paramOpt is to use the same algorithm, which
is used to adapt the weights of Qθ during training, for find-
ing the optimal action-parameter tuples during execution.
However, instead of optimizing the weights of the Qθ, we
optimize the parameter component ψ of its input. Therefore,
we initialize the parameter component ψ with a guess ψ̂, e.g.,
random numbers, zeros, or values from D. After calculating
Qθ(s, a, ψ̂, g), we use backpropagation to derive the gradient
with respect to ψ̂, allowing us to use gradient ascent with a
learning rate β to update ψ̂ in a direction which increases
the Q-value. The optimization stops after the updates of the
Q-value, ∆Q, fall below a threshold ξ, returning the last
update of ψ̂ as ψ̃∗. Algorithm 2 summarizes our parameter
estimation loop through input optimization.

Algorithm 2: PARAMOPT Gradient-Based Parameter
Optimization

Require :s, a, g // state, action, goal
Qθ // goal-conditioned DQN
β // learning rate
ξ // stopping threshold

ψ̂ ← init() // initial guess
1 ∆Q ← +∞
2 Q(prev) ← −∞
3 while ∆Q > ξ do
4 gψ ← ∇ψQθ(s, a, ψ̂, g) // backprop wrt.

parameters

5 ψ̂ ← clip[ψmin,ψmax]
(ψ̂ + β gψ)

// projected gradient ascent

6 Q(val) ← Qθ(s, a, ψ̂, g) // caclulate
action value

7 ∆Q ← Q(val) −Q(prev)

8 Q(prev) ← Q(val)

9 return ψ̃∗ ← ψ̂ // optimized parameter

As we are using gradient ascent as optimization algorithm
over the DQN, we cannot guarantee to find the true global
optimum ψ∗. This is due to the non-convex shape of Qθ. The
result of the optimization hence can be strongly dependent
on the initialization of ψ̂ and the learning rate β. As there
are different options for initialization, e.g., zeros, ones, or
random numbers, we suggest incorporating prior knowledge
from the dataset, in the form of estimators like the mean over
observed parameter settings as starting guesses.

Additionally, parameters are typically bound to value
ranges, e.g., a temperature cannot fall below 0 Kelvin. To in-
corporate this, we use projected gradient ascent (Calamai and
Moré 1987) during optimization, effectively clipping values
that exceed the bounds. As one naı̈ve solution for retrieving

the bounds, we suggest iterating through the dataset D and
collecting minima and maxima of each parameter.

4.4 Learning State Transition Dynamics
In real-world planning problems, directly interacting with the
planning domain to predict action effects is rarely possible or
prohibitively expensive (Levine et al. 2020). Hence, planning
requires a model of the state transition dynamics (Ghallab,
Nau, and Traverso 2016) which maps a current state st and
parameters ψt to a successor state. In deterministic domains
this is a function f(st, ψt) = st+1 (cf. Eq. 5); in probabilistic
domains it is a conditional distribution p(st+1 | st, ψt) from
which st+1 is sampled (cf. Eq. 4).

Following the modular per–action factorization of PAMDP
dynamics (cf. Eq. 3), we learn one transition model action,
F = {fak}Kk=1, each predicting the next state for action ak
given (st, ψt). Thereby, we use the same dataset D, which is
also used for training the DQN.

We propose to capture the stochasticity of probabilistic
planning domains with a novel conditional latent-variable
state transition model, inspired by (Sohn, Lee, and Yan 2015).
Thereby, each per-action model comprises an encoder ek and
a decoder dk part.

During training , the encoder processes the input st, ψt,
and st+1 into the parameters µ and σ of a latent posterior
qe(z|st, st+1, ψt). Using the reparametrization trick, it sam-
ples z = µ + σ ⊙ ϵ, ϵ ∼ N (0, I). The decoder dk
reconstructs st+1 from st, ψt, and z under a standard normal
prior pd(z) = N (0, I). As training criterion, we minimize
the negative Evidence Lower Bound,

L = − E
qe(z|st,st+1,ψt)

[log pd(st+1|st, ψt, z)]

+DKL(qe(z|st, st+1, ψt)| pd(z)
)
,

(17)

where DKL denotes the Kullback–Leibler divergence.

During planning , the encoder is discarded and only dk
is further used. Given the current state st and parameters
ψ̃∗
t (estimated with paramOpt), we draw z ∼ N (0, I) and

decode samples ŝt+1 = dk(st, ψ̃
∗
t , z). Boundaries and non-

permissible states can be detected by analyzing the scalar
variance var of ŝ(n)t+1 when sampling the z vector n times:

var =
1

n− 1

n∑
i=1

||ŝ(i)t+1 − s̄t+1||2,

s̄t+1 =
1

n

n∑
i=1

ŝ
(i)
t+1,

(18)

A high variance indicates a high predictive uncertainty in
ŝt+1, which indicates boundaries or non-permissible states,
like obstacles.

For deterministic domains, the stochastic latent z can be
omitted and dk reduces to a standard Multilayer Perceptron.

5 Evaluation
We evaluate our GCM-DQN algorithm empirically against
offline versions of state-of-the-art Reinforcement Learning

baselines for solving planning problems in parametrized ac-
tion spaces (Hausknecht and Stone 2016; Xiong et al. 2018).
Therefore, we used domains with navigation problems and
domains from the international planning competition’s (IPC)
reinforcement learning track (Taitler et al. 2024). As perfor-
mance metrics, we use the rate of successfully solved plan-
ning problems from a set of unseen planning problems, and a
success-weighted distance of the found trajectories to optimal
trajectories. We hypothesize that (H1) GCM-DQN shows
a higher performance than the baselines, when trained on
the same limited dataset of plans D, and (H2) GCM-DQN
longer maintains a higher performance than the baselines,
when systematically reducing the number of samples in D.
Additionally, we perform an ablation study on the three ex-
tensions of GCM-DQN: the goal-conditioning, paramOpt,
and the state-transition models (cf. Appendix C).

For setting up our experiments, we followed the experi-
mental design guidelines for empirical Machine Learning
research by (Vranješ et al. 2024). We generated samples for
the datasets D by running either an A∗ search or JaxPlan
(Gimelfarb, Taitler, and Sanner 2024) for randomly initial-
ized planning problems of the chosen planning domains. We
used Optuna (Akiba et al. 2019) for hyperparameter opti-
mization of GCM-DQN and the baselines to allow for a
fair comparison. We repeated all experiments on eight dif-
ferent seeds to rule out lucky initializations. All code and
datasets for replicating the experiments can be found under
https://anonymous.4open.science/r/gcmdqn-7CA6. The full
experimental setup with domain descriptions and metrics can
be found in Appendix A.

5.1 Evaluating GCM-DQN’s Performance
For evaluating the performance of GCM-DQN in comparison
to the baselines, we created a training datasetD of 128 solved
planning problems and a test dataset of 100 solved problems
per domain. The results are summarized in Table 1. For the
navigation domains, our results indicate that GCM-DQN
shows a higher mean planning success rate over the eight
different seeds than the baselines, when trained on a limited
dataset of 128 plans. For the IPC domains, either P-DDPG or
GCM-DQN show the highest performance, with only narrow

differences. As the IPC domains have a stronger emphasis on
the parametrization than on the combinatorial action selection
it is expectable that the Actor-Critic approach performs well
in the IPC domains, while underperforming in the navigation
domains (and vice-versa for P-DQN). Overall, all algorithms
show declining performance with increasing complexity of
the planning domains. Additionally, we observed a lower
variance due to different seeds for GCM-DQN. Full results,
inlcuding the success-weighted planning distance, can be
found in Appendix B.

5.2 Evaluating GCM-DQN’s Performance with
Succeedingly Scarce Data

The application scenario for GCM-DQN is solving planning
problems under circumstances where only little data is avail-
able and interactions with the environment are not possible.
For evaluating the behavior of GCM-DQN on scarce data,
we trained the GCM-DQN and the baselines on succeedingly
less samples in D. Therefore, we created subsets of D con-
taining {64, 32, 16, 8, 4, 2} samples and trained GCM-DQN
and the baselines on the hyperparameter settings from above.
For each algorithm and dataset, we repeated the procedure on
eight different seeds and evaluated the algorithms again on a
test set of 100 unseen planning problems. Figure 3 shows the
results for the navigation and IPC domains.

We hypothesized that GCM-DQN maintains a higher per-
formance under progressive sample reduction compared to
the baseline methods. For the navigation domains, this holds
true in the most cases. GCM-DQN shows a continuous in-
crease in planning success rates, when increasing the number
of plans in the training dataset. In the circle domain P-DQN
shows better performance between 2 and 16 samples. How-
ever, P-DQN shows a higher variance across the different
seeds in comparison to GCM-DQN.

For the IPC domains, GCM-DQN shows a similar perfor-
mance as the P-DDPG algorithm. This indicates that for com-
binatorial, as well as parametrization problems, GCM-DQN
performs well, however being outperformed in the HVAC
and PowerGen domains by P-DDPG (by a slight margin).
Yet, it is noteworthy that P-DDPG shows a high variance
across the different seeds, while GCM-DQN remains com-

Table 1: The table shows the mean success rate ρ± standard deviation across eight seeds for our GCM-DQN algorithm and the
baselines over different navigation and IPC planning domains.

domain name P-DQN (Xiong et al. 2018) P-DDPG (Hausknecht and Stone 2016) GCM-DQN (ours)

navigation – bars 0.7852 ± 0.2063 0.1952 ± 0.0049 0.7922 ± 0.1141
navigation – circle 0.8466 ± 0.1579 0.0653 ± 0.0053 0.9375 ± 0.0250
navigation – squeeze 0.5351 ± 0.1624 0.1326 ± 0.1429 0.9405 ± 0.0308
navigation – cross 0.7405 ± 0.1203 0.0680 ± 0.0165 0.8497 ± 0.1171
IPC – HVAC – instance0 0.1484 ± 0.2209 0.6045 ± 0.2212 0.6669 ± 0.1687
IPC – HVAC – instance1 0.5029 ± 0.0058 0.5410 ± 0.0354 0.5273 ± 0.0239
IPC – HVAC – instance2 0.4472 ± 0.0055 0.4492 ± 0.0072 0.4492 ± 0.0055
IPC – HVAC – instance3 0.1171 ± 0.0011 0.1221 ± 0.0058 0.1299 ± 0.0102
IPC – PowerGen – instance1 0.0000 ± 0.0000 0.3691 ± 0.1268 0.2910 ± 0.0147
IPC – PowerGen – instance2 0.0000 ± 0.0000 0.0000 ± 0.0000 0.1171 ± 0.0263
IPC – Reservoir – instance1 0.0009 ± 0.0027 0.5918 ± 0.1398 0.6796 ± 0.1048

https://anonymous.4open.science/r/gcmdqn-7CA6

2 4 8 16 32 64 128
n training plans

0.0

0.2

0.4

0.6

0.8

1.0

success rate
bars domain

2 4 8 16 32 64 128
n training plans

0.0

0.2

0.4

0.6

0.8

1.0

success rate
cross domain

2 4 8 16 32 64 128
n training plans

0.0

0.2

0.4

0.6

0.8

1.0

success rate
circle domain

2 4 8 16 32 64 128
n training plans

0.2

0.4

0.6

0.8

1.0

success rate
squeeze domain

gcmdqn
pdqn
pddpg

2 4 8 16 32 64 128
n training plans

0.0

0.2

0.4

0.6

0.8

1.0

success rate
HVAC domain - instance0

2 4 8 16 32 64 128
n training plans

0.0

0.1

0.2

0.3

0.4

0.5

success rate
PowerGen domain - instance1

2 4 8 16 32 64 128
n training plans

0.0

0.2

0.4

0.6

0.8

success rate
Reservoir domain - instance1

gcmdqn
pdqn
pddpg

Figure 3: The figure shows the success rate for the navigation and IPC domains, when altering the number of plans in the training
dataset. We repeated the experiments on eight different seeds. The shaded areas show the variance of the differently seeded runs.

paratively stable. In the Reservoir domain, we observed a
collapse of GCM-DQN when having only little available
samples, however surpassing even P-DDPGs performance
when 64 or more traninig plans are in D.

6 Discussion
Architectural Limitations of GCM-DQN Given the ar-
chitecture we chose for our GCM-DQN algorithm, there are
inherent limitations. Our gradient-based paramOpt func-
tion for estimating the parameters for actions can converge
to local optima in the Q-function. Especially in complex,
non-convex Q-functions, this poses a serious problem. Mit-
igation strategies could include ensemble approaches with
differently seeded optimizers, multi-start optimization with
different initial guesses, or a combination of both. Addition-
ally, in essence, our GCM-DQN algorithm is one-step greedy
(though implicitly operating on the expected returns of the
DQN). Especially for domains in which long plans are neces-
sary to reach a goal, the sparse reward signal of training data
might lead to wrong results. Using the transition model for
look-ahead methods, like Monte Carlo Tree Search, might
result in better performance of the planner. Alternatively, a
hierarchical perspective where GCM-DQN plans between
intermediate goals might lead to increased performance with
longer plans. As some hyperparameters, e.g., the α weight
of Conservative Q-Learning or the number of Conservative
Actions Samples, have a strong impact on the performance
and stability of the planner, including them as parameters in
the training loop to dynamically adapt the conservatism or
data augmentation level of the model during training, might
be a future improvement.

Distributional Shift in Offline Reinforcement Learning
One of the core challenges in Offline Reinforcement Learn-
ing is the distributional shift between the training data and
application scenarios (Levine et al. 2020). Especially in the

context of planning, the planner is likely to encounter state,
action, parameter combinations that lie outside the support
of the training data, which can lead to extrapolation errors.
We mitigated this risk, using three mechanisms from the
Offline Reinforcement Learning literature: Using Hindsight
Experience Replay (Andrychowicz et al. 2017), Conservative
Action Sampling (Chebotar et al. 2021), and Conservative
Q-Learning (Kumar et al. 2020). Our results indicate that
all measures improved training stability and planning perfor-
mance.

7 Conclusion & Outlook
In this paper, we introduced the Goal-conditioned Model-
augmented DQN algorithm (GCM-DQN), a model-
augmented Offline Reinforcement Learning algorithm for
planning in parametrized action spaces, where no model
of the planning domain and only a limited dataset of
recorded plans are available. GCM-DQN tackles three cen-
tral challenges of planning with Reinforcement Learning in
parametrized action spaces: (i) infinite branching of action-
parameter tuples, (ii) goal-dependent reward functions, and
(iii) substituting domain interactions with a model during
planning time. To address the challenges, we introduce
paramOpt, a novel gradient-based optimization algorithm
over the DQN for finding the optimal parameters for an action
in a state, a goal-conditioning of the DQN that allows for plan-
ning with changing and sparse reward functions, and a novel
state transition model that allows to capture the inherent un-
certainty in stochastic of probabilistic planning domains. We
evaluate GCM-DQN against offline versions of two closely
related algorithms. GCM-DQN shows higher performance
than the baselines, especially in data scarce scenarios. Future
work will include the refinement of GCM-DQNs architecture
and its application on real-world industrial planning scenar-
ios.

Acknowledgement
This research as part of the project LaiLa and EKI is funded
by dtec.bw – Digitalization and Technology Research Cen-
ter of the Bundeswehr, which we gratefully acknowledge.
dtec.bw is funded by the European Union – NextGenera-
tionEU. Any use of generative AI in this manuscript adheres
to ethical guidelines of the IEEE for the use and acknowl-
edgement of generative AI. Each author has made a sub-
stantial contribution to the work, using LLMs exclusively
for language refinement, formatting purposes, and for non-
substantial coding, e.g., for creating plots.

References
Akiba, T.; Sano, S.; Yanase, T.; Ohta, T.; and Koyama, M.
2019. Optuna: A Next-generation Hyperparameter Optimiza-
tion Framework. In Proceedings of the 25th ACM SIGKDD
International Conference on Knowledge Discovery and Data
Mining.
Andrychowicz, M.; Wolski, F.; Ray, A.; Schneider, J.; Fong,
R.; Welinder, P.; McGrew, B.; Tobin, J.; Abbeel, P.; and
Zaremba, W. 2017. Hindsight Experience Replay. In Guyon,
I.; Luxburg, U. V.; Bengio, S.; Wallach, H.; Fergus, R.; Vish-
wanathan, S.; and Garnett, R., eds., Advances in Neural Infor-
mation Processing Systems, volume 30. Curran Associates,
Inc.
Calamai, P. H.; and Moré, J. J. 1987. Projected gradient
methods for linearly constrained problems. Mathematical
Programming, 39(1): 93–116.
Chebotar, Y.; Hausman, K.; Lu, Y.; Xiao, T.; Kalashnikov,
D.; Varley, J.; Irpan, A.; Eysenbach, B.; Julian, R. C.; Finn,
C.; and Levine, S. 2021. Actionable Models: Unsupervised
Offline Reinforcement Learning of Robotic Skills. In Pro-
ceedings of the 38th International Conference on Machine
Learning, volume 139 of Proceedings of Machine Learning
Research, 1518–1528. PMLR.
Ehrhardt, J.; Heesch, R.; and Niggemann, O. 2024. Learning
Process Steps as Dynamical Systems for a Sub-Symbolic
Approach of Process Planning in Cyber-Physical Production
Systems. In Artificial Intelligence. ECAI 2023 International
Workshops, 332–345. Cham: Springer Nature Switzerland.
ISBN 978-3-031-50485-3.
Fan, Z.; Su, R.; Zhang, W.; and Yu, Y. 2019. Hybrid
Actor-Critic Reinforcement Learning in Parameterized Ac-
tion Space. In Proceedings of the Twenty-Eighth Interna-
tional Joint Conference on Artificial Intelligence, IJCAI-19,
2279–2285. International Joint Conferences on Artificial In-
telligence Organization.
Ghallab, M.; Nau, D.; and Traverso, P. 2016. Automated
Planning and Acting. Cambridge University Press.
Gimelfarb, M.; Taitler, A.; and Sanner, S. 2024. JaxPlan and
GurobiPlan: Optimization Baselines for Replanning in Dis-
crete and Mixed Discrete-Continuous Probabilistic Domains.
Proceedings of the International Conference on Automated
Planning and Scheduling, 34: 230–238.
Grand, M.; Pellier, D.; and Fiorino, H. 2022. TempAMLSI:
Temporal Action Model Learning Based on STRIPS Transla-

tion. Proceedings of the International Conference on Auto-
mated Planning and Scheduling, 32: 597–605.
Hausknecht, M.; and Stone, P. 2016. Deep Reinforcement
Learning in Parameterized Action Space.
Heesch, R.; Cimatti, A.; Ehrhardt, J.; Diedrich, A.; and Nigge-
mann, O. 2024. A Lazy Approach to Neural Numerical Plan-
ning with Control Parameters. In European Conference on
Artificial Intelligence (ECAI).
Heesch, R.; Ehrhardt, J.; and Niggemann, O. 2024. Inte-
grating Machine Learning into an SMT-Based Planning Ap-
proach for Production Planning in Cyber-Physical Production
Systems. In Artificial Intelligence. ECAI 2023 International
Workshops, 318–331. Cham: Springer Nature Switzerland.
ISBN 978-3-031-50485-3.
Ilharco, G.; Jain, V.; Ku, A.; Ie, E.; and Baldridge, J. 2019.
General Evaluation for Instruction Conditioned Navigation
using Dynamic Time Warping.
Kingma, D. P.; Mohamed, S.; Rezende, D. J.; and Welling, M.
2014. Semi-supervised Learning with Deep Generative Mod-
els. In Ghahramani, Z.; Welling, M.; Cortes, C.; Lawrence,
N.; and Weinberger, K., eds., Advances in Neural Information
Processing Systems, volume 27. Curran Associates, Inc.
Kumar, A.; Zhou, A.; Tucker, G.; and Levine, S. 2020. Con-
servative Q-Learning for Offline Reinforcement Learning. In
Larochelle, H.; Ranzato, M.; Hadsell, R.; Balcan, M.; and
Lin, H., eds., Advances in Neural Information Processing
Systems, volume 33, 1179–1191. Curran Associates, Inc.
Levine, S.; Kumar, A.; Tucker, G.; and Fu, J. 2020. Offline
Reinforcement Learning: Tutorial, Review, and Perspectives
on Open Problems.
Li, B.; Tang, H.; Zheng, Y.; Hao, J.; Li, P.; Wang, Z.;
Meng, Z.; and Wang, L. 2021. HyAR: Addressing Discrete-
Continuous Action Reinforcement Learning via Hybrid Ac-
tion Representation.
Lillicrap, T. P.; Hunt, J. J.; Pritzel, A.; Heess, N.; Erez, T.;
Tassa, Y.; Silver, D.; and Wierstra, D. 2016. Continuous
control with deep reinforcement learning.
Ma, Y.; Liu, T.; Wei, B.; Liu, Y.; Xu, K.; and Li, W. 2023.
Evolutionary Action Selection for Gradient-Based Policy
Learning, 579–590. Springer International Publishing. ISBN
9783031301117.
Masson, W.; Ranchod, P.; and Konidaris, G. 2016. Reinforce-
ment Learning with Parameterized Actions. Proceedings of
the AAAI Conference on Artificial Intelligence, 30(1).
Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A. A.; Veness,
J.; Bellemare, M. G.; Graves, A.; Riedmiller, M.; Fidjeland,
A. K.; Ostrovski, G.; Petersen, S.; Beattie, C.; Sadik, A.;
Antonoglou, I.; King, H.; Kumaran, D.; Wierstra, D.; Legg,
S.; and Hassabis, D. 2015. Human-level control through deep
reinforcement learning. Nature, 518(7540): 529–533.
Ng, A. Y.; Harada, D.; and Russell, S. J. 1999. Policy In-
variance Under Reward Transformations: Theory and Appli-
cation to Reward Shaping. In Proceedings of the Sixteenth
International Conference on Machine Learning, ICML ’99,
278–287. San Francisco, CA, USA: Morgan Kaufmann Pub-
lishers Inc. ISBN 1558606122.

Schaul, T.; Horgan, D.; Gregor, K.; and Silver, D. 2015. Uni-
versal Value Function Approximators. In Proceedings of
the 32nd International Conference on Machine Learning,
volume 37 of Proceedings of Machine Learning Research,
1312–1320. Lille, France: PMLR.
Sohn, K.; Lee, H.; and Yan, X. 2015. Learning Structured
Output Representation using Deep Conditional Generative
Models. In Cortes, C.; Lawrence, N.; Lee, D.; Sugiyama,
M.; and Garnett, R., eds., Advances in Neural Information
Processing Systems, volume 28. Curran Associates, Inc.
Sutton, R. S.; and Barto, A. G. 2018. Reinforcement learning:
An introduction. MIT press.
Taitler, A.; Alford, R.; Espasa, J.; Behnke, G.; Fišer, D.;
Gimelfarb, M.; Pommerening, F.; Sanner, S.; Scala, E.;
Schreiber, D.; Segovia-Aguas, J.; and Seipp, J. 2024. The
2023 International Planning Competition. AI Magazine,
45(2): 280–296.
Tavakoli, A.; Pardo, F.; and Kormushev, P. 2018. Action
Branching Architectures for Deep Reinforcement Learning.
Proceedings of the AAAI Conference on Artificial Intelligence,
32(1).
Vintsyuk, T. K. 1972. Speech discrimination by dynamic
programming. Cybernetics, 4(1): 52–57.
Vranješ, D.; Ehrhardt, J.; Heesch, R.; Moddemann, L.;
Steude, H. S.; and Niggemann, O. 2024. Design Princi-
ples for Falsifiable, Replicable and Reproducible Empirical
Machine Learning Research. In 35th International Confer-
ence on Principles of Diagnosis and Resilient Systems (DX
2024), volume 125. Dagstuhl, Germany: Schloss Dagstuhl –
Leibniz-Zentrum für Informatik.
Wu, G.; Say, B.; and Sanner, S. 2017. Scalable Planning
with Tensorflow for Hybrid Nonlinear Domains. In Guyon,
I.; Luxburg, U. V.; Bengio, S.; Wallach, H.; Fergus, R.; Vish-
wanathan, S.; and Garnett, R., eds., Advances in Neural Infor-
mation Processing Systems, volume 30. Curran Associates,
Inc.
Wu, G.; Say, B.; and Sanner, S. 2020. Scalable Planning with
Deep Neural Network Learned Transition Models. Journal
of Artificial Intelligence Research, 68: 571–606.
Xiong, J.; Wang, Q.; Yang, Z.; Sun, P.; Han, L.; Zheng, Y.;
Fu, H.; Zhang, T.; Liu, J.; and Liu, H. 2018. Parametrized
Deep Q-Networks Learning: Reinforcement Learning with
Discrete-Continuous Hybrid Action Space.

Appendix
A Experimental Setup

We used the following planning domains for our evaluation:

Navigation Domains The navigation domains feature two-
dimensional path finding problems in a continuous space
with obstacles (cf. Figure 4). The goal is to find a sequence of
actions that lead from the start state to the goal state. There
is a set of four actions - up, down, left, right - in which
each action can be augmented with a plus minus ten-degree
tilt. The step-width is fixed and collisions with the obstacles
are forbidden. The planning problems are non-trivial, as the
reward function is sparse and planners need to deal with
linear and non-linear obstacles.

Figure 4: Evaluation domains from the Navigation Domains.
From left to right, circle-domain, cross-domain, bars-domain,
squeeze-domain. Exemplary start states are green and exem-
plary goal states are red.

IPC Domains The IPC domains feature domains from the
International Planning Competition’s Probabilistic and Re-
inforcement Learning Track from 2023 (Taitler et al. 2024).
We picked the Reservoir, PowerGen and HVAC domains
(cf. Figure 5). The challenge in the Reservoir domain is to
control the continuous flow of water in a series of intercon-
nected reservoirs. The problem is difficult due to its stochastic
transitions and high state and action dimensions (Gimelfarb,
Taitler, and Sanner 2024). The challenge in the PowerGen
domain is to control a power distribution network, consisting
of different types of power generation units with different
cost characteristic. The demand is coupled to a temperature
variable. The challenge lies in the stochastic nature of the
temperature variable and power units that are expensive to
start and cheap to run. (Gimelfarb, Taitler, and Sanner 2024).
The challenge in the HVAC domain is to control a heating
system with continuous actions in a building with multiple
interconnected rooms to maintain a specific temperature. Oc-
cupancy of the rooms is a Boolean stochastic variable which
influences the heating costs. (Gimelfarb, Taitler, and Sanner
2024). While the focus of the navigation domains lies more
on the combinatorial aspects of planning problem, the IPC
domains focus more on finding the correct parameters to
solve the planning problem.

Metrics As it is unrealistic that a learning algorithm which
is trained on a scarce dataset D could match the typical
planning evaluation metrics, like soundness, completeness,
efficiency, and optimality1, we turned to comparative metrics
describing the performance of GCM-DQN and the baselines

1As our algorithm is grounded in the Bellman Equation, its solu-
tions will converge to optimal, sound, and complete results with an

Figure 5: Evaluation domains from the IPC Domains. From
left to right, HVAC domain, Reservoir domain, Power-
Gen domain. The images are taken from https://github.com/
pyrddlgym-project.

in comparison to a gold-standard algorithm which matches
the traditional evaluation metrics under the cost of heavy
computation.

As metrics we chose the success rate ρ and a success-
weighted distance metric of a successful rollout and gold-
standard trajectory. The planning success rate describes the
number of successfully solved planning problems from a set
of unseen test planning problems in the same planning do-
main. As the planning success rate alone does not take the
optimality of the trajectories into account, we additionally
considered the Dynamic Time Warping distance (DTW) be-
tween a trajectory and a gold-standard trajectory (Vintsyuk
1972). The DTW has the advantage that it can capture the sim-
ilarity of two trajectories, even if they have different lengths.
However, when considering multiple experimental trials over
different seeds and domains, it gets confounded by the rate of
successful trials. A policy that solved only one trial perfectly
will achieve a better mean DTW than a policy that solved
all planning problems with the cost of higher variance in
some DTWs. We hence did not turn to pure DTW as distance
metric but included a success-weighting, to rule out planners
with low success rate, but potentially low DTWs, following
Ilharco et al. (2019).

For each planning problem i of the test set, we compute

sDTWi = Si · exp
[
−DTWi

α |τ∗i |

]
, (19)

where α is a constant scale factor, |τ∗i | is the length of the
gold standard trajectory, and Si ∈ {0, 1} indicates whether
the planner solved the planning problem. We caclulate the
average over all sDTWi in the test set

sDTW =
1

N

N∑
i=1

sDTWi . (20)

Thus, with the resulting sDTW metric, 0 corresponds to solv-
ing nothing, and 1 corresponds to solving everything with
plans that are identical to the gold standard planner’s solu-
tions.

Baselines As baselines we used P-DQN (Xiong et al. 2018)
and P-DDPG (Hausknecht and Stone 2016) from litera-
ture, as, to our knowledge, there are no offline Reinforce-
ment Learning algorithms for solving planning problems

infinitely large dataset D. However, this is not its operational sce-
nario. We hence do not consider very large datasets for evaluation.

https://github.com/pyrddlgym-project
https://github.com/pyrddlgym-project

in PAMDPs. While P-DDPG is a policy based approach
which is trained in an actor-critic setup (Hausknecht and
Stone 2016), P-DQN is closer related to our approach us-
ing a DQN for evaluating different action-parameter tuples.
However, instead of finding optimal parameter values via
gradient-based search, it uses a Neural Network as heuristic
for suggesting parameter values (Xiong et al. 2018). We trans-
ferred both baselines in an offline and model-based setting,
using Conservative Q-learning, Hindsight Experience Replay,
and potential-based shaping as for our algorithm. We gave
each algorithm double the budget of steps needed to solve
the planning problem, as the gold trajectories needed. We
restricted the gradient-based optimization of paramOpt to
100 updates.

B Full Results
In this section we report the full results, including the success-
weighted DTW distance (sDTW) for our experiments on the
navigation and IPC domains. The full results considering the
performance in solving the planning problems are reported
in Table 2. The results for succeedingly scarce training data
are reported in Figures 6 for the navigation domains and 7
for the IPC domains.

2 4 8 16 32 64 128
n training plans

0.0

0.2

0.4

0.6

sD
TW

distances
bars domain

2 4 8 16 32 64 128
n training plans

0.0

0.2

0.4

0.6

0.8

sD
TW

distances
cross domain

2 4 8 16 32 64 128
n training plans

0.0

0.2

0.4

0.6

0.8

sD
TW

distances
circle domain

2 4 8 16 32 64 128
n training plans

0.2

0.4

0.6

0.8

sD
TW

distances
squeeze domain

gcmdqn
pdqn
pddpg

Figure 6: The figure shows the success weighted DTW dis-
tance of GCM-DQN and the P-DQN (Xiong et al. 2018) and
P-DDPG (Hausknecht and Stone 2016) baselines on the nav-
igation domains, under the constraint of succeedingly scarce
training data.

C Ablation Studies
For each extension of our GCM-DQN algorithm, we per-
formed an ablation study. We evaluate the ablation variant
of our algorithm against the full version, using the same
performance metrics as introduced in Section 5.

2 4 8 16 32 64 128
n training plans

0.2

0.3

0.4

0.5

0.6

0.7

sD
TW

distance
HVAC domain - instance0

2 4 8 16 32 64 128
n training plans

0.05

0.00

0.05

0.10

0.15

0.20

sD
TW

distance
PowerGen domain - instance1

2 4 8 16 32 64 128
n training plans

0.0

0.2

0.4

0.6

sD
TW

distance
Reservoir domain - instance1

gcmdqn
pdqn
pddpg

Figure 7: The figure shows the success weighted DTW dis-
tance of GCM-DQN and the P-DQN (Xiong et al. 2018) and
P-DDPG (Hausknecht and Stone 2016) baselines on the IPC
domains, under the constraint of succeedingly scarce training
data.

C.1 Ablation Study Goal-Conditioning
For evaluating the impact of the goal conditioning in GCM-
DQN, we replaced the conditioning during training and plan-
ning by a vector of zeros, carrying no information for reach-
ing the actual goal state. We compared the DTW distance of
the ablated version with the version from the paper, hypothe-
sizing that the goal-conditioned GCM-DQN would show a
lower DTW distance, meaning a better fit, than the ablated
version. The results are shown in Figure 8. We could show
that goal-conditioned version of GCM-DQN shows a higher
DTW distance than the ablated version, with an exemption
for the low sample regions of the bars, and circle domains.

C.2 Ablation Study paramOpt
For evaluating the impact of the goal paramOpt algorithm
during planning, we compared the performance of the full
GCM-DQN algorithm against a variant, in which we replaced
paramOpt with a random draw of parameters from the ob-
served parameter range in the training data. We compared the
DTW distance of the ablated version with the paper version
of GCM-DQN hypothesizing that the version which uses
paramOpt would show a lower DTW distance, meaning a
better fit, than the ablated version. The results are shown in
Figure 9. We could show that paramOpt reduces the DTW
distance in all cases, however, its impact being dependent on
the planning domain.

C.3 Ablation Study Conservative Q-Learning
For evaluating the impact of Conservative Q-Leanring on
our GCM-DQN algorithm, we compared the version from
the paper against a variant in which we tuned down the α

Table 2: The table shows the mean success weighted DTW distance ± standard deviation across eight seeds for our GCM-DQN
algorithm and the baselines over different navigation and IPC planning domains.

domain name P-DQN (Xiong et al. 2018) P-DDPG (Hausknecht and Stone 2016) GCM-DQN (ours)

navigation – bars 0.6096 ± 0.1437 0.2709 ± 0.0049 0.5788 ± 0.0831
navigation – circle 0.6144 ± 0.1261 0.1705 ± 0.0003 0.7407 ± 0.0163
navigation – squeeze 0.4207 ± 0.1260 0.1524 ± 0.0053 0.7561 ± 0.0390
navigation – cross 0.5241 ± 0.1072 0.0138 ± 0.0013 0.6553 ± 0.1073
IPC – HVAC – instance0 0.2551 ± 0.0930 0.4415 ± 0.0233 0.4965 ± 0.1045
IPC – HVAC – instance1 0.5066 ± 0.0125 0.5432 ± 0.0289 0.5249 ± 0.0194
IPC – HVAC – instance2 0.4407 ± 0.0061 0.4475 ± 0.0166 0.4520 ± 0.0190
IPC – HVAC – instance3 0.0666 ± 0.0001 0.0949 ± 0.0302 0.1168 ± 0.0361
IPC – PowerGen – instance1 0.0000 ± 0.0000 0.1691 ± 0.0632 0.1222 ± 0.0233
IPC – PowerGen – instance2 0.0000 ± 0.0000 0.0000 ± 0.0000 0.0085 ± 0.0170
IPC – Reservoir – instance1 0.0000 ± 0.0000 0.4319 ± 0.1246 0.5073 ± 0.0835

2 4 8 16 32 64 128
n training plans

0

2

4

6

DT
W

planning success rate
bars domain - no goal-conditioning

2 4 8 16 32 64 128
n training plans

2

4

6

DT
W

planning success rate
cross domain - no goal-conditioning

2 4 8 16 32 64 128
n training plans

3.0

3.5

4.0

4.5

5.0

DT
W

planning success rate
circle domain - no goal-conditioning

2 4 8 16 32 64 128
n training plans

2.00

2.25

2.50

2.75

3.00

3.25

DT
W

planning success rate
squeeze domain - no goal-conditioning

no_gc
normal

Figure 8: The figure shows the DTW distance of GCM-
DQN with goal conditioning (normal) and without goal-
conditioning (no gc) in the geometric and IPC domains.

parameter to 0, effectively ruling out the conservative term of
the loss function in GCM-DQN. We used the DTW distance
for evaluating the planning performance of the algorithms.
The results are shown in Figure 10. We could show that the
version using Conservative Q-Learning shows lower planning
distances than the ablated version, with an exemption in the
lower sample number region of the circle domain, and the
middle sample number of the bars domain.

C.4 Ablation Study Hindsight Experience Replay
and Conservative Action Sampling

To evaluate the impact of our data augmentation techniques,
we evaluated GCM-DQN being trained with differently aug-
mented datasets. These are the augmentations, we applied to
D:

• (no-her) this variant includes an augmentation only with

2 4 8 16 32 64 128
n training plans

0

2

4

6

DT
W

planning success rate
bars domain - no paramopt

2 4 8 16 32 64 128
n training plans

2

4

6

DT
W

planning success rate
cross domain - no paramopt

2 4 8 16 32 64 128
n training plans

3

4

5

6

DT
W

planning success rate
circle domain - no paramopt

2 4 8 16 32 64 128
n training plans

2.0

2.5

3.0

3.5

DT
W

planning success rate
squeeze domain - no paramopt

no_paramopt
normal

Figure 9: The figure shows the DTW distance of GCM-DQN
(normal) against the performance of a GCM-DQN variant that
does not use the paramOpt algorithm for finding optimal
parameters during planning, but randomly draws from the
range of observed parameters (no paramopt).

Conservative Action Sampling (cf. Figure 11).
• (no-cas) this variant includes an augmentation only with

Hindsight Experience Replay (cf. Figure 12).
• (no-cas-no-her) this variant includes no data augmentation

(cf. Figure 13).

We evaluated the planning success rate of the different aug-
mentation techniques, hypothesizing that augmenting the D
will have a positive impact on the planning success rate. The
results are shown in Figures 11, 12, and 13. We could show
that for most of the tested domains an augmentation of the
dataset has a positive effect on the planning success rate.
While pure HER does not show a big effect, CAS tends to
contribute more to a better planning success rate of GCM-

2 4 8 16 32 64 128
n training plans

0

2

4

6

DT
W

planning success rate
bars domain - no goal-conditioning

2 4 8 16 32 64 128
n training plans

2

4

6

DT
W

planning success rate
cross domain - no goal-conditioning

2 4 8 16 32 64 128
n training plans

3.0

3.5

4.0

4.5

5.0

DT
W

planning success rate
circle domain - no goal-conditioning

2 4 8 16 32 64 128
n training plans

2.00

2.25

2.50

2.75

3.00

3.25
DT

W

planning success rate
squeeze domain - no goal-conditioning

no_gc
normal

Figure 10: The figure shows the DTW distance of GCM-
DQN (normal) and an ablated variant using no Conservative
Q-Learning (no cql), as described in (Kumar et al. 2020).

DQN.

2 4 8 16 32 64 128
n training plans

0.2

0.4

0.6

0.8

1.0

planning success rate
bars domain - no HER, CAS

2 4 8 16 32 64 128
n training plans

0.2

0.4

0.6

0.8

1.0

planning success rate
cross domain - no HER, CAS

2 4 8 16 32 64 128
n training plans

0.5

0.6

0.7

0.8

0.9

1.0

planning success rate
circle domain - no HER, CAS

2 4 8 16 32 64 128
n training plans

0.80

0.85

0.90

0.95

1.00

planning success rate
squeeze domain - no HER, CAS

no HER, CAS
normal

Figure 11: The figure shows the planning success rate of
GCM-DQN when only augmenting the dataset D with Con-
servative Action Sampling (no HER, CAS), in comparison to
the paper version (normal).

C.5 Ablation Study State Transition Models
In Equation 3 we introduced the possibility of modeling
the transition dynamics in PAMDPs with an ensemble of
individual transition models that approximate the effects of
one individual action each. In this section, we compare the
performance of such an ensemble-based approach (normal)

2 4 8 16 32 64 128
n training plans

0.2

0.4

0.6

0.8

planning success rate
bars domain - HER, no CAS

2 4 8 16 32 64 128
n training plans

0.0

0.2

0.4

0.6

0.8

1.0

planning success rate
cross domain - HER, no CAS

2 4 8 16 32 64 128
n training plans

0.4

0.5

0.6

0.7

0.8

0.9

1.0

planning success rate
circle domain - HER, no CAS

2 4 8 16 32 64 128
n training plans

0.80

0.85

0.90

0.95

1.00

planning success rate
squeeze domain - HER, no CAS

HER, no CAS
normal

Figure 12: The figure shows the planning success rate of
GCM-DQN when only augmenting the dataset D with Hind-
sight Experience Replay (HER, no CAS), in comparison to
the version that we employed in the paper (normal).

2 4 8 16 32 64 128
n training plans

0.2

0.4

0.6

0.8

planning success rate
bars domain - no HER, no CAS

2 4 8 16 32 64 128
n training plans

0.0

0.2

0.4

0.6

0.8

1.0

planning success rate
cross domain - no HER, no CAS

2 4 8 16 32 64 128
n training plans

0.4

0.5

0.6

0.7

0.8

0.9

1.0

planning success rate
circle domain - no HER, no CAS

2 4 8 16 32 64 128
n training plans

0.80

0.85

0.90

0.95

1.00

planning success rate
squeeze domain - no HER, no CAS

no HER, no CAS
normal

Figure 13: The figure shows the planning success rate of
GCM-DQN when using no augmentation on the dataset D,
in comparison to the version that we employed in the paper
(no HER, no CAS).

against using a single stm for approximating all action effects
(single stm). Therefore, we ran an individual finetuning for
each state transition model variant (cf. Appendix A) and
compared the planning success rate and planning distance of
the two variants. In the tested domains, we could not identify
a large distance between the two types of state transition
models (cf. Figure 14), with an exception in the squeeze
domain, where the ensemble-based approach showed a higher

planning success rate than a single transition model.

2 4 8 16 32 64 128
n training plans

0.2

0.4

0.6

0.8

1.0

planning success rate
bars domain - single stm

2 4 8 16 32 64 128
n training plans

0.2

0.4

0.6

0.8

1.0

planning success rate
cross domain - single stm

2 4 8 16 32 64 128
n training plans

0.5

0.6

0.7

0.8

0.9

1.0

planning success rate
circle domain - single stm

2 4 8 16 32 64 128
n training plans

0.6

0.7

0.8

0.9

1.0

planning success rate
squeeze domain - single stm

single stm
normal

Figure 14: The figure compares the planning success rate of
GCM-DQN using either a single state transition model for all
actions (single stm) or an ensemble of state transition models
(normal).

D Network Architectures
The following section shows the employed network architec-
tures. The parametrizations can be found in the online reposi-
tory https://anonymous.4open.science/r/gcmdqn-7CA6.

training inference

* +

Figure 15: To capture the stochasticity in PAMDPs, we pro-
pose to use conditional stochastic state transition models.
During training (left), encoder eϕ and decoder dρ are trained
to reconstruct st+1 conditioned on st and ψt. During infer-
ence (right), only the decoder dρ is used to generate st+1

from the conditions st and ψt and a random sampled z from
a normal distribution.

E Additional Discussion
Data Quantity and Diversity The quantity and diversity of
the training data in the training datasetD had a significant im-
pact on the performance of the tested algorithms. Our results
support the intuition that more and diverse data improves
the approximation of the true Q-function and true transition
dynamics. The planning success rate of our GCM-DQN al-
gorithm continuously improved as the number of plans in D
increased. All methods struggled in scenarios where only few

residual block

...

+

+

residual block

+

Figure 16: The figure shows the architecture that we used for
the DQN in our GCM-DQN algorithm. We process each in-
put to the network in a separate head and use residual blocks
to smoothen the q surface. This allows our paramOpt algo-
rithm (cf. Algorithm 2) to converge to optimal parameters,
easier.

samples in the training dataset were available. Interestingly
P-DQN had a slight advantage in domains with only 2 to
4 plans in D, as soon as the number of plans in D goes be-
yond 16 samples, GCM-DQN surpassed it. We deliberately
focused on scarce data scenarios in our evaluation, as they re-
flect the real-world application of planners, where collecting
more data is expensive and an interaction with the environ-
ment is not possible. In this context, including Conservative
Q-Learning an and Hindsight Experience Replay as mitiga-
tions for scarce data was important. Even though Hindsight
Experience replay did not raise the mean planning success
rates, it reduced the outcome variability and thus improved
the reliability of GCM-DQN on small data. This implies that
when working with scarce data and the performance is insuf-
ficient, adding additional data to D may be more effective
than tweaking the algorithms in isolation.

Aleatoric Uncertainty from Latent Factors in the Plan-
ning Domain Real-world application scenarios for plan-
ners, e.g., industrial processes often show hidden factors and
randomness that offline training cannot fully predict. I.e.,
in a manufacturing domain, tool wear out can alter a sys-
tem’s dynamics, introducing aleatoric uncertainty. Though
our GCM-DQN approach attempts to accommodate stochas-
ticity in its state transition models, systematic latent factor
shifts over time will lead to mis-predictions of future tran-
sitions as the underlying transition dynamics changed. This
limitation, however, is not unique to our approach but shared
by all offline learning methods. Mitigating it could involve a
periodic re-training with ”fresh” data or designing the model
to model these factors explicitly or in latent variables.

Evaluation Fairness of Offline Baselines Finally, we dis-
cuss the evaluation fairness of the employed baselines. The
employed baselines P-DDPG (Hausknecht and Stone 2016)

https://anonymous.4open.science/r/gcmdqn-7CA6

and P-DQN (Xiong et al. 2018) were originally designed
for online Reinforcement learning, where extensive inter-
actions with the environment shapes the policy and DQNs.
Conversely, we evaluated them in an offline, model-based
setting. However, to ensure a fair evaluation with our GCM-
DQN algorithm, we adapted both baselines to the offline
setup, by incorporating the same techniques that we used
in GCM-DQN to improve the training performance of the
models. Namely, we used the same state transition models,
Conservative Q-Learning, Hindsight Experience Replay, and
Conservative Action sampling, creating a common and fair
ground for evaluation.

	Introduction
	Related Work
	Formalization
	Parametrized Action Markov Decision Processes
	Describing Planning Problems with PAMDPs

	Solution
	Planning with Goal-Conditioned Model-augmented Deep Q-Networks
	Goal-Conditioned DQN for Parametrized Action Spaces
	Gradient-based Parameter Estimation
	Learning State Transition Dynamics

	Evaluation
	Evaluating GCM-DQN's Performance
	Evaluating GCM-DQN's Performance with Succeedingly Scarce Data

	Discussion
	Conclusion & Outlook
	Experimental Setup
	Full Results
	Ablation Studies
	Ablation Study Goal-Conditioning
	Ablation Study paramOpt
	Ablation Study Conservative Q-Learning
	Ablation Study Hindsight Experience Replay and Conservative Action Sampling
	Ablation Study State Transition Models

	Network Architectures
	Additional Discussion

