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Abstract

Solve the issue of flocking based on multi-agent reinforce-
ment learning for UAVs in complex, obstacle-ridden, and
dynamic environments, where, much more importantly, the
task of maintaining the cohesion of the formation under con-
strained perception and the challenge of collision avoidance
are of concern. We present Recurrent Multi-Actor Attention
Critic with Curriculum Learning (R-MAAC-CL), a Multi-
Agent Reinforcement Learning (MARL) algorithm. Assessed
in four test cases- sparse obstacles (Simple), dense clustered
obstacles (Dense), moving hazards (Dynamic), and limited
sensing (Partial)-R-MAAC-CL outperformed Benchmark al-
gorithms on average reward, collision-rate, and flocking co-
hesion, without any significant drop in goal-success that in-
dicates the safer and more coherent UAV swarm control in
challenging situations.

Introduction

Uncrewed Aerial Vehicle (UAV) swarms are no longer just
a pipedream but have moved into practice, and they can
transform the sphere of environmental monitoring, preci-
sion agriculture, disaster response and logistics. The swarms
make use of collective intelligence to carry out tasks be-
yond what individual UAVs can perform, like mass surveil-
lance, joint payload delivery, and dynamic coverage. Never-
theless, dense UAVs flocking into the complex airspace will
present significant issues in collision avoidance and swarm
coordination. Since UAM is growing and expected market
size is more than 15 billion Euros by 2050 (1), the threat of
cross-agent collisions and obstacle collisions increases, re-
quiring well-informed, effective real-time decision-making
systems. Conventional control solutions, e.g., remote pilot-
ing and waypoint navigation based on GPS, are not adequate
to solve the dynamism of the real world that may involve un-
predictable obstructions and latency in communications, as
well as emergent swarm behaviour. Therefore, multi-agent
coordination, machine learning, and bio-inspired optimisa-
tion have become advanced autonomy frameworks that have
become a vital solution that introduces safety, efficiency, and
scalability in UAV flocking (2).

Managing swarms of unmanned aerial vehicles (UAVs)
or Flocking, is a key issue in multi-agent robotics that
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can be used in search-and-rescue, surveillance and gen-
eral environmental monitoring (3). Flocking implies that ev-
ery UAV cooperates and stays in formation, evading colli-
sions with dynamic and stationary moving obstacles as well
as ensuring its or their accomplishment of given mission
objectives with incomplete observability and communica-
tion (4). Classical-based control methods do not scale very
well within dense-cluttered or very dynamic environments,
which is the motivation behind embracing deep multi-agent
reinforcement learning (MARL) approaches (5). Current
MARL algorithms like MADDPG (6) and R-MADDPG (7),
and MAAC (8) discuss to some extent the concepts of coor-
dination, memory and credit assignment, although no meth-
ods have thus far leveraged the benefits of temporal re-
currence, attention-based value estimation, and curriculum
learning in conjunction with each other. In order to capture
both agent- and group-level interactions, (9) introduces a hi-
erarchical attention mechanism over recurrent policies. In
comparison, we represent a unique integration R-MAAC-
CL based on LSTM-based actors, a continuous in-scenario
curriculum learning schedule, and MAAC’s single-level at-
tention critic, representing a unique integration.

Methodology

We train every UAV with a recurrent policy network to re-
call past observations and become confident even in situa-
tions where the view is limited (7). The multi-head attention
helps the single and centralised critic determine which other
agents and obstacles are of less or greater importance in es-
timating future rewards (8). In training, we gradually add
complexity to 500 episodic tasks either by introducing new
obstacles or by reducing individual drones’ sensing ranges-
this curriculum is used to first inculcate the swarm in easy
coordination before having to solve challenging tasks (9). At
each time step, each agent updates its LSTM state, selects an
action with some exploration noise, and adds the experience
to a replay buffer. After seeing sufficient data, we update
the critic to reduce the prediction error and the actors using
policy gradients, backpropagating through the LSTM, and
updating target networks softly to stay stable.

We test on four prototypical flocking tasks: 10 fixed ob-
stacles, complete sensing, simple. Dense: 30 cluttered ob-
stacles, full sensing. Dynamic: 10 stagnant obstacles with
moving obstacles, complete sensing. Partial: 10 immobile



Algorithm 1: R-MAAC-CL Algorithm

1: Initialize actor, critic, target networks, and replay buffer
2: for each episode do
3:  Adjust environment difficulty via curriculum; reset

env and LSTM states
4:  for each step do
5: Observe: each agent collects its local state and

neighbor/leader info
6 Encode: update each agent’s LSTM
7: Act: sample continuous actions
8: Execute all agents’ actions
9 Reward: compute per-agent rewards
0 Store (obs, action, reward, next_obs, done) in re-

play buffer
11: if buffer size > batch size then
12: Update attention critic
13: Update recurrent actors
14: Soft-update target networks
15: end if
16: if done then

break

17: end if
18:  end for
19: end for

20: return learned parameters

barriers, with a field of sensors of 50 m.

Algorithms. As depicted in Algorithm 1, training contin-
ues in episodes where we modify the environment’s com-
plexity according to the curriculum and reset the simulation
and each agent’s LSTM state. At every time step, agents
update their hidden states, sample actions, execute them in
the environment, and record the ensuing transitions. Once
enough data has accumulated in the replay buffer, we per-
form a joint update: the centralised attention critic is trained
to minimise temporal-difference error, the recurrent actor
networks are updated via backpropagation through time, and
the target networks are softly updated to stabilise learning.

Results and Discussion

We benchmark R-MAAC-CL against state-of-the-art multi-
agent methods: MADDPG (6), R-MADDPG (7), MAAC
(8), and HAMA (10). All algorithms are assessed on four
UAV flocking scenarios—Simple, Dense, Dynamic, and
Partial—differing in obstacle density, danger motion, and
sensor range 1.

Figure 1 compares benchmark algorithms(MADDPG, R-
MADDPG, MAAC, HAMA and R-MAAC) with the R-
MAAC-CL Algorithm across three key performance met-
rics: average reward, average collisions, and average flock-
ing rate. R-MAAC-CL consistently achieves the highest re-
ward (least negative), the fewest collisions, and the strongest
flocking cohesion. Across every circumstance, R-MAAC-
CL delivers the most beneficial trade-off between perfor-
mance and safety. In the Simple scenario, it attains the great-
est average reward and minimises collisions by over 70%

Model Avg Reward Avg Collisions  Avg Flocking

R-MAAC-CL -325.12 244.12 60.05
MAAC -341.45 276.70 60.29
R-MADDPG -450.77 428.94 39.12
MADDPG -542.81 629.07 41.66
R-MAAC -584.27 703.13 48.88
HAMA -968.94 1377.51 44.78

Table 1: Comparison of average reward, collisions, and
flocking across MARL models .
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Figure 1: Comparison of algorithms—MADDPG, R-
MADDPG, MAAC, HAMA ,RMAAC and R-MAAC-
CL—across three key metrics: (a) average reward , (b) aver-
age collisions per episode, and (c) average flocking rate .

compared to MADDPG. Under Dense barriers, it maintains
a 73% flocking rate(20% greater than MAAC) and low-
ers collisions by 31% over the next best solution. Even
with shifting dangers (Dynamic), the recurring, curriculum-
trained policy balances cohesiveness and safety better than
HAMA or R-MADDPG. Finally, in partial observability, R-
MAAC-CL achieves near-optimal reward and success rate,
while halving collisions relative to non-attention baselines.
These findings demonstrate that combining recurrence, at-
tention, and curricular learning generates safer and more co-
herent UAV flocking policies.

Conclusion

These findings demonstrate that multi-UAV flocking poli-
cies become much safer and more coherent when integrated
with LSTM-based recurrence, a centralised attention critic,
and in-scenario curriculum learning.
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