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Abstract

Learned per-domain generalizing policies are gaining pop-
ularity in classical planning, as they can solve arbitrary in-
stances of a specific domain. They are typically trained using
supervised learning (SL), where we learn to generalize be-
yond a training set, or reinforcement learning (RL), where
we learn from scratch through trial-and-error. We argue that
SL and RL should not be seen as contrasting approaches, and
propose a training framework where a policy is first trained
offline using SL, and then finetuned online using RL. The
key method enabling this framework is offline RL. Prelimi-
nary experiments show that offline RL can indeed learn per-
domain generalizing policies effectively.

1 Introduction
Learning approaches to per-domain generalization for clas-
sical planning are gaining increasing popularity in the auto-
mated planning community, as they enable training models
that can solve arbitrary instances of a specific domain (Chen
et al. 2024). Recent approaches used supervised learning
(SL) to train policies that imitate optimal planners on small
instances, such that they can generalize to larger instances at
test time (Ståhlberg, Bonet, and Geffner 2022a, 2025). De-
spite their success, supervised learning approaches are fun-
damentally limited in the planning setting: (i) Optimal plan-
ning has a high computational cost, which limits the amount
of available training data. It is also unclear whether optimal
plans provide prediction targets well-suited for learning, as
computing optimal policies is NP-hard for many classical
planning domains (Ståhlberg, Bonet, and Geffner 2022b).
(ii) Learned policies lack robustness as they are only trained
on optimal trajectories, meaning that, at test time, their per-
formance breaks down when deviating from optimal tra-
jectories. This problem is exacerbated by the distributional
shift between small training and large test instances, mean-
ing policies need to make predictions for out-of-distribution
states.

Some approaches increase robustness by periodically ex-
ecuting the policy and feeding the results back into the SL
loop (Toyer et al. 2020; Rossetti et al. 2024; Gros et al.
2025). Nonetheless, the generalization of policies is always
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limited by the information in their training sets, as the distri-
butional shift between training and test instances inevitably
becomes too large when scaling the size of the latter1.

Alternatively, per-domain generalizing policies can be
trained using reinforcement learning (RL), which addresses
limitations (i) & (ii) as the policies learn from various trajec-
tories through trial-and-error without supervision. RL also
allows us to continue the training as needed, removing the
amount of training data as a limiting factor of generaliza-
tion. However, existing RL approaches to policy learning
customize the training loop with planning-specific compo-
nents, such as Greedy Best First Search, as standard RL is
inherently unstable and computationally inefficient (Rivlin,
Hazan, and Karpas 2020; Ståhlberg, Bonet, and Geffner
2022b, 2023).

We argue that SL and RL should not be seen as contrasting
approaches for per-domain generalization. To achieve the
best of both worlds, we propose a training framework, where
policies are first trained offline using suboptimal plans, and
then finetuned online on automatically generated instances.
This way we can efficiently pre-train policies without expen-
sive data set generation, and then improve their performance
as needed without learning from scratch.

Offline reinforcement learning (RL) methods are the key
to enabling the offline-online training framework, as they
adapt online RL methods to also learn policies from a fixed
set of teacher trajectories (Prudencio, Maximo, and Colom-
bini 2023). A central feature of offline RL methods is that
they regularize learned policies, such that, at test time, they
make conservative predictions for actions not seen during
offline training, leading to robust performance during fine-
tuning (Kumar et al. 2020). Further, offline RL methods
can learn to improve over suboptimal teacher trajectories by
combining the optimal parts of suboptimal trajectories, so-
called stitching (Fu et al. 2020).

In Section 2, we will first give the necessary background
on per-domain generalizing policies, SL, and RL. Then, we
introduce our offline-online training framework and present
a suitable offline RL algorithm in Section 3. Lastly, we
present preliminary results for using offline RL in Section 4,
and conclude by giving an outlook on the next steps of this
work in Section 5.

1Except for very simple planning domains.



2 Background
We now introduce classical planning, per-domain generaliz-
ing policies and their two predominant learning approaches.

Classical Planning
A classical planning problem P can be represented as a pair
P = ⟨D, I⟩, consisting of a domain D and an instance
I (Ghallab, Nau, and Traverso 2004). Intuitively, the domain
D describes the class of problems, whereas an instance I
describes a specific problem. The domain D defines a set of
predicate symbols p, and a set of action schemas describing
the arguments, preconditions, effects, and costs of actions.
The instance I defines a set of objects o ∈ O, the initial
state Init, and a set of goal conditions Goal, where Init and
Goal are sets of ground atoms p(o0, . . . , on). Together, D
and I encode a state model S(P ) = ⟨S, s0,SG, Act, A, f⟩,
consisting of a set of states s ∈ S , the initial state s0, the
set of goal states SG, the set of ground actions Act, the sets
of applicable actions for each state A(s), and the transition
function f : S ×Act → S.

A plan is an action sequence a⃗ = ⟨a0, . . . , aT−1⟩ that
transitions from the initial state s0 to any goal state sT ∈ SG.
The cost of a plan a⃗ is defined as the sum over the costs of
its actions

cost(⃗a) =

T−1∑
k=0

cost(ak).

A plan a⃗∗ is optimal if it has the lowest possible cost.

Per-Domain Generalizing Policies
A policy π : S → Act is a function returning action deci-
sions for given states, and π∗ is optimal if for every state s it
returns an action a that starts an optimal plan a⃗∗ from s. We
say π is a per-domain generalizing policy, if it can be ap-
plied to states from any instance I of a fixed domain D. As
computing an optimal per-domain generalizing policy is NP-
hard for many classical planning domains (Ståhlberg, Bonet,
and Geffner 2022b), recent work has focused on learning
near-optimal policies using machine learning methods, such
as graph neural networks (GNNs) (Ståhlberg, Bonet, and
Geffner 2022a). These methods typically train a policy π
on a set of training instances, such that at test time, it can
also solve instances not seen during training. In particular,
π should be able to solve instances that are larger, i.e., have
more objects, than the training instances, because the size
of an instance typically correlates with the length of its op-
timal plans, and thus how difficult it is to solve. The two
predominant approaches for learning per-domain generaliz-
ing policies are supervised learning (SL) and reinforcement
learning (RL).

Supervised Learning
When using SL, we train a policy π to imitate an optimal
planner on a set of training instances, such that at test time,
it generalizes beyond its training data.

In SL, we are given a training data set of pairs (xi, yi),
where xi is an example from the input space X and yi is the
corresponding label from the output space Y (Goodfellow

et al. 2016). Our goal is to learn a predictor g : X → Y
that fits the training data well according to a loss function
L : Y × Y → R+

0 .
A simple approach for learning policies using SL is to

model a regression task with a data set consisting of pairs
(st, cost(⃗a

∗)), where a⃗∗ is an optimal plan starting from
st (Ståhlberg, Bonet, and Geffner 2022a). We can then train
a predictor V : S → R, called a value function, that given
a state st predicts the cost of an optimal plan cost(⃗a∗). This
allows us to compute a policy π as

π(st) = argmin
a

cost(a) + V (st+1).

To train V , a natural choice of loss function is the mean
squared error (MSE) loss

LMSE(θ) = [V (st)− cost(⃗a∗)]
2
.

We note that alternative SL approaches exist in the literature,
such as learning to rank successors (Chrestien et al. 2023).

Reinforcement Learning
When using RL, we train a policy π without any supervision
through trial-and-error learning. We only provide rewards
indicating how well π solves instances.

RL problems are modeled as Markov decision processes
(MDPs) M = ⟨S,A, T , µ⟩, which consist of a set of states
s ∈ S, a set of actions a ∈ A, a transition probability func-
tion T : S × A → D(S), and an initial state distribution
µ ∈ D(S) (Sutton, Barto et al. 1998). Additionally, we de-
fine a reward function r : S × A → R that assigns a value
to every state-action pair. The objective of RL is to learn an
optimal policy

π∗ = argmax
π

E

[
T∑

t=0

γt · r(st, at)

]
∀s0 ∼ µ,

which maximizes the expected discounted sum of rewards,
called the return G0, for all initial states s0. An optimal Q-
value function Q∗ : S × A → R computes the expected
return Gt when taking action at in state st and then follow-
ing π∗ from the state st+1 onward, i.e.,

Q∗(st, at) = r(st, at) + γ · E

[
T∑

k=t+1

γk−t+1 · r(sk, ak)

]
.

Given a, possibly suboptimal, Q-value function Q we can
compute a policy π as

π(st) = argmax
a

Q(st, a).

In the classical planning setting, we define an MDP M for
every instance I of a domain D according to the state model
S(P ). Further, we define the reward function as r(s, a) =
−cost(a), such that, without discounting, i.e, γ = 1.0, max-
imizing the return corresponds to minimizing plan cost (Fer-
ber, Helmert, and Hoffmann 2020). Hence, we will omit γ
in examples specific to planning.

Deep Q-Network (DQN) is one of the standard learning
algorithms in the RL literature (Mnih et al. 2013). Given



a collected experience (st, at, rt, st+1), DQN computes the
loss

LTD(θ) =
[
r(st, at) + γ ·max

a′
Qθ′(st+1, a

′)−Qθ(st, at)
]2

,

where the term r(st, at) + γ ·maxa′ Qθ′(st+1, a
′) is called

the temporal difference (TD) target. The so-called target net-
work Qθ′ copies the parameters of Qθ at a frequency smaller
than Qθ’s update frequency to increase training stability.
LTD is well suited for online learning, as we can compute
a loss for every collected experience, enabling frequent pol-
icy updates.

3 Offline Reinforcement Learning for
Per-Domain Generalizing Policies

(a) Trajectory τr induced by plan a⃗r .

(b) Trajectory τb induced by plan a⃗b.

(c) Trajectory τp induced by plan a⃗p.

(d) Q-values learned using LTD
off. (brown) and LIQL

(green). Black values are the same for both. Trajectories
τbr and τg are induced by the corresponding policies.

Figure 1: Examples for the simplified Transport domain.

In this section, we introduce a training framework that
combines SL and RL. We then derive an offline RL algo-
rithm that allows us to use SL and RL with a single loss
function.

Offline Training and Online Finetuning
SL is an offline approach where the training data is provided
beforehand, whereas RL is an online approach where the
training data is collected on the fly. As such, SL seems more
appealing for learning per-domain generalizing policies, as
we can learn from existing optimal planners, whereas the
trial-and-error learning of RL is known to be inefficient and

unstable (Ladosz et al. 2022). On the other hand, RL allows
us to use any instance for training, whereas in SL, our train-
ing data is limited to instances solvable by optimal planners.

To combine the best of both worlds, we propose a two-
stage training framework that first trains a policy offline, and
then finetunes it online:

1. Offline Training: We train a policy using SL on a data set
of suboptimal plans, reducing the cost of data set genera-
tion. The data set also contains multiple suboptimal plans
for each instance, increasing the robustness of policies.

2. Online Finetuning: We finetune the pre-trained policy
using RL on automatically generated instances. Hence,
learning is more efficient and stable because the policy is
not trained from scratch. The instances can be generated
as needed, e.g., we can gradually increase their size.

This offline-online training framework allows us to leverage
planners to efficiently train policies without being limited by
a fixed data set. However, the key challenge lies in transition-
ing from offline training to online finetuning, as we change
from an SL to an RL loss function, which can cause catas-
trophic policy updates due to changing the optimization ob-
jective (Nair et al. 2020). In the following section, we intro-
duce offline reinforcement learning (RL) which allows us to
train offline and finetune online using a single loss function.

Offline Reinforcement Learning.
The goal of offline RL is to learn a policy π from a fixed set
of trajectories

τ = ⟨(s0, a0, r0, s1), . . . , (sT−1, aT−1, rT−1, sT )⟩,

induced by an unknown teacher policy. A simple approach is
to learn π by applying DQN to the trajectories τ . This means
we can convert DQN to an offline algorithm by changing the
source of training experiences from collecting on the fly, to a
set of teacher trajectories. Crucially, this also means that we
can finetune a policy trained using offline DQN by changing
the data source again to collecting on the fly.

A challenge to using DQN offline is that, in its loss LTD,
the TD target maxa′ Qθ′(st+1, a

′) computes the maximum
estimate over all applicable actions in the successor state.
This includes actions never observed in the training data,
which can cause Qθ to drastically overestimate their state-
action values, leading to poor online performance (Kumar
et al. 2020). We can avoid this by instead computing the loss

LTD
off.(θ) = [r(st, at) + γ ·Qθ′(st+1, at+1)−Qθ(st, at)]

2
.

However, LTD
off. should only be used if the training trajectories

τ are optimal. Otherwise, we can observe multiple different
sample returns Gt for the same state-action pairs (st, at),
and thus LTD

off. is minimized when Qθ approximates their av-
erage return instead of the maximum. This can cause the
resulting policy π to perform worse than the training trajec-
tories.

Consider the example in Figure 1, which shows an in-
stance of the simplified Transport domain. The truck is lo-
cated at city A and has loaded a package p which needs to
be delivered to city H . We abbreviate states by the truck’s
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Figure 2: Average coverage over size for policies trained using LMSE, LTD
off., or LIQL. Vertical lines represent the data set sizes.

position, e.g, the initial state is at(A). There are only drive
and drop actions with cost 1. The colored arrows in Fig-
ures 1a,b,c represent three training trajectories τr, τb, and
τp induced by the suboptimal plans a⃗r, a⃗b, a⃗p, respectively.
Each arrow is annotated with the return Gt that was earned
from time step t onward. Figure 1d shows Q-values for each
drive action according to two Q-values functions, where the
colored arrows represent their induced policies.

At the state at(E), the optimal action is drive(E,G).
Only a⃗b and a⃗r select this action, whereas a⃗p selects the
suboptimal action drive(E,D). However, after selecting
drive(E,G), only a⃗b executes the optimal action sequence
⟨drive(G,H), drop(p,H)⟩. Hence, for the state-action pair
(at(E), drive(E,G)), τb yields a return of −3, whereas τr
yields return of −6. Now, a Q-value function Qθ that mini-
mizes LTD

off. (brown & black values) would predict the aver-
age return Q(at(E), drive(E,G)) = −4.5. Subsequently,
we see in Figure 1d that the induced policy πbr takes the sub-
optimal action drive(E,D) at the state at(E), although a
better action was observed during training. We could prevent
this averaging over the returns for (at(E), drive(E,G)) by
removing the training trajectory τr, but then, at the initial
state, we would not observe the optimal action drive(A,C).

In summary, we want to learn a Q-value function
Qθ from suboptimal trajectories, while ensuring that Qθ

approximates the maximum returns. Implicit Q-learning
(IQL) (Kostrikov, Nair, and Levine 2021) achieves this by
defining the loss function

LIQL(θ) = Lτ
2 [r(st, at) + γ ·Qθ′(st+1, at+1)−Qθ(st, at)] ,

where Lτ
2(u) = |τ − 1(u < 0)| · u2. For τ > 0.5, underap-

proximations of TD targets are penalized more than overap-
proximations, and thus for τ ≈ 1.0, LIQL enforces approxi-
mating the maximum over TD targets. In practice, common
values for τ are between 0.7 and 0.9.

Consider the example in Figure 1d again. The green &
black values are the Q-values learned using LIQL. We see
that Qθ predicts Qθ(at(E), drive(E,G)) = −3, meaning
that at the state at(E), the induced policy πg takes the opti-
mal action drive(E,G). Starting from the initial state, fol-
lowing πg yields an optimal trajectory τg with a return of
−5. Note that this was not achieved by the training tra-
jectories. Hence, by approximating the maximum over ob-
served returns, Qθ learned to combine the suboptimal tra-
jectories τr and τb into a single optimal trajectory τg . This

phenomenon is called stitching (Fu et al. 2020). We hypoth-
esize that stitching can also occur in classical planning for
trajectories from different instances. This is because neural
network-based Q-value functions generalize over their train-
ing data, meaning states that are from different instances but
share similar characteristics, will be mapped to the same in-
ternal representation.

4 Preliminary Experiments
We train policies using the GNN approach of Ståhlberg,
Bonet, and Geffner (2022a) on the Satellite and Logistics
domains of the IPC’23 (Taitler et al. 2024) using the LMSE,
LTD

off., and LIQL losses. The training is repeated using two data
sets that share the same instances but contain either optimal
or suboptimal plans computed using Fast-Downward’s seq-
opt-merge configuration (Helmert 2006) or LAMA (Richter
and Westphal 2010). For each configuration, the policy with
the best validation loss is evaluated using Gros et al.’s scal-
ing behavior evaluation (2025).

Looking at Figure 2, we see that all loss functions yield
policies with similar performance when training on optimal
plans. On Satellite, we see that all policies trained on LAMA
plans achieve similar performance, which is better than their
counterparts trained on optimal plans. This unexpected re-
sult suggests that there may be a benefit to learning from
suboptimal plans in general. On Logistics, we see that poli-
cies trained using the LMSE or LTD

off. loss perform worse when
training on LAMA plans, whereas LIQL yields a policy that
scales four sizes larger. This suggests IQL can indeed lever-
age the information in suboptimal plans through stitching.

5 Conclusion
We proposed a training framework for per-domain gener-
alizing policies where a policy is first trained offline using
suboptimal plans, and then finetuned online using automat-
ically generated instances. This combines the efficiency of
SL with the flexibility of RL. Offline RL is the key method
for leveraging suboptimal plans during offline training, and
subsequently transitioning to online finetuning. Our prelimi-
nary results suggest that well performing policies can indeed
be learned from suboptimal plans. Next, we want to test on-
line finetuning, while also considering alternative offline RL
methods. We also want to construct data sets specifically for
testing the stitching capabilities of policies.
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