Quantum Circuit Synthesis with Deep Reinforcement Learning and Heuristic
Search

Ian Turner', Forest Agostinelli'>, Peng Fu?

' AT Institute, University of South Carolina, Columbia, South Carolina, USA
’Department of Computer Science and Engineering, University of South Carolina, Columbia, South Carolina, USA

Abstract

Quantum circuit synthesis is the process of implementing
a quantum algorithm with a given discrete gate set. In this
paper, we first show how this problem can be posed as a
pathfinding problem. Next, we use DeepCubeA to learn a
heuristic function for quantum circuit synthesis for one to
three qubit circuits with deep reinforcement learning and
solve problem instances with batch weighed A* search. We
compare our approach against several other state-of-the-art
quantum circuit synthesis algorithms and show that are our
approach is competitive.

Introduction

0 = oo
17‘T4£ _T i _T_TT#ei
2 .

HE-

Figure 1: Implementation of the Toffoli operator in the Clif-
ford+T gate set

The realization of quantum algorithms on real-world
quantum computers is accomplished through quantum com-
piling (Maronese et al. 2022), also known as quantum circuit
synthesis. Given a quantum algorithm, quantum compiling
finds a quantum circuit that implements that algorithm. A
quantum algorithm can be represented as a matrix of size
2™ x 2™, with n being the number of qubits. A quantum cir-
cuit (see Figure 1) is a sequence of quantum gates that per-
form operations on one or more qubits, where a qubit is an ir-
reducible unit of quantum information. Given a quantum cir-
cuit, the matrix that represents the algorithm it implements
is obtained by starting with the identity matrix and changing
its entries according to matrix multiplications determined by
the gates used in the circuit. As a result, quantum compiling
can be posed as a pathfinding problem, where the start state
is the identity matrix, the goal is a given quantum algorithm,
the transitions are quantum gates, and the transition costs
are determined by a combination of quantum gate execution
time and the noise the gate introduces.

Copyright © 2025, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Finding quantum circuits that implement a given algo-
rithm is a non-trivial task that can sometimes take state-
of-the-art methods several hours, even for single qubit op-
erators (Paradis et al. 2024). Given that we can pose this
as a pathfinding problem, we build on the DeepCubeA al-
gorithm (Agostinelli et al. 2019) and hindsight experience
replay (HER) (Andrychowicz et al. 2017) to use deep rein-
forcement learning to learn a heuristic function that maps a
given quantum circuit and goal quantum algorithm to an es-
timate of the cost of a shortest path (i.e. “cost-to-go”) from
the given quantum circuit to a quantum circuit that imple-
ments the given goal quantum algorithm. Previous work that
built on DeepCubeA to perform quantum compiling used the
reversibility of quantum gates to set the starting state to be
the quantum algorithm and the goal to be the identity ma-
trix (Zhang et al. 2020; Bao and Hartnett 2024; Chen et al.
2024). Our work distinguishes itself from this previous work
since the starting state is the identity matrix and the goal is
given as the quantum algorithm. This distinction then allows
our approach to be modified for the specification of goals as
a set of goal states through partial specification of goal ma-
trix entries or through abstraction using formal logic. This
may be necessary if certain properties of the algorithm (i.e.
entries in the matrix) are known while other parts are not
known or not relevant. These modifications that allow for
this are already present in existing literature (Agostinelli,
Panta, and Khandelwal 2024; Agostinelli 2025) and can be
applied to the work presented in the paper.

Background
Quantum Computing

Qubits & Unitary Operators A qubit is the fundamental
unit of information in quantum computing. We can represent
any system of 7 qubits as a unit vector |¢)) € C2". The 0 and
1 states for a single qubit can be represented as

o= m=]i] n

and a general one-qubit quantum state can be represented by
a)0)+B|1), where o, 3 € C and |a|?+]|3|* = 1. Itis impor-
tant to note that if two quantum state vectors differ only by
a complex phase (meaning |1)) = €?|¢) for two state vec-
tors |¢) and |¢)), then the two states cannot be distinguished

in any way by measurement. For this reason, it is common
to disregard global phases in calculations or modify them as
needed, and these states are considered equivalent (Nielsen
and Chuang 2010).

Quantum gates transform quantum state vectors into new
state vectors. Disregarding measurement operations, a quan-
tum gate can be represented by a unitary matrix U €
C2"*2" | A matrix U is unitary if UTU = UUT = I, where
U is the conjugate transpose of U. As a consequence of the
global phase invariance property of quantum state vectors,
two gates whose unitaries differ only by a global phase can
be considered to be equivalent.

There are many methods of calculating the ‘distance’
between two unitary operators. In this paper we use the
Hilbert-Schmidt distance function

AU, V) = \/ I Caele @)

This method has the advantage that if two unitaries A and B
differ by only a global phase, then d(A, B) = 0.

Clifford+T Gate Set Any unitary can be approximated
within an arbitrary tolerance € by a finite gate set if that gate
set is universal (Nielsen and Chuang 2010). The most com-
monly studied gate set is the Clifford+T set, as it is likely
to be the instruction set of near-term fault-tolerant quantum
computers. It is a union of the Clifford gate set and the T'
gate. The Clifford set can be generated (via matrix multipli-
cation and tensor product) by the three Pauli matrices

0 1 0 —i 10
Sl A G RS (AT

in combination with the Hadamard and S' gates, denoted

1]1 1 10
el Aleebl e
Note that this is not the only generating gate set for the Clif-

ford operators. Since the Clifford gate set is not universal,
we must add the T" gate

1

This is a discrete gate set, in contrast to gates like the R, ()
gate (where 6 is in the set of real numbers), which has the
form

—i0/2 0
e
R.(0) = [0 ei0/2:| (©6)
These gates are extremely common in quantum algorithms,
so finding efficient Clifford+T decompositions of these gates
is crucial for scaling quantum algorithms to larger machines.

Unitary Synthesis Given that discrete gate sets such as
Clifford+T are likely to be the basis for near-term fault-
tolerant quantum computing, methods that can synthesize
arbitrary unitaries from these discrete gate sets are needed.
The problem of unitary synthesis is this: given a unitary
specification U, find a sequence of gates {g1, ..., gn} cho-
sen from a discrete gate set that implements a unitary V' =

gn X ... X g1 such that d(V,U) < ¢, where € is the ‘tol-
erance’ value of the compilation. When € > 0, we classify
the problem as approximate synthesis, and when € = 0, we
classify it as exact synthesis, although in reality numerical
errors will occur, so we choose some € < 1 (in this work we
chose ¢ = 107°). For small operators the synthesized cir-
cuit can then be evaluated for exact accuracy using by-hand
calculations.

Pathfinding

Pathfinding is the process of finding a sequence of actions
that forms a path between a given start state and a given
goal, where a goal is a set of states considered goal states. A
pathfinding domain is defined by a weighted directed graph,
where nodes represent states, edges represent transitions be-
tween states, and weights represent transition costs (Pohl
1970). The transitions can be thought of as resulting from
a set of actions, A, and the transition function function, 7',
returns state, s’, given state, s, and action, a, if and only if
there is an edge between state s and s’ for some action, a
(i.e. s = T(s,a)). The transition cost function, ¢, returns
the cost of taking action, a, in states, s (i.e. ¢(s, a)). Given a
domain, a pathfinding problem instance is defined by a start
state and a goal. Given a path that is a solution to a prob-
lem instance, the path cost is the sum of transition costs. In
this work, the states are matrices representing quantum al-
gorithms, transitions are the application of quantum gates,
which produce new matrices, and transition costs are 1 for
all gates. In future work, we will consider assigning a higher
transition cost to gates, such as the 7" gate, which add more
execution time or noise to the circuit.

Heuristic Search A* search (Hart, Nilsson, and Raphael
1968) is a search algorithm designed to find a path between
two nodes in a weighted directed graph. Similar to other al-
gorithms like depth-first search and Djikstra’s algorithm, A*
keeps a priority queue of nodes, ordered from least to great-
est according to the function

f(n) = g(n) + h(n) (7
where g(n) is the path cost (sum of all transition costs taken
to reach node n and h(n) is the heuristic function value of
state associated with n.

While searching each node keeps track of the path cost
and heuristic function value as well as a connection to its
parent node and the action taken to generate the state from
its parent. The A* search process is begun when a single
node with no parents representing the start state is added to
the queue, and is ended once a node associated with a goal
state is selected for expansion or there are no more nodes to
expand.

In practice, a significant speedup can be achieved with
heuristic functions represented by neural networks by batch-
ing the expansion steps together and exploiting the paral-
lelism of graphics processing units (GPUs), as well as mod-
ifying the cost function to be f(n) = Ag(n) + h(n), where
A € [0, 1] can be adjusted to place less important on the path
cost of a state and more on the heuristic value. This batched
and weighted version of A* search is referred to as batch
weighted A* search (BWAS).

DeepCubeA

DeepCubeA (Agostinelli et al. 2019) is an algorithm that
learns a domain-specific heuristic function represented as
a deep neural network (DNN) (Schmidhuber 2015; LeCun,
Bengio, and Hinton 2015) using deep reinforcement learn-
ing (Sutton and Barto 2018), which is then used with BWAS
to solve problem instances. While DeepCubeA originally as-
sumed the goal was known before training and took tran-
sitions in reverse from the goal, extensions have built on
hindsight experience replay (HER) (Andrychowicz et al.
2017) to learn heuristic functions that generalize over both
states and goals (Agostinelli, Panta, and Khandelwal 2024;
Agostinelli and Soltani 2024).

Learning the Heuristic Function The heuristic function
is learned with approximate value iteration (Puterman and
Shin 1978; Bertsekas and Tsitsiklis 1996), which iteratively
trains a model to approximate a Bellman update for a set
of problem instances. The Bellman update, in the context of
pathfinding (shown in Equation 8) uses the Bellman optimal-
ity equation as an update rule. Approximate value iteration
can be used to train a DNN, hgy, with parameters 6, with gra-
dient descent using the loss function in Equation 9, where
N is the batch size. The heuristic function used to calculate
the Bellman update in Equation 8 is hy—, where 7 is the
parameters of the target network (Mnih et al. 2015) which
are periodically updated to #. Approximate value iteration
with DNNs is referred to as deep approximate value itera-
tion (DAVI).

, 0, ifseg,
h'(s,9) = Héi,al c(s,a) + h(T(s,a),g), otherwise. ®)
1 N
L(0) = 5 D (W' (si.9:) = ho(s0,9))° (9

3

We build on hindsight experience replay (HER)
(Andrychowicz et al. 2017) to generate start state and goal
pairs without having to start from a predetermined goal and
take actions in reverse. We accomplish this by first starting
with the identity matrix and taking random actions to gener-
ate a start state. From this generated start state, we then take
random actions to generate a goal state.

Related Work

Many methods for unitary synthesis have been explored.
The programs synthetiq (Paradis et al. 2024) and trasyn
(Hao, Xu, and Tannu 2025) use random gate sampling
search guided by the unitary distance function. The program
gridsynth (Ross and Selinger 2014) uses advanced domain-
specific knowledge to analytically synthesize optimal cir-
cuits, but is limited to only one-qubit R, () gates. These
methods place higher importance on minimizing 7" count at
the expense of longer Clifford gate counts, given that T gates
are regarded as more hardware intensive.

Deep reinforcement learning and heuristic search has
been used to synthesize quantum circuits. Zhang et al.
(2020) build on DeepCubeA to learn a heuristic function for

topological quantum compilation. (Bao and Hartnett 2024)
learn a heuristic function that is then used with beam search
for Clifford gates. (Chen et al. 2024) use deep Q-learning
(Watkins and Dayan 1992; Mnih et al. 2015) and Q* search
(Agostinelli et al. 2024) to perform single and multi-qubit
synthesis. Rietsch et al. (2024) explores both policy gradient
methods and Q-learning. (Weiden et al. 2025) explores mod-
ifications to the neural networks and training processes used
in Clifford+T synthesis. While these previous approaches
assume a fixed goal of the identity matrix and use reverse
quantum gates to find a path from a specified algorithm to
the identity, we instead find a path from the identity to the
specified algorithm using the given gate set. This then al-
lows future iterations of our work to include the specifica-
tion of sets of goal states through partial goal specification
or abstraction through formal logic (Agostinelli, Panta, and
Khandelwal 2024; Agostinelli 2025), offering greater flexi-
bility to practitioners and reducing the knowledge required
to specify an algorithm.

Approach
State Representation

States are represented as unitary matrices. These matrices
are the product of the matrices of all the actions taken to get
to the state, multiplied together. We take advantage of the
fact that unitary matrices are invertible, and multiply the in-
verse of the state matrix with the goal matrix when giving it
as input to the neural network. We are allowed to do this be-
cause the problem of finding a matrix M such that M.S = G
is the same as finding a matrix M such that M = GS~!
(here S is the matrix of the current state, G is the matrix
of the goal state, and M is the matrix representing the ac-
tions needed to go from the state to the goal). This gives us
the overall transformation from state to goal, which is also a
unitary matrix.

When inputting the unitary matrices into the DNN we
utilize the generalized Euler angle parametrization of U(n)
(Diaconis and Forrester 2017), which maps a unitary ma-
trix to a vector of n? angles, called ‘Euler angles. An-
other degree of freedom can be removed by removing the
global phase, resulting in an overall function 7 : U(n) —

[0, 27)"" L. This reduces the 2n? real degrees of freedom
(resulting from the n? complex entries of the matrix) of
the unitary group into n? — 1 real degrees of freedom , re-
moving all redundancies and essentially imposing a ‘coor-
dinate system’ on the group. Other works have discussed
the use of Euler angles to represent unitary operators (Alam,
Berthusen, and Orth 2023), and pointed out that they have
some downsides when compared to the quaternion represen-
tation. However, quaternions can only be used to represent
SU(2) (the case of one-qubit unitaries up to a global phase),
and do not generalize to multiple-qubit systems.

We also use Neural Radiance Field Encoding (NeRF)
(Mildenhall et al. 2021) to represent the matrices to the
DNN, which was originally developed for image processing,
but has been shown to improve neural network performance
when dealing with unitary matrices (Weiden et al. 2025).
NeRF encoding can be described as a function v : R — R?E

that maps real numbers to a vector of 2L real numbers,
where L is an arbitrary parameter. The function is defined
as
cos(297x)
sin(2%7x)
y(z) = : (10)
cos(2L 1)
sin(2L—17x)

It ensures the input is between -1 and 1, which has been
shown to improve the performance of neural networks.

Training
We use HER to generate training examples and, addition-
ally, attempt to solve problem instances with a greedy pol-
icy using the target network and add states seen during so-
lution attempts to the training set. The heuristic function is
then trained with DAVI. After using HER to generate goal
states, we apply perturbations to each goal matrix U to gen-
erate matrices U such that d(U,U) < ¢, similar to the train-
ing process in (Weiden et al. 2025). This has been shown to
make the training process more robust to approximate syn-
thesis.

After each update, we test our value function using a
greedy policy. This policy can be defined as

m(s) = arggn(c(s,a) + ho(T'(s,a),sq)) (11)

where s, is the goal state. The greedy policy simply selects
the state which minimizes the value of the heuristic function
plus the transition cost for all possible next states. We record
the percentage of test states solved by the greedy policy af-
ter each iteration, and update our target network parameters
0~ only when this percentage has surpassed the previous
best. A graph of this percentages after each training update
is shown in figure 2 for one-qubit models with and without
Euler angle encoding, NeRF, and perturbations.

Testing & Verification

For single qubit synthesis we use parametrized Z rotation
gates, denoted R, (0) as a test dataset. We run A* search on
each of these gates and compare the resulting circuits with
those generated using trasyn. For multi-qubit synthesis we
run on a small variety of commonly-used operators, mostly
chosen from the benchmarks used for Synthetiq. We save
the circuits in the OpenQASM format (Cross et al. 2022),
and import them into Qiskit to check their closeness to the
original operators.

Experiments
Single-Qubit Approximate Synthesis

For single-qubit synthesis we trained models with and with-
out NeRF, perturbations, and Euler angle encoding. We
found the best performance when using a combination of
Euler angle encoding, perturbations, and NeRF with L =
15. Most of the performance boost was attributable to NeRF,
although Euler angle encoding and perturbations seem to
lead to more stable training and slightly better search results.

We trained models for epsilon values of 0.01 and 0.005.
We then ran A* search with a batch size of 200 and a path
weight of 0.2 and compared the results with trasyn. Both
A* search and trasyn were able to find a circuit in all cases,
however A* search often finds circuits with an lower overall
gate count, but the same 7'-count as trasyn. This is likely
because trasyn places its emphasis on optimizing 7'-count,
since 1" gates are considered to be much more hardware-
intensive to implement, however the shortest circuit is typi-
cally also a circuit that uses the minimal amount of 7" gates
required to approximate a target unitary. Overall, A* search
still finds circuits faster than trasyn in most cases, and seems
to scale better to the lower epsilon value than trasyn, which
increases in search time drastically when going from epsilon
of 0.01 to 0.005. These results are shown in table 1.

Multi-Qubit Exact Synthesis

For multi-qubit synthesis we trained models both with and
without NeRF, but did not see any distinguishable differ-
ence between the performance of the two. We also trained
models with and without Euler angle encoding, but the mod-
els with Euler angle encoding performed significantly worse
than those without it.

We found the best performance for A* search using a
batch size of 10 and a path cost of 1.0. We compared our
results to synthetiq, which uses simulated annealing to syn-
thesize circuits, where the energy function is the Hilbert-
Schmidt distance function. We ran synthetiq on 48 cores,
generating 100 circuits for every operator and picking the
best one. The results for synthesis of several commonly-used
operators are in Table 2. The results show that our approach
performs comparable to that of synthetiq on all metrics.
For a specific operator, CC'H, our approach finds a solution
186x faster and with fewer gates while for CC X, synthetiq
finds a solution 10x faster and with fewer gates.

Discussion and Future Work

This work only considers unitary operations, but some quan-
tum computers now support dynamic circuits, which in-
volve measurements during the circuit and further opera-
tions conditioned on the measurement outcomes. Previous
work has shown that repeat-until-success circuits can be
used to create more optimal fault-tolerant gates (Bocharov,
Roetteler, and Svore 2015). ‘Magic’ state distillation (Bravyi
and Kitaev 2005) has also been explored as a potential
way of implementing non-Clifford gates fault-tolerantly.
The measurement-based quantum computing paradigm even
offers an alternative to the unitary quantum circuit model,
where the same ‘resource state’ is prepared every time,
and computation is carried out exclusively by measurements
(Briegel et al. 2009). Future work could involve expanding
the search space to include those more exotic circuits.

Our approach gives the desired quantum algorithm as a
goal to the heuristic function. There may be cases where
only partial information of the properties the quantum algo-
rithm should have are known. In these cases, this could cor-
respond to not knowing all entries in the matrix that repre-
sents the algorithm. Work on generalizing over goals can be

Training results

100 1

804

60

MM

40 4

Percent of test states solved

- nh N

—— Base

Base + perturbations
—— Base + perturbations + NeRF
—— Euler + perturbations
—— Euler + perturbations + NeRF
—— Base + NeRF

20

0 50 100 150 200 250 300 350 400
Training update

Figure 2: Percent of test states solved using a greedy policy after each training update for different encoding methods both
with and without perturbations added for single-qubit approximate synthesis. Here ‘base’ indicates inputting the matrix into the
DNN without Euler angle encoding.

k € Gate Count T-Count Time

A* Trasyn | A* Trasyn A* Trasyn
4| 0.01 | 43 45 18 18 7.225 19.488
51 0.01 | 39 41 17 17 6.585 9.909
6| 0.01 | 42 43 18 18 6.883 19.636
71 001 | 38 39 15 15 6.398 2.286
4 | 0.005 | 45 45 18 18 8.628 22.599
51 0.005 | 45 49 20 20 40.326 86.470
6 | 0.005 | 45 47 19 19 6.390 45.342
7 | 0.005 | 45 47 19 19 6.784 44.147

Table 1: A* search vs. Trasyn for single-qubit approximate synthesis of R, (27/2") gates

Target Qubits Gate-count T-count Time

A* Synthetiq | A* Synthetiq A* Synthetiq
CH 2 7 7 2 2 0.741 0.342
cz 2 3 3 0 0 0.518 0.252
CR,(7/2) 2 4 4 2 2 1.369 0.542
CRy 2 5 5 3 3 2.316 0.201

CCH 3 23 25 9 9 7.650 1304.018
ccz 3 13 16 7 7 24.279 5.718
Fredkin (C-SWAP) 3 19 19 7 7 75.574 19.025
Toffoli (CCX) 3 16 15 7 7 74.052 7.490

Table 2: A* search vs. Synthetiq for multi-qubit exact synthesis

used to train a heuristic function that can be given a partially
specified algorithm by having a special indicator for entries
that are not known or through abstractions based on formal
logic (Agostinelli, Panta, and Khandelwal 2024; Agostinelli
2025).

Conclusion

Efficient unitary synthesis will be crucial to fault-tolerant
quantum computing in the near future, allowing program-
mers to translate their high-level algorithm descriptions to
low-level implementations on quantum hardware. We extend
DeepCubeA and HER to learn a domain-specific heuristic to
estimate cost-to-go from a given algorithm to a given goal al-
gorithm for the Clifford+T gate set. We then use this heuris-
tic function in combination with BWAS to find circuits that
implement the given goal algorithm. We compare the results
of BWAS with two state-of-the-art unitary synthesis pro-
grams. Future work could achieve improvements by finding
a better encoding for unitary matrices and extending the al-
gorithm to allow for synthesis of partial specifications and
dynamic circuits.

References

Agostinelli, F. 2025. A Conflict-Driven Approach for
Reaching Goals Specified with Negation as Failure. In Pro-
ceedings of the International Symposium on Combinatorial
Search, volume 18, 2—10.

Agostinelli, F.; McAleer, S.; Shmakov, A.; and Baldi, P.
2019. Solving the Rubik’s cube with deep reinforcement
learning and search. Nature Machine Intelligence, 1(8):
356-363.

Agostinelli, F.; Panta, R.; and Khandelwal, V. 2024. Spec-
ifying goals to deep neural networks with answer set pro-
gramming. In 34th International Conference on Automated
Planning and Scheduling.

Agostinelli, F.; Shperberg, S. S.; Shmakov, A.; McAleer, S.;
Fox, R.; and Baldi, P. 2024. Q* search: Heuristic search with
deep g-networks. In ICAPS Workshop on Bridging the Gap
between Al Planning and Reinforcement Learning.
Agostinelli, F.; and Soltani, M. 2024. Learning discrete
world models for heuristic search. In Reinforcement Learn-
ing Conference.

Alam, M. S.; Berthusen, N. E.; and Orth, P. P. 2023. Quan-
tum logic gate synthesis as a Markov decision process. npj
Quantum Information, 9(1): 108.

Andrychowicz, M.; Wolski, F.; Ray, A.; Schneider, J.; Fong,
R.; Welinder, P.; McGrew, B.; Tobin, J.; Pieter Abbeel, O.;
and Zaremba, W. 2017. Hindsight experience replay. Ad-
vances in neural information processing systems, 30.

Bao, N.; and Hartnett, G. S. 2024. Twisty-puzzle-inspired
approach to Clifford synthesis. Physical Review A, 109(3):
032409.

Bertsekas, D. P.; and Tsitsiklis, J. N. 1996. Neuro-dynamic
programming. Athena Scientific. ISBN 1-886529-10-8.

Bocharov, A.; Roetteler, M.; and Svore, K. M. 2015. Ef-
ficient synthesis of universal repeat-until-success quantum
circuits. Physical review letters, 114(8): 080502.

Bravyi, S.; and Kitaev, A. 2005. Universal quantum compu-
tation with ideal Clifford gates and noisy ancillas. Physical
Review A—Atomic, Molecular, and Optical Physics, 71(2):
022316.

Briegel, H. J.; Browne, D. E.; Diir, W.; Raussendorf, R.; and
Van den Nest, M. 2009. Measurement-based quantum com-
putation. Nature Physics, 5(1): 19-26.

Chen, Q.; Du, Y.; Jiao, Y.; Lu, X.; Wu, X.; and Zhao,
Q. 2024. Efficient and practical quantum compiler to-
wards multi-qubit systems with deep reinforcement learn-
ing. Quantum Science and Technology, 9(4): 045002.
Cross, A.; Javadi-Abhari, A.; Alexander, T.; De Beaudrap,
N.; Bishop, L. S.; Heidel, S.; Ryan, C. A.; Sivarajah, P;
Smolin, J.; Gambetta, J. M.; et al. 2022. OpenQASM 3:
A broader and deeper quantum assembly language. ACM
Transactions on Quantum Computing, 3(3): 1-50.
Diaconis, P.; and Forrester, P. J. 2017. Hurwitz and the ori-
gins of random matrix theory in mathematics. Random Ma-
trices: Theory and Applications, 6(01): 1730001.

Hao, T.; Xu, A.; and Tannu, S. 2025. Reducing T Gates with
Unitary Synthesis. arXiv preprint arXiv:2503.15843.

Hart, P. E.; Nilsson, N. J.; and Raphael, B. 1968. A for-
mal basis for the heuristic determination of minimum cost
paths. IEEE transactions on Systems Science and Cybernet-
ics, 4(2): 100-107.

LeCun, Y.; Bengio, Y.; and Hinton, G. 2015. Deep learning.
nature, 521(7553): 436.

Maronese, M.; Moro, L.; Rocutto, L.; and Prati, E. 2022.
Quantum compiling. In Quantum Computing Environments,
39-74. Springer.

Mildenhall, B.; Srinivasan, P. P.; Tancik, M.; Barron, J. T.;
Ramamoorthi, R.; and Ng, R. 2021. Nerf: Representing
scenes as neural radiance fields for view synthesis. Com-
munications of the ACM, 65(1): 99-106.

Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A. A.; Ve-
ness, J.; Bellemare, M. G.; Graves, A.; Riedmiller, M.; Fidje-
land, A. K.; Ostrovski, G.; et al. 2015. Human-level control
through deep reinforcement learning. Nature, 518(7540):
529-533.

Nielsen, M. A.; and Chuang, I. L. 2010. Quantum computa-
tion and quantum information. Cambridge university press.
Paradis, A.; Dekoninck, J.; Bichsel, B.; and Vechev, M.
2024. Synthetiq: Fast and Versatile Quantum Circuit Syn-
thesis. volume 8.

Pohl, I. 1970. Heuristic search viewed as path finding in a
graph. Artificial intelligence, 1(3-4): 193-204.

Puterman, M. L.; and Shin, M. C. 1978. Modified policy
iteration algorithms for discounted Markov decision prob-
lems. Management Science, 24(11): 1127-1137.

Rietsch, S.; Dubey, A. Y.; Ufrecht, C.; Periyasamy, M.;
Plinge, A.; Mutschler, C.; and Scherer, D. D. 2024. Unitary
synthesis of clifford+ t circuits with reinforcement learning.
In 2024 IEEE International Conference on Quantum Com-
puting and Engineering (QCE), volume 1, 824-835. IEEE.
Schmidhuber, J. 2015. Deep learning in neural networks:
An overview. Neural networks, 61: 85-117.

Sutton, R. S.; and Barto, A. G. 2018. Reinforcement learn-
ing: An introduction. MIT press.

Watkins, C. J.; and Dayan, P. 1992. Q-learning. Machine
learning, 8(3-4): 279-292.

Weiden, M.; Kalloor, J.; Kubiatowicz, J.; and Iancu, C.
2025. Making Neural Networks More Suitable for Ap-
proximate Clifford+ T Circuit Synthesis. arXiv preprint
arXiv:2504.15990.

Zhang, Y.-H.; Zheng, P-L.; Zhang, Y.; and Deng, D.-L.
2020. Topological quantum compiling with reinforcement
learning. Physical Review Letters, 125(17): 170501.

