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Abstract

Unmanned Aerial Vehicles (UAVs) have become increasingly
prominence in recent years, finding applications in surveil-
lance, package delivery, among many others. Despite con-
siderable efforts in developing algorithms that enable UAVs
to navigate through complex unknown environments au-
tonomously, they often require expensive hardware and sen-
sors, such as RGB-D cameras and 3D-LiDAR, leading to a
persistent trade-off between performance and cost. To this
end, we propose RELAX, a novel end-to-end autonomous
framework that is exceptionally cost-efficient, requiring only
a single 2D-LiDAR to enable UAVs operating in unknown
environments. Specifically, RELAX comprises three compo-
nents: a pre-processing map constructor; an offline mission
planner; and a reinforcement learning (RL)-based online re-
planner. Simulation experiments demonstrate that RELAX
offers more robust dynamic navigation compared to existing
algorithms, while only costing a fraction of the others. The
code will be made public upon acceptance.

Unmanned Aerial Vehicles (UAVs), commonly known
as drones, have gained immense importance and be-
come a transformative technology across many applica-
tion domains (Rovira-Sugranes et al. 2022). In addition to
more commonly-known use cases such as military navi-
gation (Patil et al. 2020), search-and-rescue (Mishra et al.
2020), and commercial package delivery (Alvarado 2021),
UAVs are also widely used in metrology (Wieczorowski
et al. 2021), agriculture (Ahirwar et al. 2019), and min-
ing (Shahmoradi et al. 2020) thanks to their compact sizes
and relatively high cost-efficiency, especially when com-
pared to the piloted aircraft.

Despite tasks from different applications pose different,
often specific challenges, one of the key challenges shared
across all domains is being able to operate autonomously.
Specifically, it covers many aspects of the UAV operations,
including environment perception, path planning and real-
time dynamic obstacle avoidance. It is especially important
when UAVs are to operate under unknown or dynamically
changing environments, where human control is unavail-
able.
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UAV autonomous navigation algorithms require on-board
sensors to understand the surrounding environments, and
optimally navigates UAV to travel from one place to an-
other (Barnhart, Marshall, and Shappee 2021). Optimal
navigation can be defined in terms of the length of the
traveled path (Noreen, Khan, and Habib 2016), traveled
time (Kularatne, Bhattacharya, and Hsieh 2016) and tra-
jectory smoothness (Xu, Song, and Cao 2021) while be-
ing collision-free (Shin and Chae 2020). Numerous efforts
have been devoted to advance this field (Jones, Djahel,
and Welsh 2023). However, existing solutions often require
UAVs to equip with expensive sensor setups, including mul-
tiple RGB-D cameras (Cheng and Chen 2021; Xu et al.
2023; Cui, Chen, and Li 2022; Kim et al. 2022) or 3D Li-
DAR (Qin et al. 2019). While these sensors can help build
real-time 3D maps for better environment representations,
they significantly increase the cost of the autonomous sys-
tem, as most RGB-D cameras are priced at a few hundreds
dollars in average (Ulrich et al. 2020), and 3D LiDAR of-
ten costs well above a thousand US dollars (Van Nam and
Gon-Woo 2021). Consequently, such high cost has become a
primary factor preventing UAVs from wider adoptions (Ag-
garwal and Kumar 2020). Therefore, new solutions enabling
UAVs to perform successful and reliable autonomous navi-
gation while using much simpler and cheaper sensor setups
are urgently needed.

Simpler sensor configuration, which changes the system
perception of the surrounding world, poses many new chal-
lenges for all system components including surrounding en-
vironment construction, path planning, dynamic obstacle
avoidance, and often calls for an entire new system de-
sign. Specifically, it introduces practical challenges in sur-
rounding detection (Ocando et al. 2017; Murcia, Monroy,
and Mora 2018) and RL training (Ding and Dong 2020).
To this end, we introduce Reinforcement Learning Enabled
2D-LiDAR Autonomous System (RELAX), an end-to-end
autonomous system presenting novel algorithms addressing
these intricacies, so that parsimonious UAVs that carry only
one 2D-LiDAR sensor can navigate autonomously in un-
known environments. Specifically, RELAX comprises three
components: a map constructor, which generates occupancy
maps using 2D-LiDAR data; a mission planner, which cre-



ates obstacle-free paths using these maps; and an online re-
planner, which addresses the dynamic obstacle avoidance.

The main contribution of this paper is that we propose
RELAX, the first UAV autonomous navigation system that
requires only a single 2D-LiDAR to support the entire UAV
autonomous navigation pipeline, which includes the ini-
tial environment mapping, offline planning and online re-
planning for dynamic obstacle avoidance. To address the
unique challenges that come with the less feature-rich sen-
sor inputs, we propose novel algorithms to enhance the ca-
pability and generalizability of our framework. Experiments
shows that RELAX achieves comparable successful rates as
more expensive UAVs navigation systems, at only a fraction
of the cost. In addition, we advocate RELAX as a successful
proof-of-concept and a platform that boosts future research
by releasing a real-time training suite in ROS-Gazebo-PX4
simulator, which supports easy adaptation of RELAX algo-
rithms into newly designed RL algorithms in the future. In
other words, the idea of modularization behind the design of
RELAX brings larger potential for further improvement of
its performance.

Related Work
Existing end-to-end UAV autonomous navigation systems
leverage sensor (e.g. RGB-D, 3D-LiDAR) inputs to per-
ceive and understand surrounding environment, then con-
duct path planning and automatic dynamic obstacle avoid-
ance (Elmokadem and Savkin 2021). Besides differences in
the algorithmic aspects, sensor configurations also funda-
mentally affect the overall design of the system architecture,
as well as the specific algorithms within each component.
In this section, we briefly discuss different UAV navigation
systems that equip with different sensor configurations.
Vision-based UAV navigation systems. Vision-based sys-
tems that employ RGB or RGB-D images to capture the en-
vironment are arguably the most prevalent configuration in
autonomous UAVs (Lu et al. 2018). More specifically, RGB
images are taken by monocular cameras, while RGB-D im-
ages refer to 3D representations of the world that is captured
by either binocular cameras or monocular camera with addi-
tional depth sensor.

Numerous efforts have been devoted to vision-based UAV
systems. For example, Engel et al. (Engel, Sturm, and Cre-
mers 2014) developed a quadrator carrying a monocular
camera that is capable of visual navigation in unstructured
environments. Although being low in cost, the proposed sys-
tem does not support obstacle avoidance, which is a ma-
jor disadvantage for many modern tasks. As a result, many
works choose to use binocular cameras (Mao et al. 2019;
Jingjing, De, and Fei 2019). However, such systems are very
prune to weather changes and are hard to operate at night,
greatly limiting their working scenarios.

Because of the aforementioned disadvantages of monoc-
ular and binocular configurations, RGB-D which involves
both RGB and infrared depth cameras quickly attracts many
attentions, resulting in various UAV applications (Bachrach
et al. 2012; Xu et al. 2023). While being effective, the use of
RGB-D cameras inevitably increases both cost and on-board

computational requirement, posing limitations and prevent-
ing designs of simple, low-cost and light-weight UAVs for
wider adoptions.
LiDAR-based UAV navigation systems. Thanks to its ro-
bust performance under various weather and lighting condi-
tions, LiDAR has quickly become the mainstream sensor in
many modern UAV navigation systems (Jeong, Hwang, and
Matson 2018; Qin et al. 2019). LiDAR sensors can be di-
vided into two categories: single-line and multi-line, where
single-line scans one plane of the obstacles to obtain a 2D
map, while multi-line scans multiple surfaces to obtain a 3D
point cloud of the environment. Based on the output types,
single- and multi-line LiDAR are also called 2D and 3D Li-
DAR.

Attracted by the richer environment representations that
3D LiDAR produces, most existing UAV autonomous sys-
tems utilize 3D LiDAR as the sensor configurations (Qin
et al. 2019; Aldao, González-de Santos, and González-Jorge
2022; Liang et al. 2023). However, despite existing work’s
favor into 3D LiDAR, the rich 3D environmental representa-
tions might not be all necessary to perform UAV path plan-
ning and robust obstacle avoidance, leaving room for bet-
ter cost-effective designs. In other words, configurations that
utilize 2D LiDAR, where we call a parsimonious configura-
tion, may achieve a more balanced trade-off between perfor-
mance and cost. For example, Gabriel et al. (Gabriel et al.
2023) leverage 2D LiDAR and propose an adaptive path-
planning solution that combines Rapidly Exploring Random
Trees (RRT) and deep RL for the autonomous trajectory
generation of UAVs in agricultural environments. However,
it does not depend on UAV-scanned data at all stages but
rather leverages a comprehensive Python environment for its
operations, failing to equip the system with efficient obsta-
cle avoidance capabilities. Contrary to this, RELAX prior-
itizes enhancing obstacle avoidance by mainly utilizing Li-
DAR data. More specifically, we employ the ROS-Gazebo-
PX4 simulator for developmental purposes, incorporating a
variety of algorithms aimed at overcoming different obsta-
cles and ensuring the training’s applicability in a real-time
simulation setting.

Methodology
RELAX is designed specifically for parsimonious UAVs,
which are drones that lack odometers, RGB-D cameras, 3D-
LiDAR, or gimbals systems, and only equip simple sensors,
such as 2D-LiDAR and inertial measurement unit (IMU).
More specifically, RELAX utilizes RPLiDAR1, a low-cost
2D laser scanner that performs 360-degree scan within a cer-
tain range to produce 2D point clouds of the surrounding.

RELAX consists of five modules, as shown in Fig. 1. Re-
sources module contains necessary sensor outputs including
point clouds captured by 2D-LiDAR, velocity and pose of
UAV obtained from IMU, and the map generated by a map
constructor. Specifically, map constructor synthesizes an
occupancy map of the environment using point clouds from
2D-LiDAR. Mission planner provides an obstacle-free path

1More details at https://www.slamtec.ai/product/slamtec-
rplidar-a1/.
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Figure 1: System overview: RELAX starts from checking whether
the occupancy grid map exists. If there is no map, it will run map
constructor to enter the map constructing mode. While we manu-
ally operate the drone to fly one complete circuit around the envi-
ronment at a specific altitude, map constructor processes the data
from 2D-LiDAR and integrates these data to create an occupancy
grid map. This map is then sent back to resources and available to
other modules. Next, mission planner subscribes this map and uses
it to plan an obstacle-free path from start to target and sends to
online re-planner for dynamic obstacle avoidance using real-time
2D-LiDAR inputs.

from the starting point to the target position based on the
occupancy map. And online re-planner navigates the drone
(illustrated as the UAV module) to move along this planned
path and perform online re-planning to avoid dynamic ob-
stacles. The “dynamic obstacles” in this paper refers to the
static obstacles that are not included in the map produced by
map constructor.

Following (Gabriel et al. 2023), we separate static path
planning from online path re-planning, with the underlying
intuition that the environment does not undergo significant
changes in a short period. And separation in the different
path planning stages significantly reduces the time cost. We
illustrate map constructor, mission planner and online re-
planner with details in the following sections.

Map Constructor
Map constructor leverages 2D-LiDAR in tandem with
Hector-SLAM (Kohlbrecher et al. 2011) to construct a grid
occupancy map of the environment.
LiDAR scanning. LiDAR scanning module generates raw
images of the surrounding environment at a particular UAV
position, as shown in the left of Fig. 2. In 2D-LiDAR system,
the scanned images adopts a structure that aligns with x-
and y-axis after a reshape operation performed on the one-
dimensional LiDAR data array. Then the image is processed
into an occupancy grid map, as shown in the right of Fig. 2,
where the level of confidence regarding obstacle existence
is represented through dark (low) to light (high). While fly-
ing through the environment, the drone constantly generates
“raw” images, contributing to the ongoing construction of
the environment.
Hector-SLAM. Map constructor employs Hector-

Figure 2: Left: environment of UAV at a particular position; Right:
“raw” 2D-LiDAR scanning image of the left environment.

SLAM (Kohlbrecher et al. 2011) to integrate all the
LiDAR-scanned “raw” images into a single map that
represents the entire environment. More specifically,
Hector-SLAM operates across three primary phases, which
are map access, scan matching and multi-resolution map
representation. In map access, the initial occupancy grid
map takes shape, driving from the first “raw” image. Next,
scan matching matches the “raw” image taken at time t to
the previous occupancy grid map from t− 1 through points
correspondence. To lower the risk of getting stuck in local
optimal solution, Hector-SLAM applies multi-resolution
map representation to simultaneously keep different maps
and update them based on pose estimations. The resulting
map in our case is shown in the left of Fig. 3.

UL

LL

UR

LR

start

target

Figure 3: Left: occupancy map constructed by Hector-SLAM.
Right: a path planning result based on the given occupancy map.

Mission Planner
Mission planner receives the occupancy map from map con-
structor, and plans an obstacle-free path from start to end. It
includes two components, which are path planner and point
transformer. The complete algorithm of mission planner is
detailedly illustrated in Algorithm 1.
Path planner. Path planner is responsible for generating
a collision-free path from start to end based on the static
occupancy map. In our case, this map refers to the out-
put of map constructor. Since the generation of such path
does not depend on characteristics unique to parsimonious
UAVs, any standard path planning algorithm should suf-
fice. For wider adaptability, lower execution time, and rela-
tively optimal path, we use Rapidly Exploring Random Tree
(RRT) (LaValle and James J. Kuffner 2001) in this paper to



Algorithm 1: Mission Planner

Input: start, target, number of iterations, grid, step size, test
range

Output: path between start and target in real environment
Initialization :

1: Nstart ← treeNode(start); Ntarget ← treeNode(end)
2: Rtree ← RRTAlgorithm(Nstart, Nend, numOfItera-

tions, grid, stepSize, testRange)
3: upperLeftPoint, upperRightPoint, lowerRightPoint,

lowerLeftPoint ← Scanned Occupancy Grid Map;
xMinG, xMaxG, yMinG, yMaxG ← Gazebo World
Environment
LOOP Process

4: for i = 0 to numOfIterations do
5: Rtree.resetNearestValues(); point ←

Rtree.sampleAPoint()
6: Nnearest ← Rtree.findNearestPoint()
7: Nnew ← Rtree.steerToPoint(Nnearest)
8: flag← check if there are obstacles between Nnew and

Nnearest

9: if not reach target then
10: Add Nnew to Rtree and check whether Nnew in the

test range of target, if yes, then break
11: end if
12: end for
13: Rtree.WayPoints← Rtree.retraceRRTPath()
14: WaypointsTransformed← Eq.1, Eq.2
15: return WaypointsTransformed

showcase the feasibility of our proposed framework. An ex-
ample path is shown in the right of Fig. 3.
Point transformer. To navigate UAV through real-life envi-
ronment, a transformation is needed to convert the path from
path planner into real-life coordinates. To begin with, we ini-
tiate a rotation of the map, as shown in the right of Fig. 3.
The rotation angle emerges from the cumulative summation
of three lines’ shifting angles (θ1, θ2, θ3 in Fig. 3 right),
where each bears a weight that minimizes potential errors.
After rotation, every intermediate point along the trajectory
undergoes calculation based on the ratio between distances
in occupancy grid map and their counterparts in real envi-
ronment. Four example points, UL, LL, UR, and LR are illus-
trated in Fig. 3, where their corresponding points in real-life
environment are the xMinG, xMaxG, yMinG and yMaxG in
Fig. 2.

Let θ denotes the weighted sum of individual-axis rotation
angles, r denotes the distance between origin and point p,
and (xpr, ypr) be the x and y of p after rotation, we have the
real-life environment coordinates (xnew

p , ynew
p ):

xnew
p = (r · cos(θ) + xpr) ·

xMaxG− xMinG√
(xur − xul)2 + (yur − yul)2

(1)

ynew
p = (r · sin(θ) + ypr) ·

yMaxG− yMinG√
(xur − xlr)2 + (yur − ylr)2

.

(2)

Online Re-planner
As the multitude of dynamic obstacle scenarios makes it
impractical to establish comprehensive avoidance rules, a
learning-based planning algorithm is designed to perform
autonomous obstacle avoidance in dynamic, unknown envi-
ronment. More specifically, we propose a novel RL-based
online re-planner combining Double Deep Q-networks
(DDQN) (Van Hasselt, Guez, and Silver 2016) and dueling
architecture (Wang et al. 2016).
Network structure. Dueling Double Deep Q-
networks (D3QN) improved upon Deep Q-networks
(DQN) (Mnih et al. 2013) and Double Deep Q-networks
(DDQN) (Van Hasselt, Guez, and Silver 2016) by incor-
porating the dueling architecture (Wang et al. 2016). More
specifically, it splits the Q-value estimations into two sepa-
rate functions, namely a value function, V (s), estimating the
reward collected from state s; and an advantage function,
A(s, a), estimating if action a is better than other actions at
state s. Both value and advantage functions are constructed
with a set of dense layers and are later combined to output
Q-value for each action, with the combination operator
shown in Eq. (3).

Q(s, a) = V (s) +

(
A(s, a)− 1

|A|
∑
a′

A(s, a′)

)
(3)

State design. We integrate the orientation vector spanning
from the current location to the target, along with real-time
LiDAR data, into our state design. Specifically, real-time
LiDAR data, which are 360-vectors representing each de-
gree, is partitioned into 8 sectors through thresholded min-
pooling, where each corresponds to a specific direction, such
as “forward-left” or “forward-right”, as shown in the left of
Fig. 4. More precisely, we have:

di = min (all dist ∈ regioni, det range) , i ∈ [0, 7] (4)

where det range denotes the threshold value and all dist
represents the distances of all points (in our case is 360

8 =
45) in regioni. Let (xc, yc, zc) and (xt, yt, zt) denote the
current and target position, we have the direction vector de-
fined as:

(xd, yd, zd) = (xt, yt, zt)− (xc, yc, zc) (5)

Finally, the current state is defined as:

state = [xd, yd, zd, dist0, dist1, . . . , dist6, dist7] (6)

One of the biggest challenges using 2D-LiDAR is that the
data may be extremely noisy due to the disturbances from
UAV maneuvers. To address this challenge, we propose a
novel data filtering mechanism, as illustrated in Algorithm 2
to enhance the accuracy of the acquired data. The core idea
for judging whether this data is noisy is that within all po-
tential actions, the greatest conceivable variation in distance
between two states should be ≤

√
2 < 1.5. The rule of

√
2

comes from our definition of action, which will be illustrated
with more details later in this section. Let xi, yi denote the
coordinate difference between step i− 1 and step i in x and
y-axis, respectively, we have

√
max |xi|+max |yi| ≤

√
2.



On the other hand, if the disparity is larger than 1.5, it is
deemed to be spurious noisy and is more carefully handled
as shown in Algorithm 2.

Algorithm 2: Real-time 2D-LiDAR Data Filtering

Input: LiDAR data from last episode (lidar data t) and this
episode (lidar data), a list used for recording function
(index list)

Output: state
1: for i = 0 to len(lidar data)-1 do
2: if lidar data t[i] - lidar data[i] ≥ 1.5 then
3: index list[i] + = 1
4: dr = floor(0.5∗det range)
5: if index list[i] ≥ dr then
6: lidar data[i] = det range −dr + 1
7: index list[i] − = (det range −dr − 1)
8: else
9: lidar data[i] = lidar data t[i] −1

10: end if
11: else
12: if index list[i] > 0 then
13: index list[i] − = 1
14: end if
15: end if
16: end for
17: state = lidar data
18: return state

The heuristic behind Algorithm 2 is that there is a very
small likelihood of continuously obtaining noisy data more
than det range/2 number of times within the same region.
Thus, we maintain a index list to record the number of
times that noisy data occurred for each region and will dy-
namically decrease for getting data without noisy. In addi-
tion, after getting noisy data, we will set the distance to
(det range/2) + 2 or subtract 1 from it depending on the
corresponding number at index list.

Figure 4: Left: state-action correspondence, where agent can
choose or exclude action [1,−1, 0] based on the distance. Right:
training environment of the model.

Action space. As we constrain UAV from moving vertically
due to sensor limitations (RPLiDAR can only scan horizon-
tally), the action space A, as illustrated in Eq. (7) and Fig. 4
left, only contains 8 actions. Specifically, we have

A = {[1,−1, 0], [1, 0, 0], [1, 1, 0], [0, 1, 0],

[−1, 1, 0], [−1, 0, 0], [−1,−1, 0], [0,−1, 0]}
(7)

Reward function design. Temporal reward rt that trains the
model to learn optimal actions reaching the target point is il-
lustrated in Eq. (8). More specifically, let dcurrent denotes
the distance between current and target position, and dlast
denotes the distance between the previous and target posi-
tion, we have:

rt =


3000, dcurrent ≤ 3

−3000, num steps taken ≥ max num steps

−50, dcurrent > dlast
−4000, collision

(8)

And the final reward r for each chosen action is simply:

r = rt −
d2current
100

(9)

The underlying rationale for the configuration of the re-
ward mechanism is to prioritize the drone’s learning pro-
cess in avoiding collisions as the paramount task, while also
discouraging the behavior of continuously circling a point
proximate to the target.
Check done. Ensuring timely notifications about the com-
pletion of an episode holds immense significance in RL
training. Since we incorporate real-time LiDAR data into
state representation, the training must proceed in Gazebo-
ROS-PX4 simulator, which introduces complexity to the re-
set process after collision events. Upon drone’s collision
with an obstacle, automatic disarming occurs, and man-
ual restarts of ROS, Gazebo, and PX4 are required for re-
arming, rendering continuous training infeasible. To expe-
dite model convergence and streamline the intricate reset
procedure, we devise the check done function as shown in
Eq. (10), which defines the completion of an episode when
the distance between the UAV and the obstacle is less than a
predefined collision threshold col threshold.

done =



True, dcurrent ≤ 3

True, |xc| > |limit x| or |yc| > |limit y|
True, counter ≥ step threshold

True, ∃i ∈ [0, 7] s.t. disti ≤ col threshold

False, else

(10)

Reset. Reset operation is the guarantee of a well-trained
model. During training, at the end of each episode, the drone
will be set to (0, 0, 4.4) in Gazebo world. However, accord-
ing to the settings of ROS, the position of drone will not
immediately be set to (0, 0, 4.4). It will either be directly set
to (0, 0, 4.4) after some time, which depends on the distance
between the previous position of drone and (0, 0, 4.4), or de-
creasing from the previous position to (0, 0, 4.4) step by step.
For example, if the drone was at position (5, 6, 4.4), after
setting to (0, 0, 4.4) in Gazebo world, the position of drone
in ROS topic might change as (5, 6, 4.4) → (4, 6, 4.4) →
(3, 6, 4.4)→ ...→ (0, 0, 4.4).



Algorithm 3: Reset

Input: athr, bthr, offseta, offsetb
Output: None

1: while True do
2: if distance between (xc, yc, zc) and (0, 0, 4.4) ≤ 1

then
3: break
4: else
5: if (xt ̸= xc or yt ̸= yc) then
6: if |xt| ≥athr then
7: if |xt| ≥bthr then
8: xt ← |xt|− offsetb
9: else

10: xt ← |xt|−offseta
11: end if
12: else
13: xt ← xc

14: end if
15: if |yt| ≥athr then
16: if |yt| ≥bthr then
17: yt ← |yt|−offsetb
18: else
19: yt ← |yt|−offseta
20: end if
21: else
22: yt ← yc
23: end if
24: start← [xt, yt, 4.4]
25: Let drone move to start
26: end if
27: end if
28: end while

This setting raises a fatal problem: before the position
of drone in ROS becomes (0, 0, 4.4), the drone will move
uncontrollably and has high risk of colliding with obsta-
cles during this period. To solve this problem, we propose
a novel reset algorithm as shown in Algorithm 3, in which
(xc, yc, zc) denotes the current drone position in ROS topic.
The core idea of the Algorithm 3 is to control the movement
of drone into a specific range of space, among which we can
guarantee no collision will happen. The parameters such as
athr, bthr, offseta, offsetb are manually set to serve this pur-
pose and should be modified when training environment is
different.
Training details. To ensure the model learns a policy that is
independent of absolute positions (specified as x, y, z), the
target position for each episode will be generated randomly
within a predetermined range for x and y, while maintain-
ing z at a constant value. The complete training procedure,
which summarizes the core algorithm of our proposed RE-
LAX, is illustrated in Algorithm 4. Detailed hyperparameter
values are shown in Table 2.

To emphasize the novelty of our proposed 2D-LiDAR
UAV system RELAX, we summarize the differences be-
tween the most updated existing frameworks, to our best
knowledge, and ours in Table 1. We see that RELAX
presents several advantages than the others. Firstly, the map-

ping function, as we illustrated in §, enables the use of our
system in a wide range of environments without the need
of manually reconstructing the environments. Secondly, the
ability to conduct real-time training in Gazebo-ROS-PX4
simulator ensures the learning of dynamic obstacle avoid-
ance. More specifically, the dynamic obstacle avoidance uti-
lizing real-time LiDAR data, as illustrated in §, improves
significantly when compared to existing system (Gabriel
et al. 2023) that utilizes only (x, y, z) positions.

Framework Mapping PP Alg DOA TrInSim

Gabriel’s - RRT DQN - -
RELAX (Ours) H-S RRT D3QN

√ √

Table 1: Comparison between RELAX and other 2D-LiDAR UAV
Frameworks: PP means path planning algorithm. Alg means the
RL algorithm. DOA means dynamic obstacle avoidance. TrInSim
means real-time training in Gazebo-ROS-PX4 simulator and H-S
means Hector-SLAM algorithm.

Algorithm 4: RELAX

Input: limits, start, max vel, max acc, max jerk, det range
Output: None

1: for Number of Episodes do
2: (xt, yt, zt)← randomly generated target position
3: score ← 0, counter ← 0, Drone take off and go to

start, last req← Time.now()
4: Initial state s0 ← LiDAR Data after Alg.2 LiDAR

Data Filtering
5: while not done do
6: if drone.armed and Time.now()− last req > 6

then
7: Select an action at with ϵ-greedy algorithm
8: Drone execute the action at, detect flag← True
9: New state st+1 ← LiDAR Data after Alg.2 Li-

DAR Data Filtering
10: done← Eq.10 Check Done, Reward rt ← Eq.9

Reward Function, score + = rt
11: Push (st, at, rt, st+1, done) in memory buffer
12: if size(memory buffer) ≥ B then
13: Sample B transitions from memory buffer
14: Every fu steps update the θt with θp, αt with

αp, βt with βp

15: Do forward operation as Eq.3 for Qpolicy and
Qtarget, get q pred, q next and q eval

16: q target = rt + γ∗q next
17: Update the parameter θp, αp, βp for Qpolicy

on loss (q target, q pred)
18: end if
19: st = st+1, counter + = 1
20: else
21: Maintain connection with drone
22: end if
23: end while
24: Call Alg.3 Reset
25: end for



Experiment – A Case Study
In this section, we demonstrate RELAX on addressing a
real-life challenge within the agricultural context, specifi-
cally catering to scenarios where farmers seek to do equip-
ment checks during nocturnal hours or after extreme weath-
ers such as storms.
Hardware and software setup. The experiment is con-
ducted on a desktop with Intel Core-i5-13400 CPU, Nvidia
GeForce RTX4070Ti GPU and 64GB of RAM. The operat-
ing system is Ubuntu 20.04 bionic. The simulator is executed
on Gazebo 11, ROS Noetic and PX4 v1.12.3..
Experimental environment setup. We firstly train our RL
model in environment shown in Fig. 4 right and fine-tune it
in environment shown in Fig. 5 left.

Table 2: Parameters used in training of obstacle handler

Parameter Value

State dimensions Ndim 11
Action dimensions Adim 8
Training episodes Neps 500
Maximum step for one episode Nstep 50
Memory pool size M 1× 106

Batch size B 96
Target network parameter update frequency fu 1000
Discount factor γ 0.99
Learning rate αl 5× 10−4

ϵ-greedy possibility max ϵmax 1.0
ϵ-greedy possibility min ϵmin 0.01
ϵ-greedy decay factor ϵdecay 1× 10−4

To examine the feasibility of our proposed framework,
we established a test environment illustrated in Fig. 5 right.
The agricultural land is divided into smaller zones by mov-
able iron bars and wires to facilitate diverse crop cultivation.
However, the dynamic nature of these iron bars, subject to
seasonal rearrangements by farmers to accommodate vary-
ing crop types, presents noteworthy challenges, in which the
static path planning based on a pre-scanned map becomes
impractical. The iron bars, which are not shown during the
map construction stage, are considered as dynamic obstacles
in our experiments.
Results. To comprehensively check the generalizability of
our trained model, we conduct 50 run each with around 20
iron bars distributed randomly in the testing environment
and report the average success rate. The results are shown in
Table 3, where the better variant of RELAX (with D3QN)
achieves an average success rate of 90%, which is 8 times
higher than the other 2D-LiDAR based algorithm, Gabriel’s
alg (Gabriel et al. 2023), making RELAX a practically us-
able solution in such agricultural applications. Additionally,
the performance of RELAX is on par with other state-of-
the-art algorithms requiring 3D LiDAR and RGB-D cam-
eras, such as Deep PANTHER (Tordesillas and How 2023)
and FAST-LIO (Kong et al. 2021), showcasing RELAX’s
competitiveness while keeping the total cost much lower.

Figure 5: Left: training environment used for fine-tuning after train-
ing in environment shown in Fig. 4 right. Right: a typical farmland
environment, where delineated regions are labeled as a, b, c, and
etc., and are separated by the movable iron bars and wires (shown
as red dotted lines). The objective of the case study is to navigate a
parsimonious UAV from house to tower for nocturnal inspections.

Figure 6: Trajectory paths (red lines) that UAV traverse in different
experiments. Iron bars are randomly distributed in all experiments.

As an example, results from six sample experiments are
shown in Fig. 6. The oscillatory patterns observed in the
movements of our parsimonious UAV when in close prox-
imity to obstacles, as depicted in the figures, distinctly illus-
trate its dynamic obstacle avoidance behavior. This behav-
ior becomes particularly evident when the drone’s distance
from obstacles falls below the predefined threshold estab-
lished during the training phase.

Moreover, we frequently find that certain algorithms excel
in specific areas. For instance, as demonstrated in Table 3,
Dijkstra’s algorithm, despite achieving a lower success rate,
boasts significant time efficiency. This variability in perfor-
mance underscores the importance of allowing users to se-
lect algorithms tailored to their unique requirements, which
highlights the value of the modular design of our framework,
RELAX. This design facilitates easy integration and experi-
mentation with emerging RL algorithms, offering a versatile
platform for future research endeavors.

Conclusion And Future Works
In this paper, we introduce RELAX, a RL-based au-
tonomous system for parsimonious UAVs that carry only
one single 2D-LiDAR to successfully perform navigation
in unknown environments. Rigorous feasibility tests con-
firm its effectiveness, showcasing a remarkable success rate



Algorithm Time(SPP) Time(ORP) Success Rate

Genetic Alg 17.4s - 12%
Dijkstra’s Alg 4.8s - 8%
Gabriel’s Alg 13.5s - 10%

Deep PANTHER - [0.01, 0.03] 100%
FAST-LIO - [0.003, 0.013] 98%

RELAX (DQN) 13.5s [0.0003, 0.1] 82%
RELAX (D3QN) 13.5s [0.0003, 0.05] 90%

Table 3: Performance Comparison between several algorithms and
ours: For SPP (Static Path Planning), we mean planning a path
on the map without iron bars, which mainly illustrates the per-
formance difference between RRT and other algorithms. For ORP
(Online Re-Planning), it denotes the time needed for online re-
planning to avoid the dynamic obstacles based on real-time 2D-
LiDAR data, at which Genetic Algorithm (Tsai, Chou, and Liu
2006), Dijkistra’s Algorithm (DIJKSTRA 1959), and Gabriel’s Al-
gorithm (Gabriel et al. 2023) are NOT able to handle. Deep PAN-
THER (Tordesillas and How 2023) is based on camera and FAST-
LIO is based on 3D-LiDAR (Kong et al. 2021). Since the inference
time of a trained RL model for each step differences a lot depend-
ing on state, we just record the range of time needed for one-step
inference for illustration purpose. For success rate, it illustrates the
percentage of dynamic obstacles (iron bars) the drone avoided dur-
ing the path it took from starting point to the target. The average
success rate of 50 tests for each algorithm are shown. The bold
number in each column illustrates achieving best performance for
this criterion among all algorithms.

of 90% in diverse scenarios, outperforming existing algo-
rithms by a significant margin. In addition, we demonstrate
RELAX’s great potential as both RRT and D3QN can be re-
placed by more advanced algorithms and network structures
to achieve more desirable performance.

Despite the success, ensuring precise 2D-LiDAR detec-
tion requires conservative speed settings, which limits our
system’s versatility. To mitigate this, we are investigating
the integration of multiple 2D-LiDARs collecting data from
different angles. By fusing these data, we aim to counteract
the influence of the imperfect LiDAR readings, thus further
broadening the application potential of RELAX.
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