
Planning with temporally-extended actions

Palash Chatterjee, Roni Khardon
Indiana University, Bloomington
{palchatt, rkhardon}@iu.edu

Abstract

Continuous time systems are often modeled using discrete
time dynamics but this requires a small simulation step to
maintain accuracy. In turn, this requires a large planning
horizon which leads to computationally demanding planning
problems and reduced performance. Previous work, using ac-
tion repeats, has partially addressed this issue in the context of
model free reinforcement learning where a policy is learned
to determine a discrete action duration. Instead we propose
to control the continuous decision timescale directly by let-
ting the planner treat the duration of the action as an addi-
tional optimization variable along with the standard action
variables. This additional structure has multiple advantages.
It speeds up simulation time of trajectories and, importantly,
it allows for deep horizon search in terms of primitive steps
while using a shallow search depth in the planner. In addition,
in the model based reinforcement learning (MBRL) setting,
it reduces compounding errors from model learning and im-
proves training time for models. We provide an experimental
evaluation both in planning and in MBRL, showing that our
approach yields faster planning, better solutions, and that it
enables solutions to problems that are not solved in the stan-
dard formulation.

1 Introduction
Many interesting real life systems evolve continuously with
time, but the dynamics of such systems are often modeled
using a discrete-time approximation. In these models, time
evolves in discrete steps of δt called the timescale of the sys-
tem. Simulators used in reinforcement learning or robotics
often use such models to capture physical systems. As the
discrete-time models require a good local approximation,
the value of δt is set to a small value. To obtain a trajec-
tory of the system using such models, the dynamics func-
tion needs to be evaluated at fixed intervals of δt. Because
δt is small, the number of decisions required to solve even a
simple task can be quite large. From the perspective of plan-
ning or MBRL, this translates to longer planning horizons
(or rollouts) which can limit their effectiveness.

Shooting based planners like Cross Entropy Method
(CEM) and Model Predictive Path Integral (MPPI) (Ko-
bilarov 2012; Botev et al. 2013; Williams, Aldrich, and
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Theodorou 2017; Chua et al. 2018) rely on sampling to es-
timate the highly rewarding regions of the state space. They
are known to perform poorly as the planning horizon in-
creases, especially in environments with noisy dynamics or
sparse rewards. This is because in such environments the
variance of their estimates increases and they need a large
number of samples in order to act reliably (Chatterjee et al.
2023). In addition, when planning with learned models as
in MBRL, longer rollouts can lead to compounding errors
(Janner et al. 2019).

Simulators like MuJoCo (Todorov, Erez, and Tassa 2012)
or Arcade Learning Environment (Bellemare et al. 2013)
make use of a fixed frame-skip in addition to timescale. A
frame-skip of n means that the same action is repeated for n
times before the agent is allowed to act again. So the deci-
sion timescale becomes n × δt. Frame-skip values are nor-
mally set heuristically, but as shown by Braylan et al. (2015),
the ideal values of frame-skip vary depending on the envi-
ronment and can heavily influence the performance of the
agent.

This has led to many efforts in trying to control the
decision timescale (n × δt). Previous works have mostly
controlled the frame-skip or action-repeats (n) by learn-
ing a policy (Durugkar et al. 2016; Lakshminarayanan,
Sharma, and Ravindran 2017; Sharma, Srinivas, and Ravin-
dran 2017). Ni and Jang (2022) propose to learn a policy to
control the timescale (δt) rather than the frame-skip. To the
best of our knowledge, none of the previous approaches con-
sider the planning problem or the use of planning in MBRL.

In this paper, we propose to control the decision timescale
directly by treating the duration of the action as an additional
optimization variable. At each decision point, the planner
optimizes for the standard primitive actions, as well as the
duration of the action, resulting in a temporally-extended ac-
tion. The duration of each temporally-extended action can
be different and it is possible for the planner to choose an
action with a long duration at one decision point, followed
by an action with a small duration. This provides the plan-
ner with an added degree of flexibility and, at the same time,
it reduces the search space by constraining the structure of
the trajectories that the planner searches over. Further, as a
small increase in the temporally-extended planning horizon
can translate to a large increase in the primitive planning
horizon, this allows the agent to search deeper, enabling it to



solve environments which are otherwise too difficult.
Finally, unlike previous works, we do not learn a pol-

icy. Rather, we use the framework of MBRL and learn a
transition and reward function that works with temporally-
extended actions, and use the learned model to plan. This
leads to better performance and faster training.

To summarize, our main contributions are as follows:
1. We propose to control the decision timescale directly by

letting the planner optimize for actions as well as the du-
ration of the actions, and evaluate this idea both in plan-
ning and in MBRL.

2. We show that the new approach decreases the search
space and the planning horizon for the planner and helps
the planner solve previously unsolvable problems. In ad-
dition, using temporally-extended actions improves the
stability of the search allowing the planner to search
deeper and solve problems with sparse rewards.

3. We show that the use of planning with learned temporally
extended transition functions in MBRL leads to better
performance in terms of cumulative rewards and better
run time.

2 Related Work
Macro-actions (Hauskrecht et al. 2013) and options (Sut-
ton, Precup, and Singh 1999) are two of the most common
methods to introduce temporal abstraction in planning and
reinforcement learning (RL). A macro-action is a usually de-
fined to be a sequence of primitive actions that the agent will
take. On the other hand, an option consists of a policy, an
initiation set and a terminating condition. The initiation set
determines when the option can be taken, while its duration
depends on when its terminating condition is satisfied. Both
macro-actions and options can either be predefined or can be
learned from data (Durugkar et al. 2016; Machado, Belle-
mare, and Bowling 2017; Machado et al. 2017; Ramesh,
Tomar, and Ravindran 2019).

Frame-skips or action-repeats are simpler forms of macro-
actions where each macro-action is essentially a single prim-
itive action repeated multiple times. While frame-skipping
has been used as a heuristic in many deep RL solutions
(Bellemare, Veness, and Bowling 2012; Mnih et al. 2015),
Braylan et al. (2015) showed that using a static value of
frame-skips across environments can lead to sub-optimal
performance. Following this, there have been multiple ef-
forts using the model-free RL framework to make the frame-
skip dynamic. Lakshminarayanan, Sharma, and Ravindran
(2017) propose to learn a joint policy on an inflated action
space of size n|A| where each action is tied to n corre-
sponding action-repeats. The value of n is usually small to
limit the size of the inflated action space. A more practical
approach is to learn a separate network alongside the stan-
dard policy to predict the number of action repeats (Sharma,
Srinivas, and Ravindran 2017; Biedenkapp et al. 2021).

Frame-skips or action-repeats are discrete values and,
while they introduce a temporal abstraction for discrete time
systems, a continuous representation is both more realistic
and more flexible. Some prior work in model-free RL has
explored this problem. Ni and Jang (2022) use a modified

Soft Actor Critic (Haarnoja et al. 2018) to learn a policy and
control the timescale rather than the action duration, with
an explicit constraint on the average timescale of the pol-
icy. Their optimization objective is similar to ours, except
that they use a linear approximation of the reward function
to compute the reward due to a macro-action (see discus-
sion in Appendix A). Wang and Beltrame (2024) introduce
Soft-Elastic Actor Critic to output the duration of the action
along with the action itself. However, they modify the re-
ward structure by introducing penalties for the energy and
the time taken by each action. Our work is in the planning
and MBRL setting. Rather than learn a policy, we use ei-
ther exact or learned transition and reward functions to plan.
Further, our objective arises naturally from the formulation
without the need to add additional constraints or engineer
rewards.

Finally, in our work, action durations are chosen by the
planner, which is different from the problem of planning
with durative actions (Mausam and Weld 2008) where the
durations are given by the model.

3 Background
The standard discrete time Markov Decision Process (MDP)
is specified by {S,A, T ,R, γ} where S and A are the state
and action spaces respectively and γ ∈ (0, 1) is the dis-
count factor. st ∈ S and at ∈ A represents the state and
primitive action at timestep t. The one-step transition dis-
tribution is given by T (st+1|st, at) and the one-step reward
distribution is given by R(st, at). Discrete time simulation
of continuous systems assumes that T and R capture the
transitions and the corresponding reward due to exactly δt
duration, which is the timescale of the MDP.

The expected discounted returns due to a planning hori-
zon of D is given by

Jt = E
[D−1∑

i=0

γiR(st+i, at+i)

]
. (1)

In cases when the dynamics T and the reward R are un-
known to the agent, their empirical estimates, T̂ and R̂, can
be learned using data collected by interacting with the MDP.

4 Modeling Temporally-Extended Actions
Although we eventually care about what primitive actions
to take in the environment, a planner can work at an ab-
stract level by using temporally-extended actions. We use
the terms decision steps and execution steps to distinguish
between the number of times the agent outputs an action and
the number of primitive actions that are eventually executed
in the environment.

Let us assume that the agent has access to the primitive
transition and reward function f , and that f is accurate for
all 0 ≤ t ≤ δenv

t , where δenv
t is the timescale of the environ-

ment.
In the standard setup, the agent uses f at each decision

step and outputs an action whose duration is implicitly δenv
t .



The returns due to a trajectory τ is given by

J1 =

L(τ)∑
t=1

γt−1R(st, at) (2)

where L(τ) is the number of decision points in τ and
R(st, at) is the reward due to primitive step t. Here, the
number of execution steps is exactly equal to the number
of decision steps.

In our proposed framework, the planner explicitly outputs
the duration of the action along with the action itself. At de-
cision step k, let the planner output an action ak and its cor-
responding duration δtk ∈ [δtmin, δtmax]. Now, the number
of execution steps need not necessarily be equal to the num-
ber of decision steps. Let ek = ⌊δtk/δenv

t ⌋+ 1(δtk mod δenv
t )

be the number of execution steps associated with decision
step k. Further, let e<k =

∑k−1
j=1 ej be the total number of

execution steps taken prior to decision step k. The returns
due to a trajectory τ will be

J2 =

L(τ)∑
k=1

γe<k

ek∑
t=1

γt−1R(s(e<k+t), a(e<k+t)) (3)

where e<1 = 0. This formulation avoids the need for a pre-
cise continuous time model of discounting. Note that when
δtk = δenv

t for all k, then J2 = J1.
One way to view J2 is to consider the inner summation

as the return due to a temporally-extended action, but dis-
counted based on the number of primitive actions taken prior
to the current timestep. This view can allow us to have differ-
ent discount factors, γ1 and γ2, giving us more fine-grained
control over the behavior of the agent.

J3 =

L(τ)∑
k=1

γ
e<k

1 RTE
k (4)

where RTE
k =

ek∑
t=1

γt−1
2 R(s(e<k+t), a(e<k+t)).

5 Method
We want the planner to have access to a temporally-extended
transition and reward function (F ) that can work with
temporally-extended actions. If F is available, then using
it for planning is straight-forward. For example, one can use
a shooting-based planner with F to select an action from
state sk as shown in Algorithm 1. Note that using F allows
the planner to treat the duration of the action similar to the
other action variables except while computing γe<k in the
objective. Hence for succinctness, we assume that action at
at step t contains information about the duration of the ac-
tion as well.

However, F is usually not readily available. Even in the
standard planning setup, the agent has access to the primi-
tive transition and reward function (f) which can either be
deterministic or stochastic. If f is stochastic, it samples the
next state.

As a simple solution, we can wrap f in a loop as shown
in Algorithm 2 to obtain F . This holds as we assumed f is

Algorithm 1 Action selection using a temporally-extended
transition and reward function (F ) with a shooting-based
planner

Require: F : temporally-extended transition and reward
function

sk : current state
µa, vara : initial action distribution
N , DTE : number of rollouts, planning horizon

1: for i = 1 to optimization steps do
2: sample N action seq. of len. DTE using µa, vara
3: for all N action seq. (at, . . . , at+DTE) do
4: for step t = 0 to DTE − 1 do
5: simulate transition using F and at

and compute agg. reward
6: end for
7: end for
8: Update µa, vara using action seq. and agg. reward
9: end for

10: return sample ak using µa, vara

accurate for all 0 ≤ t ≤ δenv
t . We call this the iterative prim-

itive transition and reward function and represent it using
FIP. The reward is simply aggregated in the loop and is not
shown explicitly here. Note that for a given environment, f
is fixed, while sk, ak and δtk are dependent on the timestep.

For the computation to be exact, f should be explicitly
dependent on time. If it is implicit, performing the compu-
tation at line 5 of Algorithm 2 will not be possible and FIP
computes the number of action-repeats instead.

Although FIP accurately captures F , it suffers from being
an iterative solution. The time required by FIP to simulate
the outcome due to a temporally-extended action is depen-
dent on the precise duration of the action itself. However, if
we had access to F , this would have been a constant time
evaluation. So while FIP captures F , it fails to facilitate the
speed of execution.

To fix this, we use neural networks and approximate F

using F̂TE. We can then use F̂TE to predict the next state
and reward due to a temporally-extended action from a given
state. For learning F̂TE, we use the framework of MBRL. We
collect data by interacting with the environment and use the
data to train a neural network to predict a distribution over
the next states and a point estimate for the reward. Once F̂TE
is learned, it can be used for planning. In this work, we use
shooting-based planners and use Algorithm 1 with F ≈ F̂TE
in order to select actions.

Discussion
Consider two agents - Astandard that uses primitive actions
and ATE that uses temporally-extended actions and let
Dstandard and DTE be their corresponding planning horizons.
Further, for ATE, let δtmax = m × δenv

t for some positive
integer m. As the planning horizon for the agents is not di-
rectly comparable, we introduce the term maximal primitive
horizon (H). For Astandard, H = Dstandard, while for ATE,
H = m×DTE.



Algorithm 2 Iterative Primitive Transition and Reward
Function
Require: f : primitive transition and reward function

sk : current state
ak : temporally-extended action
δtk : duration of action

1: repeats = ⌊δtk/δenv
t ⌋

2: for i = 1 to repeats do
3: sk = f(sk, ak, δ

env
t ) ▷ Control n

4: end for
5: sk+1 = f(sk, ak, δtk mod δenv

t ) ▷ Control δt
6: return sk+1

Note that using maximal primitive horizon is not a fair
comparison. This only ensures that the primitive planning
horizon for ATE is not greater than Astandard at any instant.
For most practical purposes, the primitive planning horizon
for ATE will in-fact be smaller than Astandard. We argue that
even in this unfair setting, using temporally-extended ac-
tions can have several advantages.

1. Using temporally-extended actions helps to reduce the
space of possible trajectories that the agent searches over.
For simplicity, let us consider an environment with bi-
nary actions. The search space for Astandard is 2H , while
for ATE, the search space reduces to 2H/m. However, this
reduction comes at a cost of the flexibility of trajectories.
The larger the value of m, the “stiffer” the generated tra-
jectories are.

2. ATE has less variables to optimize for than Astandard. In
general, if the action space has dimensions |A|, then at
each decision step, Astandard has to optimize for H|A|
action variables, while ATE will have to optimize for
(H/m)(|A|+ 1) action variables.

3. F̂TE evaluates the outcome of temporally-extended ac-
tions in constant time. The evaluation time is similar to
that taken by f to evaluate the outcome of a primitive
action. As DTE < Dstandard, using F̂TE with ATE helps it
make a decision faster than Astandard.

4. Manipulating the value of m allows us to scale up the
maximal planning horizon of ATE without adding any ex-
tra variables. This can be useful in environments where
rewards are uninformative and a deeper search is re-
quired.

6 Experiments
We evaluate the use of temporally extended models both
in planning and in MBRL. Full details of the experimental
setup are given in Appendix B.

We compare the planning performance of Astandard and
ATE using CEM (Botev et al. 2013; Chua et al. 2018), which
is a shooting-based planner. CEM maintains a sequence of
sampling distributions from which it generates multiple ac-
tion sequences. For each action sequence, it instantiates mul-
tiple particles, computes the trajectory and reward due to
each particle. Then, it computes the mean reward per ac-
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Figure 1: Astandard requires a large planning horizon to suc-
ceed in Mountain Car, but ATE using δtmax = 100 can work
with an extremely small planning horizon.

tion sequence and uses the top k action sequences to bias its
sampling distributions.

For experiments with RL, following Chua et al. (2018),
rather than learning a single neural network to approximate
the transition and reward function, the agents learn an en-
semble of neural networks. Specifically, Astandard learns to
approximate f while ATE learns to approximate F . Dur-
ing each training iteration, both the agents train on the all
the data collected so far by randomly drawing mini-batches
from the replay buffer. The model ensembles are then used
with CEM to choose an action. Both the agents use the same
network architecture. The only difference is that the ATE has
an extra input variable corresponding to the duration of the
action, in addition to the state and action variables.

For evaluation, we wrap the primitive transition and re-
ward function of the simulation environment in an iterative
loop as shown in Algorithm 2. In addition, we need to spec-
ify the range of the action duration using δtmin and δtmax.
In our experiments, δtmin = δenv

t and δtmax is a hyper-
parameter that is defined per environment as specified be-
low.

We first experiment in a planning regime where the agent
has access to the exact transition and reward function. We
use Algorithm 2 to generate the iterative primitive transi-
tion and reward function which is used by our framework.
For this, we use the Mountain Car environment from Gym-
nasium (Kwiatkowski et al. 2024), a multi-hill Mountain
Car environment from the Probabilistic and Reinforcement
Learning Track of the International Planning Competition
(IPC) 2023 (Taitler et al. 2024), and the Dubins car environ-
ment of Chatterjee et al. (2023) where an agent controls a car
using linear and angular “acceleration”. We run each of the
planning experiments across 5 different seeds and average
the results. We then experiment in the MBRL setting where
T and R are not known. In this case, we learn a temporally-
extended representation as discussed above, by interacting
with the environment. We use Cart Pole from Gymnasium
and Half Cheetah, Ant, Reacher and Pusher from MuJoCo
(Todorov, Erez, and Tassa 2012). The experiments are orga-
nized so as to answer a set of questions as outlined below.
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Figure 2: When the number of actions is small, both the agents are able to solve the problem. But when the number of actions
increases, ATE is still able to solve the problem while Astandard fails due to large memory requirements. The shape of the curves
is an artifact of the action space in this environment. Note that a constant action in acceleration space yields curved paths. The
path in (c) is composed of 4 actions of different durations, as marked by the colors.

Instance Reward ↑ Decision steps ↓ Time for an episode ↓ Success Probability ↑

Standard Ours Standard Ours Standard Ours Standard Ours

1 90.98 ± 0.26 91.74 ± 1.55 108.8 ± 0.84 3.0 ± 1.41 4.86 ± 0.19 5.7 ± 1.13 1.00 1.00
2 -0.1 ± 0.01 88.67 ± 0.65 300.0 ± 0.0 2.8 ± 1.1 7.98 ± 0.28 5.59 ± 0.91 0.00 1.00
3 -0.1 ± 0.01 86.15 ± 1.11 300.0 ± 0.0 2.6 ± 0.89 7.94 ± 0.15 5.44 ± 0.76 0.00 1.00
4 -0.1 ± 0.01 66.5 ± 43.54 300.0 ± 0.0 3.2 ± 1.3 7.73 ± 0.28 6.01 ± 1.05 0.00 0.80
5 -0.1 ± 0.01 83.41 ± 0.54 300.0 ± 0.0 3.0 ± 0.0 8.0 ± 0.28 5.82 ± 0.2 0.00 1.00

Table 1: Results on Multi-hill Mountain Car from IPC 23 across 5 seeds where ATE (DTE = 12) solve all instances while
Astandard (DTE = 175) can only solve 1/5.

Does planning with temporally-extended actions help?
Mountain Car has a sparse reward and it requires a large
planning horizon to succeed. We compare the performance
of Astandard and ATE by varying the planning horizon and
show that our proposed framework enables the agent to solve
the environment using an extremely small number of plan-
ning steps (Figure 1).

We next experiment with the multi-hill version of Moun-
tain Car from IPC 2023 (see Figure 5b in Appendix B). Each
instance of the environment increases the difficulty by either
adding more hills or altering the surface of the hills. The
agent is allowed to take a maximum of 300 primitive steps
in the environment. As shown in Table 1, while Astandard is
able to solve only the first instance, ATE solves all the in-
stances.

We observe from the table that, even though ATE takes a
small number of decision steps, the time required to finish
the episode is comparable to Astandard. This is because it uses
an iterative version of the dynamics for simulation given by
FIP. Another observation is the number of decision steps is
less than DTE. This results because the number of decision
steps is measured during evaluation and in Mountain Car,
the episode terminates as soon as the agent reaches the goal.

Can temporally-extended actions help in reducing infea-
sible problems to feasible ones? We experiment with the
custom Dubins Car environment (δenv

t = 0.2) and u-shaped
map as shown in Figure 2. This is a challenging configura-
tion because the car is initially facing the obstacles and a
naive forward search hits the obstacles and does not yield
useful information. In addition, as the reward is sparse, this

map requires the planning horizon to be large. To solve the
environment, Astandard requires 10,000 samples with a plan-
ning horizon of 1000, while ATE requires a planning hori-
zon of 75 and δtmax = 20 (see detailed discussion in Ap-
pendix D).

To make the search problem more difficult, we augment
the action space of the environment with 100 dummy action
variables. Although these actions do not contribute to the
dynamics or rewards, the agent is unaware of this and has
to account for all the action variables. Even in this setting,
ATE is able to solve the environment while Astandard fails due
to large memory requirements. A simple computation shows
that Astandard needs around 4GB of memory to keep track of
the sampled actions, whereas ATE requires just 103MB. On
the other hand, in other configurations (Appendix D) that
reduce the memory requirements, Astandard fails to find the
goal. This shows that using temporally-extended actions can
often be helpful in turning infeasible search problems into
feasible ones.

Do the benefits transfer if we learn the dynamics and
reward model? Having access to the transition and re-
ward function is not realistic. We would like to be able to
learn these as we interact with the environment. For this ex-
periment, we use Half Cheetah, Ant, Reacher and Pusher
from MuJoCo along with Cart Pole. By default, the Mu-
JoCo simulators use a preset value of frameskip which varies
depending on the environment. This results in the effective
timescale being greater than the original timescale. We mod-
ify the environments so that they all have a frameskip of 1,
and use that for our experiments.
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Figure 3: Running average of scores, highest scores achieved, rollout lengths and episode duration for Cart Pole, Half Cheetah,
Ant, Reacher and Pusher (from top to bottom) respectively. Using temporally-extended actions helps the agent perform better
in Half Cheetah and Ant, while the performance in Cart Pole, Reacher and Pusher is at par with the standard framework.



ATE uses a learned temporally-extended model for plan-
ning, while for evaluation we wrap the primitive transition
and reward functions in an iterative loop similar to FIP.

Each experiment is run for a specific number of iterations,
where in each iteration, we train the model using multiple
mini-batches drawn from the replay buffer, and then evaluate
the model for one episode. We plot the running average of
scores obtained by the agents across the iterations, as well
as the highest score achieved by the agent. Additionally, we
track the number of decisions made by the agents as well as
time required to complete an iteration. The results from our
experiments are in Figure 3.

We observe that the proposed framework leads to higher
scores while being faster. This speed-up comes from three
sources. First, using temporally-extended actions leads to
fewer decision points. Second, the reduction in search space
further reduces planning time. Third, a decrease in decision
points leads to a decrease in number of training examples
for the model. As the number of mini-batches depends on
the number of training examples in the agent’s replay buffer,
this also leads to less time spent by the model in training.

In Cart Pole, an episode lasts for 200 primitive actions.
However, if the pole falls at any moment, the episode ter-
minates. The sudden increase in decision points and episode
duration for Astandard (D = 30) is because the agent learns
to keep the pole from falling for the entire duration of the
episode. On the other hand, for ATE (DTE = 3, δtmax =
10δenv

t ), there is no sudden spike in the number of decision
points and episode duration. When ATE learns to control the
pole around episode 30, we simply observe a slight increase
in the number of decision points and episode duration.

An episode in Half Cheetah and Ant lasts for 1000 prim-
itive actions. In Half Cheetah, ATE (DTE = 15, δtmax =
7δenv

t ) outperforms Astandard (D = 70) while being 7x faster.
In case of Ant, we have an interesting observation. For
around 600 training iterations, the average performance of
the both the agents hovers around a mean of 0 with no clear
trend. During this period, ATE (DTE = 15, δtmax = 7δenv

t )
has about 200-250 decision points per episode. However, af-
ter this point we see that the performance of ATE increases
drastically showing a clear trend, while the performance of
Astandard (D = 90) does not show any improvement. The
number of decision points for ATE also increases to 500-700
indicating that the agent is taking actions of small duration.
In Reacher and Pusher, the performance of ATE (DTE = 5,
δtmax = 20δenv

t ) is close to Astandard (D = 70). The rise in
the number of decision points for both these environments
indicate that ATE identifies that a small decision timescale
works better. This illustrates that in cases when a long dura-
tion is not suitable, ATE’s perform is still competitive with
the standard solution.

How does varying the two discount factors impact the
agent’s behaviour? The proposed formulation in Equa-
tion (4) has two discount factors. As we discuss next, while
some expectations on the effect of γ1 and γ2 are intuitive, a
complete characterization is not obvious.

We use the cave-mini map (see Figure 5a in Appendix
B) in the Dubins Car environment (Chatterjee et al. 2023).

γ1 γ2 Decision Steps Primitive Steps

Case 1: Fixed γ1 0.99

1.0 20.2 ± 0.84 121.8 ± 2.95
0.99 20.2 ± 0.45 122.0 ± 2.00
0.9 21.6 ± 1.34 121.8 ± 0.84
0.8 22.2 ± 0.84 122.6 ± 1.52
0.7 23.2 ± 0.45 122.8 ± 1.64

Case 2: Fixed γ2

1.0

1.0

19.0 ± 0.71 128.6 ± 1.52
0.99 20.2 ± 0.84 121.8 ± 2.95
0.95 18.6 ± 0.55 117.6 ± 0.89
0.9 16.4 ± 0.55 115.4 ± 0.55

Table 2: When γ1 is fixed, decreasing γ2 leads to an increase
in number of decision steps. When γ2 is fixed, decreasing γ1
leads to a decrease in the number of primitive steps.

For each experiment corresponding to a particular combina-
tion of γ1 and γ2, we perform 5 runs using random seeds
and average the results which are in Table 2. ATE (DTE =
50, δtmax = 10δenv

t ) is able to reach the goal before the
maximum number of primitive steps in the environment is
reached and so we can focus on the effect of the parameters.

Note that in the proposed setting, even though DTE is
fixed, the primitive planning horizon is not fixed and it is de-
pendent on the duration of the actions chosen by the planner.
This can result in different levels of discounting in different
trajectories. In contrast, in the standard framework, the dis-
counting due to a planning horizon Dstandard is fixed. This
makes predicting the behavior of ATE, upon varying γ1 and
γ2, difficult.

Another observation is that for all decision steps k > 1,
γ1 will always be the dominating component in the objec-
tive. This is because the exponent term for γ1 is the num-
ber of primitive steps before the decision step k, while the
exponent term for γ2 is proportional to the duration of the
temporally-extended action.

To explore the parameters we consider two cases. First,
we keep γ1 fixed and vary γ2. We hypothesize that smaller
values of γ2 will yield a preference for shorter durations
and hence larger number of decision points. Table 2 in-
deed shows a modest increase in number of decision points,
whereas the total number of primitive steps remains the
same.

Next, we vary γ1 and keep γ2 fixed. In this setting, our hy-
pothesis is that decreasing γ1 should yield a preference for
longer duration and a smaller total number of steps. The in-
tuition is that if we reduce γ1 and the planner doesn’t reduce
the number of primitive steps, then the impact of discount-
ing on the overall objective will be higher. Here too, Table 2
confirms these trends.

What is the impact of δtmax and DTE on performance?
Both δtmax and DTE can be used to increase the effective
search depth of ATE. While the optimal choice is domain
specific, we explore their impact in Half Cheetah to gain
insight into their relative strengths.

First, we set δtmax and DTE such that the maximal prim-
itive horizon (H) is equivalent for the two frameworks. As
shown in Figure 4, this leads to a poor performance in Half
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Figure 4: Planning horizon for standard framework is 90
with δt = 0.01. When maximal planning horizon is 13×7 =
91, the standard framework performs better than us in Half
Cheetah. Increasing either DTE or δtmax helps, but increas-
ing DTE is more beneficial as it lets the agent choose more
flexible trajectories.

Cheetah. This is not unexpected because the effective num-
ber of steps for ATE is not its maximal depth. In practice, the
average duration will determine the primitive search depth
and this may be importance for performance.

As both δtmax and DTE impact H , varying one while
keeping the other fixed should help segregate the effects. We
observe that increasing DTE has more effect than increasing
δtmax (Figure 4). A potential reason could be the fact that
even though both increase H , increasing DTE also lets the
planner choose more flexible trajectories and the range of
DTE is sufficiently small to be tight.

7 Conclusion and Future Work
Using the standard framework of planning with primitive ac-
tions, provides more granular control, but can be computa-
tionally expensive. In environments where δenv

t is small, the
agent needs to search over a large planning horizon which
increases the search space as well as the number of vari-
ables it needs to optimize. We propose to use temporally-
extended actions where the planner treats the duration of the
action as an additional optimization variable. This helps to
reduce the complexity of the search by restricting the search
space and reducing the planning horizon, which in turn re-
duces the overall number of variables that the planner needs

to optimize. We further show that temporally-extended tran-
sition and reward models can be learned using MBRL. An
additional advantage in this case is that using our proposed
framework with learned models leads to smaller compound-
ing errors. It also leads to less examples in the replay buffer
which leads to faster training. However, since trajectories
generated using temporally-extended actions are not as flex-
ible as those due to the standard framework, improvement in
performance is not guaranteed in every environment.

For the framework to succeed, it is crucial to choose the
right value of δtmax. If it is too small relative to the optimal
value, one loses the opportunity to obtain as much improve-
ment as is potentially possible. On the other hand, if it is too
large, the agent will require longer to optimize. Developing
an algorithm that can identify a correct range for δtmax is an
important challenge for future work.
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Gimelfarb, M.; Pommerening, F.; Sanner, S.; Scala, E.;
Schreiber, D.; et al. 2024. The 2023 International Planning
Competition.
Todorov, E.; Erez, T.; and Tassa, Y. 2012. Mujoco: A physics
engine for model-based control. In 2012 IEEE/RSJ interna-
tional conference on intelligent robots and systems, 5026–
5033. IEEE.
Wang, D.; and Beltrame, G. 2024. Deployable reinforce-
ment learning with variable control rate. arXiv preprint
arXiv:2401.09286.
Williams, G.; Aldrich, A.; and Theodorou, E. A. 2017.
Model predictive path integral control: From theory to par-
allel computation. Journal of Guidance, Control, and Dy-
namics, 40(2): 344–357.



A Connection to (Ni and Jang 2022)
Ni and Jang (2022) propose to learn a policy that outputs
the action variables as well as the time scale. In this section,
we compare our objective to theirs. First, we repeat Equa-
tion (3) which computes the returns of a trajectory τ using
our proposed framework:

J(τ) =

L(τ)∑
k=1

γe<k

ek∑
t=1

γt−1R(e<k+t)

A similar objective is used by (Ni and Jang 2022). How-
ever, it is important to note that they control the timescale
while we keep the timescale fixed and control the action
duration. Let δk ∈ [δmin, δmax] be the timescale associated
with the action at decision point k. For simplicity, they as-
sume that the timescale is in integers (in physical unit of sec-
onds), which means that δk is also the number of execution
steps associated with the action. Using this, their objective
reduces to

J(τ) =

L(τ)∑
k=1

γe<kR(se<k+1, ak)δk (5)

where R(se<k+1, ak)δk is a linear approximation of the re-
ward function. So, the objective used by Ni and Jang (2022)
can be viewed as an approximation of Equation (3) where
the reward function due to a temporally-extended action has
been replaced by a linear approximation.

B Experimental Details
Our framework has two main hyperparameters - range of
action duration, which is specified by δtmin and δtmax, and
planning horizon. Rather than controlling both these values,
δtmin is always set to δenv

t , and modifying δtmax controls the
range.

For environments like Cart Pole and Mountain Car, we
use values of planning horizon from prior work for the stan-
dard framework, and adjust the depth for ATE by exploring
related values. We cannot do this for MuJoCo-based envi-
ronments since we set the frameskip parameter to 1. Rather
we perform a search over some potential values for the plan-
ning horizon for the standard framework and δtmax and
planning horizon for our framework and choose the configu-
ration with the best performance. The other hyperparameters
related to online training have been borrowed from (Chua
et al. 2018).

Details for Dubins Car environment We use the Dubins
Car environment of Chatterjee et al. (2023) where the agent
controls the change in linear velocity (∆v) and angular ve-
locity (∆ω). An episode terminates if the agent reaches the
goal or if it takes 300 primitive steps. The default timescale
for the environment is 0.2 while δtmax for our formulation
is 20. Setting δtmax to such a large value allows us to have
the same value across maps and just allow more time for op-
timization. The planning horizon needs to be tuned for dif-
ferent maps. Table 3 contains the planning horizon for the
maps used in the experiments.

Domain Range of action duration Planning horizon

Standard Ours Standard Ours

Dubins Car [u-shaped map] 0.2 [0.2-20] 1000 75
Dubins Car [cave-mini map] 0.2 [0.2-2] 120 50
Cartpole 1 [1-10] 30 3
Mountain Car 1 [1-100] 100 10
IPC Mountain Car 1 [1-125] 175 12
Reacher 0.01 [0.01, 0.2] 25 5
Pusher 0.01 [0.01, 0.2] 25 5
Ant 0.01 [0.01, 0.07] 70 15
Half Cheetah 0.01 [0.01, 0.07] 90 15

Table 3: Environment parameters for different environments.
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Figure 5: (a) An example of ATE solving the cave-mini map
(γ1 = 0.99, γ2 = 1.0, δtmax = 20). (b) An instance of the
IPC Multi-hill Mountain Car.

Note that for our experiment with the cave-mini map, we
reduce δtmax to prevent the agent from completing the map
in a few decision steps.

C Additional Experiments with IPC MC
How does the performance change if we increase the
planning horizon? We vary the planning horizon of the
agents and compare the performances across instances of
IPC MC in Table 4. For the easier problems, a small plan-
ning horizon is sufficient, but for the difficult instances, a
deeper search is required. The performance of the planner
remains relatively stable as the planning horizon increases.

D Details of Experiments with u-shaped
maps

We experiment with varying depths using u-shaped maps in
the Dubins Car environment. The problem is not trivial as
the car faces the obstacle and it needs to first turn around
and then find a path the goal, which gives the agent a reward
of 100. Every collision with an obstacle gets a penalty of 10.
An episode terminates when the agent reaches the goal or
when the agent takes 300 primitive steps.

To be successful in this setting, we observe that Astandard
requires a planning horizon of 1000 and ATE requires a plan-
ning horizon of 75. Both the agents use 10,000 samples and
50 optimization steps for each decision. ATE succeeds but
not in all runs. We look at the failure cases for ATE and have
an interesting observation. For planning horizon of 75 and
100, the failure is due to the fact that the agent runs out of



D Instance 1 Instance 2 Instance 3 Instance 4 Instance 5

Astandard

60 37.49 ± 51.36 -0.0 ± 0.0 -0.0 ± 0.0 -0.0 ± 0.0 -0.0 ± 0.0
80 74.54 ± 41.7 -0.0 ± 0.0 -0.0 ± 0.0 -0.0 ± 0.0 -0.0 ± 0.0
100 91.93 ± 0.41 -0.0 ± 0.0 -0.0 ± 0.0 -0.0 ± 0.0 -0.0 ± 0.0
125 90.92 ± 0.22 -0.0 ± 0.0 -0.0 ± 0.0 -0.0 ± 0.0 -0.0 ± 0.0
150 91.07 ± 0.18 -0.0 ± 0.0 -0.0 ± 0.0 -0.0 ± 0.0 -0.0 ± 0.0
175 91.12 ± 0.3 -0.0 ± 0.0 -0.0 ± 0.0 -0.0 ± 0.0 -0.0 ± 0.0
200 91.11 ± 0.27 -0.0 ± 0.0 -0.0 ± 0.0 -0.0 ± 0.0 -0.0 ± 0.0
225 91.2 ± 0.32 -0.0 ± 0.0 -0.0 ± 0.0 -0.0 ± 0.0 -0.0 ± 0.0
250 91.01 ± 0.12 -0.0 ± 0.0 -0.0 ± 0.0 -0.0 ± 0.0 -0.0 ± 0.0
275 90.98 ± 0.11 -0.0 ± 0.0 -0.0 ± 0.0 -0.0 ± 0.0 -0.0 ± 0.0
300 90.91 ± 0.1 -0.0 ± 0.0 -0.0 ± 0.0 -0.0 ± 0.0 -0.0 ± 0.0

ATE

2 -0.01 ± 0.01 -0.0 ± 0.0 -0.0 ± 0.0 -0.0 ± 0.0 -0.0 ± 0.0
5 73.52 ± 43.45 -0.0 ± 0.0 -0.0 ± 0.0 -0.0 ± 0.0 -0.0 ± 0.0
8 92.58 ± 1.01 90.99 ± 0.7 -0.0 ± 0.0 -0.0 ± 0.0 -0.0 ± 0.0

10 71.43 ± 46.05 89.79 ± 1.28 87.27 ± 1.86 68.11 ± 42.49 85.02 ± 0.26
12 92.41 ± 1.82 90.11 ± 1.19 87.44 ± 1.52 86.91 ± 1.53 85.45 ± 0.25
15 92.33 ± 2.0 90.52 ± 0.6 87.91 ± 0.8 87.51 ± 0.98 85.19 ± 1.15
20 92.52 ± 1.46 90.12 ± 1.36 87.74 ± 1.99 87.08 ± 2.57 86.43 ± 0.31
25 92.39 ± 1.85 90.54 ± 1.06 88.39 ± 1.36 87.71 ± 1.61 87.06 ± 0.46
30 72.07 ± 45.41 91.08 ± 0.37 88.94 ± 0.49 68.0 ± 45.24 86.08 ± 1.81
35 51.48 ± 57.79 90.91 ± 1.15 89.28 ± 0.2 89.06 ± 0.81 67.07 ± 45.5
40 71.21 ± 48.64 90.12 ± 1.42 89.75 ± 2.19 87.38 ± 2.38 67.86 ± 45.2

Table 4: Performance of Astandard and ATE in various instances of IPC Multi-hill Mountain Car as the planning horizon is
increased.

primitive actions, while for planning horizon 50, the failing
scenario corresponds to the agent not being able to find a
path out of the obstacles region. This means that if we allow
the episodes to run for longer, the former failure can be miti-
gated but the latter cannot. The detailed results are in Table 5
and the failure cases for ATE are shown in Figure 6.

Next, we make the problem difficult by augmenting the
action space with 100 dummy action variables. As the agents
are unaware that these variables don’t contribute to the re-
ward or the dynamics, they still need to search over these
variables. We set up the experiment similar to the previous
one by keeping the number of samples to 10,000 and vary-
ing the planning horizon. For Astandard, almost all the runs
fail - either because it does not find a path around the obsta-
cle, or crashes due to huge memory requirements. In order
to reduce the memory requirements, we perform a second
experiment, fixing the planning horizon to 1000 and varying
the number of samples. Reducing the number of samples
fixes the issue of memory requirements, but does not help
the agent identify a path. In contrast, the performance of ATE
is mostly unaffected by this addition of dummy action vari-
ables. The detailed results are in Table 6. ATE uses the same
configuration as the earlier experiment and achieves similar
performance. As observed earlier, the failure case of ATE for
planning horizon of 50 is due to the fact that it cannot find a
path around the obstacles, while the failure case for planning
horizon of 100 is because it runs out of primitive steps.



D Reward ↑ Decision Steps ↓ Decision time ↓ Time for an episode ↓ Success Probability ↑

Astandard

250 -9.95 ± 0.0 300.0 ± 0.0 0.13 ± 0.0 413.46 ± 4.16 0
500 -9.95 ± 0.0 300.0 ± 0.0 0.29 ± 0.0 806.97 ± 8.82 0
750 32.04 ± 62.17 213.8 ± 118.03 0.42 ± 0.02 851.53 ± 466.61 0.4

1000 100.0 ± 0.0 90.8 ± 20.17 0.56 ± 0.02 480.38 ± 102.06 1

ATE

25 -497.53 ± 137.16 4.0 ± 0.0 2.31 ± 0.09 14.1 ± 0.43 0
50 16.32 ± 187.12 4.2 ± 0.45 3.66 ± 0.1 20.03 ± 1.59 0.8
75 80.0 ± 44.72 4.4 ± 1.14 5.08 ± 0.24 27.39 ± 5.84 0.8
100 80.0 ± 44.72 4.4 ± 1.14 6.57 ± 0.21 34.56 ± 7.79 0.8

Table 5: Performance of Astandard and ATE on the u-shaped map in Dubins Car as the planning horizon is varied. Both agents
use 10,000 samples and 50 optimization steps.

D Number of samples Reward ↑ Decision Steps ↓ Decision time ↓ Time for an episode ↓ Success Probability ↑

Astandard

250

10000

-9.95 ± 0.0 300.0 ± 0.0 0.66 ± 0.0 580.85 ± 2.91 0
500 12.04 ± 49.17 255.2 ± 100.18 1.38 ± 0.01 970.11 ± 378.22 0.2
750 - - - - 0

1000 - - - - 0

Astandard 1000

100 -919.43 ± 238.36 300.0 ± 0.0 0.46 ± 0.03 1567.29 ± 25.31 0
1000 -15.92 ± 8.9 300.0 ± 0.0 0.73 ± 0.0 1663.75 ± 8.56 0

10000 - - - - 0

ATE

25

10000

-479.62 ± 145.46 4.0 ± 0.0 2.31 ± 0.09 14.05 ± 0.25 0
50 18.31 ± 182.67 3.6 ± 0.55 4.0 ± 0.12 18.72 ± 2.41 0.8
75 100.0 ± 0.0 4.6 ± 0.89 5.36 ± 0.16 30.01 ± 4.56 1.0
100 80.0 ± 44.72 4.4 ± 0.89 6.87 ± 0.12 35.74 ± 6.44 0.8

Table 6: Performance of Astandard and ATE on the u-shaped map in Dubins Car when the action space is augmented with 100
dummy actions. Both agents use 50 optimization steps. Missing values indicate that the particular configuration was not feasible
due to large memory requirements.
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(a) DTE = 50, |A| = 2
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(b) DTE = 75, |A| = 2
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(c) DTE = 100, |A| = 2
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(d) DTE = 50, |A| = 102
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(e) DTE = 100, |A| = 102

Figure 6: Failure cases for ATE in the u-shaped map. When |A| = 2, for DTE = 75 and DTE = 100, the agent identifies a path
around the obstacles but runs out of the maximum number of primitive steps. On increasing the action space, a similar failure
occurs for DTE = 100. The failures due to DTE = 50 happen because the agent does not find a path around the obstacles.


