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Abstract

Offline reinforcement learning (RL) algorithms can learn bet-
ter decision-making compared to behavior policies by stitch-
ing the suboptimal trajectories to derive more optimal ones.
Meanwhile, Decision Transformer (DT) abstracts the RL as
sequence modeling, showcasing competitive performance on
offline RL benchmarks. However, recent studies demonstrate
that DT lacks of stitching capacity, thus exploiting stitching
capability for DT is vital to further improve its performance.
In order to endow stitching capability to DT, we abstract
trajectory stitching as divergent sequential expert matching
and introduce our approach, ContextFormer, which integrates
contextual information-based imitation learning (IL) and se-
quence modeling to stitch sub-optimal trajectory fragments
by emulating the representations of a limited number of ex-
pert trajectories. To validate our approach, we conduct exper-
iments from two perspectives: 1) We conduct extensive ex-
periments on D4RL benchmarks under the settings of IL, and
experimental results demonstrate ContextFormer can achieve
competitive performance in multiple IL settings. 2) More
importantly, we conduct a comparison of ContextFormer
with various competitive DT variants using identical training
datasets. The experimental results unveiled ContextFormer’s
superiority, as it outperformed all other variants, showcasing
its remarkable performance.

Introduction
Depending on whether direct interaction with an environ-
ment for acquiring new training samples, reinforcement
learning (RL) can be categorized into offline RL (Kumar
et al. 2020; Kostrikov, Nair, and Levine 2021) and online
RL (Haarnoja et al. 2018; Schulman et al. 2017). Among
that, offline RL aims to learn the optimal policy from a set
of static trajectories collected by behavior policies without
the necessity to interact with the online environment (Levine
et al. 2020). One notable advantage of offline RL is its capac-
ity to learn a more optimal behavior from a dataset consist-
ing solely of sub-optimal trials (Levine et al. 2020). This fea-
ture renders it an efficient approach for applications where
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data acquisition is prohibitively expensive or poses poten-
tial risks, such as with autonomous vehicles and pipelines.
The success of these offline algorithms is attributed to its
stitching capability to fully leverage sub-optimal trails and
seamlessly stitch them into an optimal trajectory, which has
been discussed by (Fu et al. 2019, 2020; Hong, Dragan, and
Levine 2023) Different from the majority of offline RL al-
gorithms, Decision Transformer (DT) (Chen et al. 2021) ab-
stracts the offline RL problems as a sequence modeling pro-
cess. Such paradigm achieved commendable performance
across various offline benchmarks, including d4rl (Fu et al.
2021). Despite its success, recent studies suggest a limita-
tion in DT concerning a crucial aspect of offline RL agents,
namely, stitching (Yamagata, Khalil, and Santos-Rodriguez
2023). Specifically, DT appears to fall short in achieving the
ability to construct an optimal policy by stitching together
sub-optimal trajectories. Consequently, DT inherently lacks
the capability to obtain the optimal policy through the stitch-
ing of sub-optimal trials. To address this limitation, investi-
gating and enhancing the stitching capability of DT, or intro-
ducing additional stitching capabilities, holds the theoretical
promise of further elevating its performance in offline tasks.

To endow the stitching capability to the Transformer
for decision making, QDT (Yamagata, Khalil, and Santos-
Rodriguez 2023) utilizes Q-networks to relabel Return-
to-Go (RTG), endowing the stitching capability to DT.
While experimental results suggest that relabeling the RTG
through a pre-trained conservative Q-network can enhance
DT’s performance, this relabeling approach with a conser-
vative critic tends to make the learned policy excessively
conservative while being suffered from out-of-distribution
(OOD) issues. Consequently, the policy’s ability to gener-
alize is diminished. To further address this limitation, we
approach it from the perspective of supervised and latent
(representation)-based imitation learning (IL), and propose
ContextFormer. Specifically, we utilize the representations
of a limited number of expert trajectories as demonstrations
to stitch sub-optimal trajectories in the latent space. This ap-
proach involves the joint and supervised training of a latent-
conditioned sequential policy (transformer) while optimiz-
ing contextual embedding. By stitching trajectory fragments
in the latent space using a supervised training objective,
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Figure 1: Demonstration of Context Transformer (ContextFormer). (Right) ContextFormer utilizes the contextual information
z∗ derived from the divergence-based sequential expert matching process to enhance its inference capabilities with the environ-
ment. (left) z∗ should aim to converge towards the expert contextual information (I∗) while distancing itself from sub-optimal
contextual information (I−). Consequently, ContextFormer can effectively integrate and stitch together fragments of the in-
expert distribution to produce more robust expert-level inferences. Note: For a more comprehensive understanding of trajectory
stitching, kindly refer to the section Analysis of Stitching.

ContextFormer eliminates the need for conservative Q func-
tion. Therefore, ContextFormer serves as a remedy for com-
mon issues found in both return-conditioned DT and QDT.

To summarize, the majority contribution of our studies
can be summarized as follows:

• We propose a novel IL framework that can endow
stitching capability to the transformer for decision
making with both theoretical analysis and numeri-
cal support. Specifically, on the theoretical aspect, we
demonstrate that expert matching can extract valuable
in-expert distributed HI from sub-optimal trajectories,
supplying the expert contextual information stitching the
in-expert distribution fragments together. On the exper-
imental aspect, extensive experimental results showcase
ContextFormer surpass multiple DT variants.

• Our stitching method is a supervised method, thus
getting rid of the limitations of conservatism inherit
from offline RL algorithms. Specifically, our method
represents a departure from conservative approaches by
adopting a fully supervised objective to enhance the
stitching capacity of the Transformer policy. This ap-
proach aren’t suffered from the OOD samples and the
conservatism inherited from the conservative off-policy
algorithms.

• Our approach can extract in-expert distribution in-
formation from sub-optimal trails to supplement the
contextual embedding which is more informative than
Prompt-DT and GDT. Consequently, ContextFormer
can utilize HI from entire dataset for better decision mak-
ing than Prompt-DT and GDT. Additionally, our method
overcomes the constraints posed by scalar reward func-
tions, mitigating information bottlenecks.

Related Work

Offline Reinforcement Learning (RL). Offline RL learns
policy from a static offline dataset and lacks the capability to
interact with environment to collect new samples for train-
ing. Therefore, compared to online RL, offline RL is more
susceptible to out-of-distribution (OOD) issues. Further-
more, OOD issues in offline RL have been extensively dis-
cussed. The majority competitive methods includes adding
regularized terms to the objective function of offline RL to
learn a conservative policy (Peng et al. 2019; Hong, Dragan,
and Levine 2023; Wu et al. 2022; Chen et al. 2022) or a con-
servative value network (Kumar et al. 2020; Kostrikov, Nair,
and Levine 2021; An et al. 2021). By employing such meth-
ods, offline algorithms can effectively reduce the overesti-
mation of OOD state actions. Meanwhile, despite the exis-
tence of OOD issues in offline RL, its advantage lies in fully
utilizing sub-optimal offline datasets to stitch offline trajec-
tory fragments and obtain a better policy (Fu et al. 2019,
2021). The ability to enhance the offline learned policy be-
yond the behavior policy by integrating sub-optimal trajec-
tory fragments is referred to as policy improvement. How-
ever, previous researches indicate that DT lacks of stitch-
ing capability Therefore, endowing stitching capability to
DT could potentially enhance its sample efficiency in of-
fline problem setting. Meanwhile, in the context of offline
DT, the baseline most relevant to our study is Q-learning
DT (Yamagata, Khalil, and Santos-Rodriguez 2023) (QDT).
Specifically, QDT proposes a method that utilizes a conser-
vative critic network trained offline to relabel the RTG in the
offline dataset, approximating the capability to stitch trajec-
tories for DT. Unlike QDT, we endow stitching capabilities
to DT from the perspective of expert matching that is a su-
pervised and latent-based training objective.



Imitation Learning (IL). Previous researches have exten-
sively discussed various IL problem settings and mainly in-
cludes LfD (Argall et al. 2009; Judah et al. 2014; Ho and
Ermon 2016; Brown, Goo, and Niekum 2020; Ravichandar
et al. 2020; Boborzi et al. 2022), LfO (Ross, Gordon, and
Bagnell 2011; Liu et al. 2018; Torabi, Warnell, and Stone
2019; Boborzi et al. 2022), offline IL (Chang et al. 2021;
DeMoss et al. 2023; Zhang et al. 2023) and online IL (Ross,
Gordon, and Bagnell 2011; Brantley, Sun, and Henaff 2020;
Sasaki and Yamashina 2021). The most related IL methods
to our studies are Hindsight Information Matching (HIM)
based methods (Furuta, Matsuo, and Gu 2022; Paster, McIl-
raith, and Ba 2022; Kang et al. 2023; Liu et al. 2023; Gu
et al. 2023), in particular, CEIL (Liu et al. 2023) is the novel
expert matching approach considering abstract various IL
problem setting as a generalized and supervised HIM prob-
lem setting. Although both ContextFormer and CEIL share
a commonality in calibrating the expert performance via ex-
pert matching, different from CEIL that our study focuses on
endowing the stitching capabilities to transformer, we addi-
tionally utilize sub-optimal trajectory representation to sup-
ply the contextual information. Besides, the core contribu-
tion of our study is distinct to offline IL that we don’t aim to
enhance the IL domain but rather to endow stitching capa-
bility to transformer for decision making.

Preliminary
Before formally introducing our framework, we first intro-
duce the basic concepts, which include RL, IL, HIM, and
In-Context Learning (ICL).

Reinforcement Learning (RL). We consider the se-
quential decision making process can be represented by
a Non-Markov Decision Processing (MDP) tuple, i.e.
M :=

(
S,A,R, dM(st+1|st,at), r, γ, rho0

)
, where S

denotes observation space, A denotes action space, and
dM(st+1|st,at) : S × A → ∆(S) denotes the tran-
sition (dynamics) probability, r(st,at) : S × A → R
denotes the reward function, γ ∈ [0, 1] denotes the dis-
count factor, and s0 ∼ ρ0 is the initial observation, ρ0
is the initial state distribution. The goal of sequential de-
cision making is to find the optimal sequence model (pol-
icy) termed π∗(·|τ) : T × S × A → A that can bring the
highest accumulated return R(τT ) =

∑t=T
t=0 (st,at)∼τT

γt ·
r(st,at), i.e. π∗ := argmaxπ Eτ∼π[R(τ)], where τt ={
s0,a0, r(s0,a0), · · · , st,at, r(st,at)|s0 ∼ ρ0, st+1 ∼

dM(·|st,at),at ∼ π(·|τt−1)} is the rollout trajectory.
Furthermore, DT abstracts offline RL as sequence model-
ing i.e. at := π(·|R̂0, s0,a0, · · · , R̂t, st), where R̂t′ =∑t=T

t=t′ γ
t−t′r(st,at) denotes Return-to-Go (RTG).

Imitation Learning (IL). In the IL problem setting,
the reward function r(st,at) can not be accessed.
However, the demonstrations Ddemo =

{
τdemo =

{s0,a0, · · · , st,at}|τdemo ∼ π∗} or observations Dobs ={
τobs = {s0, · · · , st}|τobs ∼ π̂

}
are available. Accord-

ingly, the goal of IL is to recover the performance of expert
policy by utilizing extensive sub-optimal trajectories τ̂ ∼ π̂

imitating expert demonstrations or observations, where π̂ is
the sub-optimal policy. Meanwhile, according to the objec-
tive of IL, it has two general settings: 1) In the setting of LfD,
we imitate from demonstration τ . 2) In the setting of LfO,
we imitate from observation {st−k, st−k+1, · · · , st} ∼ τ .

Hindsight Information Matching (HIM). Furuta, Mat-
suo, and Gu define the information matching problem as:

π(·|z, s) := argminπEz∼p(z),τz∼πz

[
D[z,IΦ(τz)]

]
, (1)

where z ∈ Z , and IΦ(τz) : S × A → Z denotes the
information statistical function that can extract representa-
tion or information statistical value z from the z condi-
tioned offline trajectory τz i.e. z = IΦ(τz), and D denotes
the divergence metric. Furthermore, the HIM problem can
be defined by : τz will be optimal once we set up z as
z := argminz Eτ∗∼π∗(τ)[D[z,IΦ(τ∗)]]. Additionally, for
convenience, we refer to the output of information statistical
function as Hindsight Information (HI).

In-Context Learning (ICL). Xu et al. showcases that DT
can be prompted with offline trajectory fragments to con-
duct fine-tuning and adaptation on new similar tasks. i.e.
at := π(·|τprompt ⊕ {s0,a0, · · · , st}), where ⊕ denotes
concatenation, and the prompt sampled from another tra-
jectory within the same domain is defined as τprompt =
{ŝ0, â0, · · · , ŝk, âk}. Despite that ContextFormer also uti-
lizes contextual information. However, it is different from
Prompt-DT that ContextFormer condition on the trajectory’s
information statistics value z rather prompt to inference,
which is possible to consider useful samples with longer-
term future information during the training process.

Can expert matching endow stitching to
transformer for decision making?

DT lacks of stitching capacity has been noted in previous
studies. Consequently, it is imperative to investigate meth-
ods to augment this capability and enhance the overall per-
formance of DT. One such proposed solution is Q-learning
DT (Yamagata, Khalil, and Santos-Rodriguez 2023), which
involves leveraging a pre-trained conservative Q network
to relabel the Return-to-Go (RTG) values of offline RL
datasets. Subsequently, DT undergoes training on the rela-
beled dataset to acquire stitching capacity. However, this ap-
proach has several limitations. During the evaluation pro-
cess, DT may encounter out-of-distribution samples, poten-
tially disrupting its decision-making process. In contrast to
Q-DT, ContextFormer utilizes divergent sequential expert
matching (Equation 2) to endow DT with stitching capac-
ity. In particular, different from previous expert matching ap-
proach (Liu et al. 2023), which solely mimic the expert pol-
icy for decision-making, divergent sequential expert match-
ing goes a step further by harnessing in-expert distribution
HI from sub-optimal datasets (Theorem 1). By seamlessly
stitching them together, it eliminates the overestimation of
scarcity in expert demonstrations.

In the upcoming sections, we will elucidate how divergent
sequential expert matching extracts in-expert HI from sub-
optimal datasets and adeptly integrates them.



Notations. In this section we provide the notations we
utilized. Specifically, we define the expert policy (sequen-
tial policy) as π∗(·|τ∗), the sub-optimal policy as π̂(·|τ̂),
and the density functions of expert and sub-optimal policies
are respectively represented as P ∗(τ) ∼ π∗, P̂ (τ) ∼ π̂.
Furthermore, we define the optimal (expert) trajectory as
τ∗ ∼ π∗(τ), the sub-optimal trajectory as τ̂ ∼ π̂(τ), and the
mixture of expert and sub-optimal trajectories as τ ∼ π∗(τ)
and π̂(τ).

Definition 1 (Latent conditioned sequence modeling).
Given the latent embedding z, the process of latent con-
ditioned sequence modeling can be formulated as at :=
πz(·|z, s0,a0, · · · , z, st), where D[z||IΦ(τz)] ≤ ϵ, ϵ is a
very small threshold. Meanwhile, we define πIΦ(τ) as the
contextual policy πz conditioned on information statistics
value IΦ(τ).

Previously, Liu et al. propose utilizing z∗ solely to mimic
the expert HI. However, if the expert demonstrations are not
sufficient to estimate a robust representation, it may limit
the generality of the contextual policy. In order to further
enhance the estimation of z∗, we propose divergent se-
quential expert matching: Given the HI extractor IΦ(·|τ),
jointly optimizing the contextual information (or HI) z∗ and
contextual policy πz(·|τ) to robustly match the expert pol-
icy i.e. Equation 2. In particular, the optimal contextual em-
bedding z∗ should have to be calibrated with the the expert
trajectory’s HI and away from the sub-optimal trajectory’s
HI.

J (z∗) = min
z∗,IΦ

Eτ∗,τ̂

[
λ1 · ||z∗ − IΦ(τ∗)||−

λ2 · ||z∗ − IΦ(τ̂)||
]
,

(2)

where λ1, λ2 separately denote the weight. Subsequently, we
analyze why Equation 2 can stitch sub-optimal fragments.

Analysis of stitching
We regard P ∗(τ) or P̂ (τ) as density function, separately es-
timating the probability of τ being sampled from policies
π∗(·|τ∗) and π̂(·|τ̂). Subsequently, we propose Theorem 1:

Theorem 1 (Expert Calibration). Given the expert policy
π∗(·|τ), the sub-optimal policy π̂(·|τ), the information stat-
ical function IΦ(·|τ), contextual embedding z∗. Minimizing
Equation 2 is equivalent to:

min
z∗,IΦ

K ·
(∫

τ∼S×A
1(λ1 · P ∗(τ) ≥ λ2 · P̂ (τ))||z∗ − IΦ(τ)||dτ︸ ︷︷ ︸

Jterm1

+

∫
τ∼S×A

1(λ1 · P ∗(τ) ≤ λ2 · P̂ (τ))||z∗ − IΦ(τ)||dτ︸ ︷︷ ︸
Jterm2

)

, where 1 denotes indicator, and K = (λ1P
∗(τ)−λ2P̂ (τ)).

Proof of Theorem 1 see Appendix.

Figure 2: Demonstration of Stitching. I∗ represents the HI
that is associated with being close to an expert trajectory,
while I− represents the HI that is associated with being far
from an expert trajectory.

Connection with Stitching. It can be concluded from
Theorem 1 that when λ1 · P ∗(τ) ≥ λ2 · P̂ (τ) i.e. current
trajectory fragments are much more possible sampled from
expert policy, z∗ will be away from its HI, vice visa. There-
fore, Theorem 1 demonstrates the capability of divergent se-
quential expert matching to leverage z∗ to extract HI from
trajectory fragments aligning with expert HI within trajecto-
ries (we provide a case in Figure 2). Consequently, πz can
generate trajectories conforming to the in-expert distribution
when conditioned on z∗, and stitch the in-expert distribution
fragments together. In this following section, we propose our
approach ContextFormer.

Context Transformer (ContextFormer)
We introduce ContextFormer, which utilizes divergent se-
quential expert matching to empower latent conditioned
Transformer with stitching capabilities, stitching the in-
expert trajectory fragments in latent space. Furthermore,
compared to previous scalar-conditioned DT and its vari-
ants, ContextFormer is conditioned on more informative fac-
tors, thereby overcoming the limitations of information bot-
tlenecks. Meanwhile, ContextFormer’s objective is entirely
supervised, thus overcoming the conservatism limitations of
DT variants inherent in jointly utilizing conservative Q.

Method
Training Procedure. We model the contextual sequence
model by the aforementioned latent conditioned sequence
modeling as defined in Definition 1, and the supervised pol-
icy loss defined as Equation 3. Meanwhile, we optimize
z∗ by training the contextual sequence model with the di-
vergent sequential expert matching objective as defined in
Equation 2

Jπz,IΦ = Eτ∼(π∗,π̂)

[
||π(·|IΦ(τ), s0,a0, · · · ,IΦ(τ), st)− at||

]
,

(3)

where τ =
{
s0,a0, · · · , st,at

}
is the rollout tra-

jectory, while π̂ and π∗ are separated to the sub-
optimal and optimal policies, and πIΦ(τ)(·|τIΦ) =

π(·|IΦ(τ t−k:t
z ), s0,a0, · · · ,IΦ(τ t−k:t

z ), st). Meanwhile, we
also optimize the HI extractor IΦ and contextual embedding
z∗ via Equations 3 and 2:



Evaluation Procedure. Based on the modeling approach
defined in Definition 1, we utilize the contextual embedding
z∗ optimized by Equation 2 as the goal for each inference
moment of our latent conditioned sequence model, thereby
auto-regressively rolling out trajectory in the environment to
complete the testing (Algorithm 1).

Practical Implementation of ContextFormer

Algorithm 1: ContextFormer

Require: HIM extractor IΦ(·|τ), Contextual policy πz(·|τ), sub-
optimal offline datasets Dτ̂ ∼ π̂, randomly initialized con-
textual embedding z∗, and demonstrations (expert trajectories)
Dτ∗ ∼ π∗

Training:
1: Sample batch suboptimal trails τ̂ fromDτ̂ , and sampling batch

demonstrations τ∗ from Dπ∗ .
2: Update HI extractor IΦ by solving Equation 3, Equation 2.

Update z∗ by solving Equation 2.
3: Update policy πz by solving Equation 3.

Evaluation:
1: Initialize t = 0; st ← env.reset(); τ = {s0}; done = False,

R = 0, N = 0.
2: while t ≤ N or not done do
3: at ← π(·|τt);
4: st+1, done, rt ← env.step(at);
5: τ.append(at, st+1)
6: R+ = rt;t+ = 1
7: end while
8: Return R

We utilize BERT (Devlin et al. 2019) as the defined HI
extractor IΦ, and randomly initialize a vector as the con-
textual embedding z∗. Our contextual policy πz(·|τ t−k:t

z )
is modified from the DT (Chen et al. 2021) that we re-
place R̂ with z∗. The input of ContextFormer is a tra-
jectory fragments with a window size of k i.e. τ t−k:t

z =
{z, st−k, z,at−k, · · · , z, st}. For more detials about Con-
textFormer’s hyperparameter, please refer to Experimental
Setup section of Appendix. In terms of our training frame-
work, as shown in Algorithm 1, the optimization of IΦ in-
volves the joint utilization of the divergent sequential ex-
pert matching objective as formulated in Equation 2 and
the latent conditioned supervised training loss as formulated
in Equation 3. Notably, Equation 2 and Equation 3 are not
used simultaneously to optimize z∗. Instead, in each updat-
ing epoch, we use Equation 3 to update IΦ and πz. Sub-
sequently, we freeze πz and then use Equation 2 to update
IΦ. Finally, with IΦ and πz frozen, we use Equation 2 to
update z∗. The evaluation process has also been depicted
in Algorithm 1 that once we obtain z∗ and πz, we autore-
gressively utilize latent conditioned sequence modeling to
conduct evaluation.

Experimental settings
Imitation Leaning (IL). These IL experiment aims to val-
idate our claim (Analysis of stitching) that divergent se-
quential expert matching can extract in-expert HI from sub-
optimal trails to provide z∗. Intuitively, the better perfor-

mance achieved in these tasks, the stronger the validation of
our claim. We utilize 5 to 20 expert trajectories and conduct
evaluations under both LfO and LfD settings. The objective
of these tasks is to emulate π∗(·|τ) by leveraging a substan-
tial amount of sub-optimal offline dataset τ̂ ∼ π̂, aiming to
achieve performance that equals or even surpasses that of
the expert policy π∗(·|τ). In particular, when conduct LfO
setting, we imitate from τobs, when conduct LfD setting we
imitate from τdemo (τdemo and τobs are introduced in sec-
tion Preliminary). And we utilize τdemo/τobs as τ∗ (contex-
tual optimization) in LfD and LfO settings to optimize z∗ by
Equation 2 and Equation 3. We optimize πz by Equation 3.

DT comparisons. These experiments are conducted to
substantiate our contributions, as evidenced by the expecta-
tion that ContextFormer should outperform various selected
DT baselines. Note that, we are disregarding variations in
experimental settings such as IL, RL, etc. Our focus is on
controlling factors (data composition, model architecture,
etc.), with a specific emphasis on comparing model per-
formance. In particular, ContextFormer is trained under the
same settings as IL, while DT variants underwent evaluation
using the original settings.

Training datasets
IL. Our experiments are conducted on four Gym-
Mujoco (Brockman et al. 2016) environments, includ-
ing Hopper-v2, Walker2d-v2, Ant-v2, and HalfCheetah-v2.
These tasks are constructed utilizing D4RL (Fu et al. 2021)
datasets including medium-replay (mr), medium (m),
medium-expert (me), and expert (exp).

DT comparisons. When comparing ContextFormer with
DT, GDT, and Prompt-DT, we utilize the datasets discussed
in IL. Additionally, we compare QDT and ContextFormer
on the maze2d domain, specifically designed to assess their
stitching abilities (Yamagata, Khalil, and Santos-Rodriguez
2023). In terms of the dataset we utilize for training base-
lines, we ensure consistency in our comparisons by us-
ing identical datasets. For instance, when comparing Con-
textFormer (LfD #5) on Ant-medium, we train DT variants
with the same datasets (5 expert trails+ all medium trails).

Baselines
Imitation learning. Our IL baselines include ORIL (Zolna
et al. 2020), SQIL (Reddy, Dragan, and Levine 2019), IQ-
Learn (Garg et al. 2022), ValueDICE (Kostrikov, Nachum,
and Tompson 2019), DemoDICE (Kim et al. 2022),
SMODICE (Ma et al. 2022), and CEIL (Liu et al. 2023). The
results of these baselines are directly referenced from (Liu
et al. 2023), which are utilized to be compared with Con-
textFormer in both the LfO and LfD settings, intuitively
showcasing the transformer’s capability to better leverage
sub-optimal trajectories with the assistance of expert trajec-
tories (hindsight information). DT comparisons. To further
demonstrate the superiority of ContextFormer, we carry out
comparisons between ContextFormer and DT, DT variants
(Prompt-DT, PTDT-offline, and QDT), utilizing the same
dataset. This involves comparing the training performance
of various transformers.



Table 1: Normalized scores (averaged over 10 trails for each task) when we vary the number of the expert demonstrations (#5,
#20). The highest scores are highlighted.

Offline IL Algorithm
Hopper Halfcheetah Walker2d Ant

sum
m mr me m mr me m mr me m mr me

L
fD

#5

ORIL (TD3+BC) 42.1 26.7 51.2 45.1 2.7 79.6 44.1 22.9 38.3 25.6 24.5 6.0 408.8
SQIL (TD3+BC) 45.2 27.4 5.9 14.5 15.7 11.8 12.2 7.2 13.6 20.6 23.6 -5.7 192.0
IQ-Learn 17.2 15.4 21.7 6.4 4.8 6.2 13.1 10.6 5.1 22.8 27.2 18.7 169.2
ValueDICE 59.8 80.1 72.6 2.0 0.9 1.2 2.8 0.0 7.4 27.3 32.7 30.2 316.9
DemoDICE 50.2 26.5 63.7 41.9 38.7 59.5 66.3 38.8 101.6 82.8 68.8 112.4 751.2
SMODICE 54.1 34.9 64.7 42.6 38.4 63.8 62.2 40.6 55.4 86.0 69.7 112.4 724.7
CEIL 94.5 45.1 80.8 45.1 43.3 33.9 103.1 81.1 99.4 99.8 101.4 85.0 912.5
ContextFormer 74.9 77.8 103.0 43.1 39.6 46.6 80.9 78.6 102.7 103.1 91.5 123.8 965.6

L
fO

#2
0 ORIL (TD3+BC) 55.5 18.2 55.5 40.6 2.9 73.0 26.9 19.4 22.7 11.2 21.3 10.8 358.0

SMODICE 53.7 18.3 64.2 42.6 38.0 63.0 68.9 37.5 60.7 87.5 75.1 115.0 724.4
CEIL 44.7 44.2 48.2 42.4 36.5 46.9 76.2 31.7 77.0 95.9 71.0 112.7 727.3
ContextFormer 67.9 77.4 97.1 43.1 38.8 55.4 79.8 79.9 109.4 102.4 86.7 132.2 970.1

Results of IL experiments
ContextFormer demonstrates competitive performance
in leveraging expert information to learn from sub-
optimal datasets. We conduct various IL task settings in-
cluding LfO and LfD to assess the performance of Con-
textFormer. As illustrated in table , ContextFormer out-
performs selected baselines, achieving the highest perfor-
mance in both LfD #5 and LfO #20 settings, showcas-
ing respective improvements of 5.8% and 33.4% compared
to the best baselines (CEIL). Additionally, ContextFormer
closely approach CEIL under the LfO #20 setting. These re-
sults demonstrate the effectiveness of our approach in utiliz-
ing expert information to assist in learning the sub-optimal
dataset, which is cooperated with our analysis (Section ).

Table 2: Comparison of performance between DT and Con-
textFormer (LfD #5).

Task DT+5 exp traj DT+10 exp traj ContextFormer (LfD #5)

hopper-m 69.5±2.3 72.0±2.6 74.9±9.5
walker2d-m 75.0±0.7 75.7±0.4 80.9±1.3
halfcheetah-m 42.5±0.1 42.6±0.1 43.1±0.2

hopper-mr 78.9±4.7 82.2±0.5 77.8±13.3
walker2d-mr 74.9±0.3 78.3±5.6 78.6±4.0
halfcheetah-mr 37.3±0.4 37.6±0.8 39.6±0.4

sum 378.1 388.4 394.9

ContextFormer showcase better performance than
various DT baselines
ContextFormer vs. Return Conditioned DT. Con-
textFormer leverages contextual information as condition,
getting riding of limitations such as the information bottle-
neck associated with scalar return. Additionally, we high-
lighted that expert matching aids the Transformer in stitch-
ing sub-optimal trajectories. Therefore, the performance of
ContextFormer is expected to be better than DT when us-
ing the same training dataset. To conduct this comparison,
we tested DT and ContextFormer on medium-replay,
medium, and medium-expert offline datasets. As shown
in table 2, ContextFormer (LfD #5) demonstrated approxi-

mately a 4.4% improvement compared to DT+5 expert tra-
jectories (exp traj) and a 1.7% improvement compared to
DT+10 exp traj.

ContextFormer vs. GDT and Prompt-DT. Con-
textFormer, Prompt-DT, and G-DT all use contextual
information for decision-making. However, ContextFormer
differs from Prompt-DT and GDT in the way and efficiency
of utilizing contextual information. Firstly, The contextual
information of ContextFormer fuses in-expert HI extracted
from entire datasets. But the Prompt-DT only encompass
trajectory fragments, and GDT only encompass local repre-
sentations. Additionally, according to the insights of HIM,
incorporating richer and more diverse future information
into the contextual information can help generate more
varied trajectories, thereby improving generality. Accord-
ingly, since z∗ encompasses significantly more expert-level
HI than isolated trajectory fragments, it becomes easier to
generate much more near-expert trajectories by conditioning
ContextFormer on z∗. As shown in Figure 3 (a), we conduct
a performance comparison between ContextFormer (LfD
#5) and GDT (GDT includes BDT and CDT, we utilized
BDT as our baseline) using the same 6 offline datasets
including hopper-m (mr), walker2d-m (mr),
halfcheetah-m (mr). ContextFormer demonstrates
a remarkable 25.7% improvement compared to the best
GDT setting. As shown in Figure 3 (b), we compare
ContextFormer (LfD #1) with Prompt-DT and PTDT-offline
on hopper-m, walker2d-m, halfcheetah-m. The
experimental results demonstrate that ContextFormer
outperforms PTDT-offline by 1.6%, Prompt-DT by 3.3%.
Therefore, the ability of ContextFormer to utilize contextual
information has been validated.
ContextFormer vs Q-DT. QDT utilizes a pre-trained con-
servative Q network to relabel the offline dataset, thereby
endowing stitching capability to DT for decision-making.
Our approach differs from QDT in that we leverage repre-
sentations of expert trajectories to stitch sub-optimal trajec-
tories. The advantages of ContextFormer lie in two aspects.
On the one hand, our method can overcome the informa-
tion bottleneck associated with the scalar reward function.
On the other hand, our objective is a supervised objective,
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Figure 3: (i) Total Normalized Scores of ContextFormer, GDT and Prompt DT. (i.a) Performance comparison with Gen-
eralized DT. (i.b) Performance comparison with Prompt-DT. Specifically, we conducted a performance comparison be-
tween ContextFormer (LfD #5) and GDT using the same six offline datasets: hopper-m (mr), walker2d-m (mr),
and halfcheetah-m (mr). Additionally, we compared ContextFormer (LfD #1) with Prompt-DT and PTDT-offline on
hopper-m, walker2d-m, and halfcheetah-m. The original experimental results have been appended in Appendix. (ii)
In this figure, we gradually increase the descriptions of expert trajectories and further observe the performance of ContextFormer
in the Learning from Demonstration (LfD) setting.

thereby eliminating the constraints of a conservative policy.
Meanwhile, as demonstrated in Table 3, we evaluate Con-
textFormer on multiple tasks in the maze2d domain, utiliz-
ing the top 10 trials ranked by return as demonstrations. Our
algorithm achieves a score of 364.3, surpassing all DTs.
Table 3: Comparison of the performance difference between
QDT and ContextFormer (LfD #10). ContextFormer (LfD
#10) performs the best. Notably, the experimental results
of QDT, DT and CQL are directly quated from (Yamagata,
Khalil, and Santos-Rodriguez 2023).

Task QDT DT ContextFormer (LfD #top 10 τ )

maze2d-open-v0 190.1±37.8 196.4±39.6 204.2±13.3
maze2d-medium-v1 13.3±5.6 8.2±4.4 63.6±25.6
maze2d-large-v1 31.0±19.8 2.3±0.9 33.8±12.9
maze2d-umaze-v1 57.3±8.2 31.0±21.3 61.8±0.1

sum 291.7 237.9 363.4

Impact of the number of demonstrations. We vary the
number of τdemo to conduct evaluation. Specifically, as il-
lustrated in Figure 3 (ii), ContextFormer’s performance on
medium-replay tasks generally improves with an in-
creasing number of demonstrations. However, for medium
and medium-expert datasets, there is only a partial im-
provement trend with an increasing number of τdemo. In
some medium-expert tasks, there is even a decreas-
ing trend. This can be attributed to the diverse trajectory
fragments in medium-replay, enabling ContextFormer
to effectively utilize expert information for stitching sub-
optimal trajectory fragments, resulting in improved perfor-
mance on medium-replay tasks. However, in medium
and medium-expert tasks, the included trajectory frag-
ments may not be diverse enough, and expert trajectories in
the medium-expert dataset might not be conducive to
effective learning. As a result, ContextFormer exhibits less
improvement on medium datasets and even a decrease in
performance on medium-expert tasks.

Impact of demonstrations’ diversity. Sown in Figure 4
(a). To demonstrate the influence of diversity among demon-
strations on ContextFormer’s performance, we initially iden-
tify a trajectory with the highest return, denoted as the best
traj. Subsequently, we select 100 trajectories with returns
similar to, but varying from, this reference trajectory (with

differences in returns falling within the range [0, 100]). Fol-
lowing this, we arrange all trajectories in ascending order
based on the cosine similarity of their states with those of
the best traj in the sorted list. We then sample 10 trajec-
tories using the following strategies: uniformly sampling
from the far left, left quarter, mid and right
quarter. The experimental results suggest a positive cor-
relation between the diversity of demos and the performance
of ContextFormer.
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Figure 4: Ablations of demonstration. (a) Impact of demon-
strations’ diversity. (b) Impact of demonstrations’ quality.

Impact of demonstrations’s quality. As shown in Fig-
ure 4 (b), we first arrange all expert trajectories according to
their returns. Subsequently, we sample four demonstration
sets by shifting a window of 10 steps across various starting
points within the sorted queue: left quarter, mid, and
the position ten steps before the far right. The experi-
mental demonstrates a trend: higher-quality demonstrations
are generally related to higher performance.

Conclusions

We empower the Transformer with stitching capabilities
for decision-making by leveraging expert matching and la-
tent conditioned sequence modeling. Our approach achieves
competitive performance on IL tasks, surpassing all selected
DT variants on the same dataset, thus demonstrating its fea-
sibility. Furthermore, from a theoretical standpoint, we pro-
vide mathematical derivations illustrating that stitching sub-
optimal trajectory fragments in the latent space enables the
Transformer to infer necessary decision-making aspects that
might be missing in sub-optimal trajectories.



References
An, G.; Moon, S.; Kim, J.-H.; and Song, H. O. 2021.
Uncertainty-Based Offline Reinforcement Learning with Di-
versified Q-Ensemble. arXiv preprint arXiv:2110.01548.
Argall, B. D.; Chernova, S.; Veloso, M.; and Browning,
B. 2009. A survey of robot learning from demonstration.
Robotics and Autonomous Systems, 57(5): 469–483.
Boborzi, D.; Straehle, C.-N.; Buchner, J. S.; and Mikel-
sons, L. 2022. Imitation Learning by State-Only Distribu-
tion Matching. arXiv preprint arXiv:2202.04332.
Brantley, K.; Sun, W.; and Henaff, M. 2020. Disagreement-
Regularized Imitation Learning. In International Confer-
ence on Learning Representations.
Brockman, G.; Cheung, V.; Pettersson, L.; Schneider, J.;
Schulman, J.; Tang, J.; and Zaremba, W. 2016. OpenAI
Gym. arXiv preprint arXiv:1606.01540.
Brown, D. S.; Goo, W.; and Niekum, S. 2020. Better-
than-Demonstrator Imitation Learning via Automatically-
Ranked Demonstrations. In Kaelbling, L. P.; Kragic, D.; and
Sugiura, K., eds., Proceedings of the Conference on Robot
Learning, volume 100 of Proceedings of Machine Learning
Research, 330–359. PMLR.
Chang, J.; Uehara, M.; Sreenivas, D.; Kidambi, R.; and Sun,
W. 2021. Mitigating Covariate Shift in Imitation Learning
via Offline Data With Partial Coverage. In Ranzato, M.;
Beygelzimer, A.; Dauphin, Y.; Liang, P.; and Vaughan, J. W.,
eds., Advances in Neural Information Processing Systems,
volume 34, 965–979. Curran Associates, Inc.
Chen, L.; Lu, K.; Rajeswaran, A.; Lee, K.; Grover, A.;
Laskin, M.; Abbeel, P.; Srinivas, A.; and Mordatch, I.
2021. Decision Transformer: Reinforcement Learning via
Sequence Modeling. arXiv preprint arXiv:2106.01345.
Chen, X.; Ghadirzadeh, A.; Yu, T.; Gao, Y.; Wang, J.; Li, W.;
Liang, B.; Finn, C.; and Zhang, C. 2022. Latent-Variable
Advantage-Weighted Policy Optimization for Offline RL.
arXiv preprint arXiv:2203.08949.
DeMoss, B.; Duckworth, P.; Hawes, N.; and Posner, I. 2023.
DITTO: Offline Imitation Learning with World Models.
arXiv preprint arXiv:2302.03086.
Devlin, J.; Chang, M.-W.; Lee, K.; and Toutanova, K. 2019.
BERT: Pre-training of Deep Bidirectional Transformers for
Language Understanding. arXiv preprint arXiv:1810.04805.
Fu, J.; Kumar, A.; Nachum, O.; Tucker, G.; and Levine, S.
2020. D4RL: Datasets for Deep Data-Driven Reinforcement
Learning. arXiv preprint arXiv:2004.07219.
Fu, J.; Kumar, A.; Nachum, O.; Tucker, G.; and Levine, S.
2021. D4RL: Datasets for Deep Data-Driven Reinforcement
Learning. arXiv preprint arXiv:2004.07219.
Fu, J.; Kumar, A.; Soh, M.; and Levine, S. 2019. Diagnosing
Bottlenecks in Deep Q-learning Algorithms. arXiv preprint
arXiv:1902.10250.
Furuta, H.; Matsuo, Y.; and Gu, S. S. 2022. General-
ized Decision Transformer for Offline Hindsight Informa-
tion Matching. arXiv preprint arXiv:2111.10364.

Garg, D.; Chakraborty, S.; Cundy, C.; Song, J.; Geist, M.;
and Ermon, S. 2022. IQ-Learn: Inverse soft-Q Learning for
Imitation. arXiv preprint arXiv:2106.12142.
Gu, Y.; Dong, L.; Wei, F.; and Huang, M. 2023. Pre-Training
to Learn in Context. arXiv preprint arXiv:2305.09137.
Haarnoja, T.; Zhou, A.; Abbeel, P.; and Levine, S. 2018.
Soft Actor-Critic: Off-Policy Maximum Entropy Deep Rein-
forcement Learning with a Stochastic Actor. arXiv preprint
arXiv:1801.01290.
Ho, J.; and Ermon, S. 2016. Generative Adversarial Imi-
tation Learning. In Lee, D.; Sugiyama, M.; Luxburg, U.;
Guyon, I.; and Garnett, R., eds., Advances in Neural Infor-
mation Processing Systems, volume 29. Curran Associates,
Inc.
Hong, J.; Dragan, A.; and Levine, S. 2023. Offline RL
with Observation Histories: Analyzing and Improving Sam-
ple Complexity.
Hu, S.; Shen, L.; Zhang, Y.; and Tao, D. 2023. Prompt-
Tuning Decision Transformer with Preference Ranking.
arXiv preprint arXiv:2305.09648.
Judah, K.; Fern, A.; Tadepalli, P.; and Goetschalckx, R.
2014. Imitation Learning with Demonstrations and Shaping
Rewards. Proceedings of the AAAI Conference on Artificial
Intelligence, 28(1).
Kang, Y.; Shi, D.; Liu, J.; He, L.; and Wang, D. 2023. Be-
yond Reward: Offline Preference-guided Policy Optimiza-
tion. arXiv preprint arXiv:2305.16217.
Kim, G.-H.; Seo, S.; Lee, J.; Jeon, W.; Hwang, H.; Yang, H.;
and Kim, K.-E. 2022. DemoDICE: Offline Imitation Learn-
ing with Supplementary Imperfect Demonstrations. In In-
ternational Conference on Learning Representations.
Kostrikov, I.; Nachum, O.; and Tompson, J. 2019. Imita-
tion Learning via Off-Policy Distribution Matching. arXiv
preprint arXiv:1912.05032.
Kostrikov, I.; Nair, A.; and Levine, S. 2021. Offline Re-
inforcement Learning with Implicit Q-Learning. arXiv
preprint arXiv:2110.06169.
Kumar, A.; Zhou, A.; Tucker, G.; and Levine, S. 2020. Con-
servative Q-Learning for Offline Reinforcement Learning.
arXiv preprint arXiv:2006.04779.
Levine, S.; Kumar, A.; Tucker, G.; and Fu, J. 2020. Offline
Reinforcement Learning: Tutorial, Review, and Perspectives
on Open Problems. arXiv preprint arXiv:2005.01643.
Liu, J.; He, L.; Kang, Y.; Zhuang, Z.; Wang, D.; and Xu,
H. 2023. CEIL: Generalized Contextual Imitation Learning.
arXiv preprint arXiv:2306.14534.
Liu, Y.; Gupta, A.; Abbeel, P.; and Levine, S. 2018. Imita-
tion from Observation: Learning to Imitate Behaviors from
Raw Video via Context Translation. In 2018 IEEE Inter-
national Conference on Robotics and Automation (ICRA),
1118–1125.
Ma, Y. J.; Shen, A.; Jayaraman, D.; and Bastani, O. 2022.
Versatile Offline Imitation from Observations and Examples
via Regularized State-Occupancy Matching. arXiv preprint
arXiv:2202.02433.



Paster, K.; McIlraith, S.; and Ba, J. 2022. You Can’t
Count on Luck: Why Decision Transformers and RvS Fail in
Stochastic Environments. arXiv preprint arXiv:2205.15967.
Peng, X. B.; Kumar, A.; Zhang, G.; and Levine, S.
2019. Advantage-Weighted Regression: Simple and Scal-
able Off-Policy Reinforcement Learning. arXiv preprint
arXiv:1910.00177.
Ravichandar, H.; Polydoros, A. S.; Chernova, S.; and Bil-
lard, A. 2020. Recent Advances in Robot Learning from
Demonstration. Annual Review of Control, Robotics, and
Autonomous Systems, 3(1): 297–330.
Reddy, S.; Dragan, A. D.; and Levine, S. 2019. SQIL: Imita-
tion Learning via Reinforcement Learning with Sparse Re-
wards. arXiv preprint arXiv:1905.11108.
Ross, S.; Gordon, G.; and Bagnell, D. 2011. A Reduction of
Imitation Learning and Structured Prediction to No-Regret
Online Learning. In Gordon, G.; Dunson, D.; and Dudı́k,
M., eds., Proceedings of the Fourteenth International Con-
ference on Artificial Intelligence and Statistics, volume 15 of
Proceedings of Machine Learning Research, 627–635. Fort
Lauderdale, FL, USA: PMLR.
Sasaki, F.; and Yamashina, R. 2021. Behavioral Cloning
from Noisy Demonstrations. In International Conference
on Learning Representations.
Schulman, J.; Wolski, F.; Dhariwal, P.; Radford, A.; and
Klimov, O. 2017. Proximal Policy Optimization Algorithms.
arXiv preprint arXiv:1707.06347.
Torabi, F.; Warnell, G.; and Stone, P. 2019. Recent Advances
in Imitation Learning from Observation. arXiv preprint
arXiv:1905.13566.
Wu, J.; Wu, H.; Qiu, Z.; Wang, J.; and Long, M. 2022.
Supported Policy Optimization for Offline Reinforcement
Learning. arXiv preprint arXiv:2202.06239.
Xu, M.; Shen, Y.; Zhang, S.; Lu, Y.; Zhao, D.; Tenen-
baum, J. B.; and Gan, C. 2022. Prompting Decision Trans-
former for Few-Shot Policy Generalization. arXiv preprint
arXiv:2206.13499.
Yamagata, T.; Khalil, A.; and Santos-Rodriguez, R. 2023. Q-
learning Decision Transformer: Leveraging Dynamic Pro-
gramming for Conditional Sequence Modelling in Offline
RL. arXiv preprint arXiv:2209.03993.
Zhang, W.; Xu, H.; Niu, H.; Cheng, P.; Li, M.; Zhang, H.;
Zhou, G.; and Zhan, X. 2023. Discriminator-Guided Model-
Based Offline Imitation Learning. In Liu, K.; Kulic, D.;
and Ichnowski, J., eds., Proceedings of The 6th Conference
on Robot Learning, volume 205 of Proceedings of Machine
Learning Research, 1266–1276. PMLR.
Zolna, K.; Novikov, A.; Konyushkova, K.; Gulcehre, C.;
Wang, Z.; Aytar, Y.; Denil, M.; de Freitas, N.; and Reed, S.
2020. Offline Learning from Demonstrations and Unlabeled
Experience. arXiv preprint arXiv:2011.13885.



Ethical Claim and Social Impact
the Transformer has revolutionized various domains, including sequential decision-making. However, previous studies have
highlighted the absence of typical stitching capabilities in classical offline RL algorithms for transformers. Therefore, endow-
ing the stitching capability to transformers is crucial to enhancing their ability to leverage sub-optimal trajectories for policy
improvement.

In this research, we propose the incorporation of expert matching to empower transformers with the capacity to stitch sub-
optimal trajectory fragments. This extension of stitching capability to transformers within the realm of supervised learning
removes constraints related to scalar return. We believe that our approach enhances transformers by endowing them with
stitching capability through expert matching, thereby contributing to improved sequential decision-making.

Mathematics Proof
Proof of Theorem 1
Given our contextual optimization objective:

JIΦ,z∗ = min
z∗,IΦ

Eτ̂∼π̂z∗ ,τ∗∼π∗
[
λ1 ·

∣∣∣∣z∗ − IΦ(τ∗)
∣∣∣∣− λ2 ·

∣∣∣∣z∗ − IΦ(τ̂)
∣∣∣∣] (4)

we regard P ∗(τ) or P̂ (τ) as density function, separately estimating the probability of τ being sampled from policies π∗(·|τ∗)
and π̂(·|τ̂).

Then we first introduce importance sampling i.e.
∫
τ∗∼π∗(τ)

f(τ∗)dτ∗ =
∫
τ̂∼π̂

P∗(τ)

P̂ (τ)
f(τ̂)dτ̂ .

And, we introduce: the transformation of sampling process from local domain to global domain i.e.
∫
τ∗∼π∗ f(τ

∗) =∫
τ∼S×A P ∗(τ) · f(τ)dτ , where f(τ) denotes the objective function.

Based on above, we derivative:

JIΦ,z∗ = min
z∗,IΦ

Eτ∗∼π∗(τ)[λ1 · ||z∗ − IΦ(τ∗)||]

− Eτ̂∼π̂(τ)[λ2 · ||z∗ − IΦ(τ̂)||]

= min
z∗,IΦ

Eτ̂∼P̂ (τ)[
λ1 · P ∗(τ)

P̂ (τ)
||z∗ − IΦ(τ̂)||]

− Eτ̂∼π̂(τ)[λ2 · ||z∗ − IΦ(τ̂)||]

= min
z∗,IΦ

Eτ̂∼π̂(τ)[(
λ1 · P ∗(τ)

P̂ (τ)
− λ2)||z∗ − IΦ(τ̂)||]

= min
z∗,IΦ

∫
τ∼S×A

P̂ (τ)

(
λ1 · P ∗(τ)

P̂ (τ)
− λ2

)
||z∗ − IΦ(τ)||dτ

= min
z∗,IΦ

∫
τ∼S×A

(
λ1 · P ∗(τ)− λ2 · P̂ (τ)

)
||z∗ − IΦ(τ)||dτ

= min
z∗,IΦ

K ·
(∫

τ∼S×A
1(λ1 · P ∗(τ) ≥ λ2 · P̂ (τ))||z∗ − IΦ(τ)||dτ︸ ︷︷ ︸

Jterm1

+

∫
τ∼S×A

1(λ1 · P ∗(τ) ≤ λ2 · P̂ (τ))||z∗ − IΦ(τ)||dτ︸ ︷︷ ︸
Jterm2

)

(5)

, where 1 denotes indicator, and K = (λ1P
∗(τ)− λ2P̂ (τ)).

Experimental Setup
Model Hyperarameters
The hyperparameter settings of our customed Decision Transformer is shown in Table 4. And the hyperparameters of our
Encoder is shown in Table 5.

Computing Resources
Our experiments are conducted on a computational cluster with multi NVIDIA-A100 GPU (40GB), and NVIDIA-V100 GPU
(32GB) cards for about 20 days.



Table 4: Hyparameters of our latent conditioned model πz(·|τz).

Hyparameter Value

Num Layers 3
Num Heads 2
learning rate 1.2e-4
weight decay 1e-4
warmup steps 10000

Activation relu
z dim 16

Value Dim 64
dropout 0.1

Table 5: Hyparameters of BERT model IΦ.

Hyparameter Value

Num Layers 3
Num Heads 8
learning rate 1.2e-4
weight decay 1e-4
warmup steps 10000

Activation relu
z dim 16

Value Dim 64
dropout 0.1

Codebase
Our source code is accomplished with the following projects: OPPO 1 , Decision Transformer 2. Additionally, our source code
will be released at: .

Extra Explanation of Our setting
Importance of Stitching. One of the major advantages of offline RL algorithms lies in their stitching capability, which can
be leveraged by IL algorithms based on the RL-combined framework in the context of imitation learning. However, a more
crucial issue in IL is how to achieve the performance of the demo strategy under the constraint of limited demos, which does
not entirely align with the goal of offline RL to surpass the static dataset. However, for DT, endowing it with stitching capability
through IL is addressing a shortcoming of DT. Therefore, even though our setting is not offline RL, we have resolved the
existing issues with DT.

Further explain of z∗. z∗ is a feature representation that integrates the features of the dataset, and hence z∗ encapsulates
information from all future time points. As a result, during the inference process, we opt to use the static z∗.

1https://github.com/bkkgbkjb/OPPO
2https://github.com/kzl/decision-transformer



Supplemented Experiment Results.
In this section, we supplement all the experimental results used in Figure 3 (i.a) and Figure 3 (i.b).

Table 6: Comparison of performance between GDT (multiple settings) and ContextFormer (LfD #5). Specifically, we Compare
the ContextFormer and GDT with 5 expert and GDT with 5 best trajectories, ContextFormer performs the best.

Task GDT+5 demo GDT+5 best traj ContextFormer (LfD #5)
hopper-medium 44.2± 0.9 55.8± 7.7 74.9± 9.5
hopper-medium-replay 25.6± 4.2 18.3± 12.9 77.8± 13.3
hopper-medium-expert 43.5± 1.3 89.5± 14.3 103.0± 2.5

walker2d-medium 56.9± 22.6 58.4± 7.3 80.9± 1.3
walker2d-medium-replay 19.4± 11.6 21.3± 12.3 78.6± 4.0
walker2d-medium-expert 83.4± 34.1 104.8± 3.4 102.7± 4.5

halfcheetah-medium 43.1± 0.1 42.5± 0.2 43.1± 0.2
halfcheetah-medium-replay 39.6± 0.4 37.0± 0.6 39.6± 0.4
halfcheetah-medium-expert 43.5± 1.3 86.5± 1.1 46.6± 3.7

sum 399.2 514.1 644.9


