
Average-Reward Reinforcement Learning with Entropy Regularization

Jacob Adamczyk1,2, Volodymyr Makarenko3, Stas Tiomkin4, Rahul V. Kulkarni1,2

1Department of Physics, University of Massachusetts Boston
2The NSF Institute for Artificial Intelligence and Fundamental Interactions

3Department of Computer Engineering, San José State University
4Department of Computer Science, Whitacre College of Engineering, Texas Tech University

jacob.adamczyk001@umb.edu, volodymyr.makarenko@sjsu.edu, stas.tiomkin@ttu.edu, rahul.kulkarni@umb.edu

Abstract

The average-reward formulation of reinforcement learning
(RL) has drawn increased interest in recent years due to its
ability to solve temporally-extended problems without dis-
counting. Independently, RL algorithms have benefited from
entropy-regularization: an approach used to make the opti-
mal policy stochastic, thereby more robust to noise. Despite
the distinct benefits of the two approaches, the combination
of entropy regularization with an average-reward objective is
not well-studied in the literature and there has been limited
development of algorithms for this setting. To address this
gap in the field, we develop algorithms for solving entropy-
regularized average-reward RL problems with function ap-
proximation. We experimentally validate our method, com-
paring it with existing algorithms on standard benchmarks for
RL.

Introduction
A successful reinforcement learning (RL) agent learns from
interacting with its surroundings to achieve desired behav-
iors, as encoded in a reward function. Thus, in “continu-
ing” tasks, where the amount of interactions is potentially
unlimited, the total sum of rewards received by the agent
is unbounded. To avoid this divergence, the most popular
technique is to discount future rewards relative to current re-
wards. The framework of discounted RL enjoys convergence
properties (Sutton and Barto 2018; Kakade 2003; Bertsekas
2012), practical benefits (Schulman et al. 2016; Andrychow-
icz et al. 2020), and a plethora of useful algorithms (Mnih
et al. 2015; Schulman et al. 2015, 2017; Hessel et al. 2018;
Haarnoja et al. 2018b) making the discounted objective an
obvious choice for the RL practitioner. Despite these bene-
fits, the use of discounting introduces a (typically unphysi-
cal) hyperparameter γ which must be tuned for optimal per-
formance. The difficulty in properly tuning γ is illustrated
in our motivating example in Figure 1. Furthermore, agents
solving the discounted RL problem will fail in optimizing
long-term behaviors requiring timescales longer than those
allowed by discounting, and it has been argued that the dis-
counted objective is not even a well-defined optimization
problem (Naik et al. 2019). Moreover, despite most state-
of-the-art algorithms using this discounted framework, their

Copyright © 2025, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

metric for performance is often the total or average reward
over trajectories, as opposed to the discounted sum.

Figure 1: The Swimmer-v4 environment, often not included
in Mujoco benchmarks (Franceschetti et al. 2022), is noto-
riously difficult for discounted methods to solve, as the dis-
count factor is not tuned over and set to its default value
of γ = 0.99. Other discount-sensitive examples of environ-
ments have been discussed by (Tessler and Mannor 2020).
We find that after carefully tuning the discount factor, SAC
can solve the task, but the solution is quite sensitive to the
choice of γ. Each curve corresponds to an average over
30 random seeds, with the standard error indicated by the
shaded region.

To address these issues, another criterion for solving con-
tinuing tasks has been studied (Schwartz 1993; Mahadevan
1996): the average-reward objective. Although it is arguably
a more natural choice, it has less obvious convergence prop-
erties. Importantly, there are limited average-reward algo-
rithms beyond the tabular setting. Current algorithms be-
yond tabular settings use policy-gradient methods to develop
actor-based models: (Zhang and Ross 2021; Ma et al. 2021;
Saxena et al. 2023). While these advancements represent a
positive step for average-reward RL algorithms, there re-
mains a need for alternative approaches to develop the field
of average-reward deep RL.

In both the discounted and average-reward scenarios, the
optimal policy is known to be deterministic (Mahadevan
1996; Sutton and Barto 2018). However, due to observa-
tional and control noise, a deterministic policy can fail in im-

portant circumstances relevant for real-world usage of RL:
e.g. when transferred to other environments or when pertur-
bations arise (Haarnoja et al. 2017, 2018a; Eysenbach and
Levine 2022). To address such cases, it would be desirable to
have a stochastic optimal policy. Rather than using heuristics
(e.g. ε-greedy, Boltzmann) to generate a stochastic policy,
the original RL problem can be regularized with an entropy-
based term that yields an optimal policy which is naturally
stochastic. Implementing this entropy-regularized RL objec-
tive corresponds to rewarding the agent (in proportion to a
temperature parameter, β−1) for using a policy which has
a lower relative entropy (Levine 2018). This formulation
of entropy-regularized (often considered in the special case
of maximum entropy or “MaxEnt”1) RL has led to signif-
icant developments in state-of-the-art off-policy algorithms
(Haarnoja et al. 2017, 2018b,c).

Despite the desirable features of both the average-reward
and entropy-regularized objectives, the combination of these
formulations (Neu, Jonsson, and Gómez 2017) is not as
well-studied, and no function-approximator algorithms ex-
ist yet for this setting. To address this issue, we propose
novel algorithms for average-reward RL with entropy reg-
ularization which are analogs of the discounted algorithms
Soft Actor-Critic (SAC) (Haarnoja et al. 2018b,c) and Soft
Q-learning (SQL) (Haarnoja et al. 2017).

Main Contributions
• We extend the policy improvement theorem to the

entropy-regularized average-reward case;
• Provide novel algorithms for average-reward deep RL in

the entropy-regularized setting;
• Experimentally validate our approach in discrete and

continuous control environments.

Notably, our implementation requires minimal changes to
common codebases, making it accessible for researchers and
allowing for future extensions by the community.

Preliminaries
In this section, we focus on the development of theory for
discrete state-action spaces for clarity. Let ∆(X) denote the
probability simplex over the space X . A Markov Decision
Process (MDP) is modeled by a state space S, action space
A, reward function r : S × A → R, transition dynamics
p : S × A → ∆(S) and initial state distribution µ ∈ ∆(S).
The state space describes the set of possible configurations
in which the agent (and environment) may exist. (This can be
juxtaposed with the “observation” which encodes the state
information accessible to the agent. We will consider fully
observable MDPs where state and observation are synony-
mous.) The action space is the set of controls available to
the agent. Enacting control, the agent may alter its state in
the environment. This change is dictated by the (generally
stochastic) transition dynamics, p.

At each discrete timestep, an action is taken and the agent
receives a reward r(s, a) ∈ R from the environment.

1MaxEnt refers to using a uniform prior policy. In this work, we
consider the case of more general priors.

We will make some of the usual assumptions for average-
reward MDPs:
Assumption 1. The Markov chain induced by any station-
ary policy π is irreducible and aperiodic.
Assumption 2. The reward function is bounded.

In solving an average-reward MDP, one seeks a control
policy π which maximizes the expected reward-rate, de-
noted ρπ . In the average-reward framework, such an objec-
tive reads

ρπ = lim
N→∞

1

N
E

τ∼p,π,µ

[
N−1∑
t=0

r(st, at)

]
, (1)

where the expectation is taken over trajectories generated by
the dynamics p, control policy π, and initial state distribution
µ.

The non-scalar (that is, (s, a)-dependent) contribution to
the action-value function is called the average-reward differ-
ential bias function. Because of its analogy to theQ function
in discounted RL, we follow recent work (Zhang and Ross
2021) and similarly denote it as:

Qπρ (s, a) = E
τ∼p,π

[∞∑
t=0

r(st, at)− ρπ
∣∣∣∣∣s0 = s, a0 = a

]
.

(2)
We will now introduce a variation of this MDP framework

which includes an entropy regularization term. For nota-
tional convenience we refer to entropy-regularized average-
reward MDPs as ERAR MDPs. The ERAR MDP con-
stitutes the same ingredients as an average-reward MDP
stated above, in addition to a pre-specified prior policy2

π0 : S → ∆(A) and “inverse temperature”, β. The modi-
fied objective function for an ERAR MDP now includes a
regularization term based on the relative entropy (Kullback-
Leibler divergence),

so that the agent now aims to optimize the expected
entropy-regularized reward-rate , denoted θπ:

θπ = lim
N→∞

1

N
E

τ∼p,π,µ

[
N−1∑
t=0

r(st, at)−
1

β
log

π(at|st)
π0(at|st)

]
,

(3)

π∗(a|s) = argmax
π

θπ. (4)

Beyond the mathematical generalization from the MaxEnt
formulation, the KL divergence term has also found use in
behavior-regularized RL tasks, especially in the offline set-
ting (Wu, Tucker, and Nachum 2019; Zhang and Tan 2024).

Because of Assumption 1, the expression in Equation (3)
is independent of the initial state-action. From hereon,
we will simply write θ = θπ

∗
for the optimal entropy-

regularized reward-rate for brevity. Comparing to Equa-
tion (1), this rate is seen to include an additional entropic
contribution, the relative entropy between the control π and
prior π0.

2We will assume for convenience that π0 has support across
A, ensuring the Kullback-Leibler divergence between any policy π
and π0 remains finite.

The differential entropy-regularized action-value function
is then given by 3

Qπθ (s, a) = r(s, a)− θπ

+ E
τ∼p,π

[∞∑
t=1

(
r(st, at)−

1

β
log

π(at|st)
π0(at|st)

− θπ
)]

.
(5)

We have used the subscripts of θ and ρ in this section
to distinguish the two value functions. In the following, we
will drop the θ subscript as we focus solely on the entropy-
regularized objective. Similarly, we will write Q(s, a) =
Qπ

∗

θ (s, a) as a shorthand.

Prior Work
Research on average-reward MDPs has a longstanding his-
tory, dating back to seminal contributions by (Blackwell
1962) and later (Mahadevan 1996), laying foundational
groundwork for further algorithmic and theoretical inves-
tigations (Even-Dar, Kakade, and Mansour 2009; Abbasi-
Yadkori et al. 2019; Abounadi, Bertsekas, and Borkar 2001;
Neu, Jonsson, and Gómez 2017; Wan, Naik, and Sutton
2021). Due to their theoretical nature, these studies primarily
focused on algorithms within tabular settings, possibly ex-
plaining why the average-reward approach is not as widely
used in the deep RL community. Recent work has begun to
focus on this challenge, tackling deep average-reward RL
(Zhang and Ross 2021; Ma et al. 2021; Saxena et al. 2023)
with policy-based methods. These studies have indicated su-
perior performance of average-reward algorithms in contin-
uous control Mujoco (Todorov, Erez, and Tassa 2012) tasks
compared to standard (discounted objective) baselines.

In parallel, the discounted objective has seen the introduc-
tion of an entropy-regularization term, discussed in works
such as (Todorov 2006, 2009; Ziebart 2010; Rawlik 2013;
Haarnoja et al. 2017; Geist, Scherrer, and Pietquin 2019).
The included “entropy bonus” term has found considerable
use in the development of both theory and algorithms in dis-
tinct branches of RL research (Haarnoja et al. 2018a; Ey-
senbach and Levine 2022; Park et al. 2023). This innovation
allows the derivation of optimal policies naturally exhibiting
stochasticity in continuous action spaces, which has led SAC
(Haarnoja et al. 2018c) and its variants to become state-of-
the-art solution methods for addressing the discounted ob-
jective.

However, there is limited work on the combination of
average-reward and entropy-regularized methods for deep
RL. Recent work by (Rawlik 2013; Rose, Mair, and Gar-
rahan 2021; Arriojas et al. 2023b; Li, Wu, and Lan 2022;
Wu, Ke, and Wu 2024) has set the groundwork for com-
bining the entropy-regularized and average-reward formu-
lations. We will leverage their results to address the prob-
lem of deep average-reward RL with entropy regularization,
while also including new theoretical results. In the follow-
ing, we present average-reward extensions of the two canon-

3We have suppressed the conditioning on the initial state and
action for brevity, but the conditioning is identical to that in Equa-
tion (2).

ical methods of solving for Q: soft actor-critic (SAC) and
soft Q-learning (SQL).

Soft Actor-Critic for the Average-Reward
Objective

We begin with a discussion of the extension of soft actor-
critic (SAC), for which we derive new theoretical results
and provide the corresponding average-reward algorithm.
First, we draw inspiration from SAC (Haarnoja et al. 2018b)
which relies on iteratively calculating a value (critic) of a
policy (actor) and improving the actor through soft policy
improvement (PI). In the discounted problem formulation,
soft PI states that a Boltzmann-form for the policy (π′) de-
rived from the value function of a previous policy (π) such
that: π′ ∝ expβQπ(s, a), is guaranteed to outperform the
previous policy in the Q-value sense: Qπ

′
(s, a) > Qπ(s, a)

for all s, a (cf. Lemma 2 of (Haarnoja et al. 2018b) for de-
tails). We will first show that an analogous result for policy
improvement holds in the ERAR setting.

Since the value of a policy is now encoded in the entropy-
regularized average reward rate θπ and not in the differential
value, the analogue to policy improvement is to establish the
bound θπ

′
> θπ for some construction of π′ from π. Indeed,

as we show, the same Boltzmann form over the differential
value leads to soft PI in the ERAR objective. After establish-
ing PI and the related theory in this setting we present our
algorithm, denoted “ASAC” (for average-reward SAC, and
following the naming convention of APO (Ma et al. 2021)
and ATRPO (Zhang and Ross 2021)).

Theory
As in the discounted case, it can be shown that the Q func-
tion for a fixed policy π satisfies a recursive Bellman backup
equation4:

Proposition 1 ((Wu, Ke, and Wu 2024)). Let an ERAR MDP
be given with reward function r(s, a), fixed evaluation pol-
icy π and prior policy π0. Then the differential value of π,
Qπθ (s, a), satisfies

Qπθ (s, a) = r(s, a)− θπ + Es′∼pV πθ (s′), (6)

with the entropy-regularized definition of state-value func-
tion

V πθ (s) = Ea∼π
[
Qπ(s, a)− 1

β
log

π(a|s)
π0(a|s)

]
. (7)

In the average reward formulation, the metric of interest
is the reward-rate (θπ). Our policy improvement result there-
fore focuses on increases in θπ , generalizing the recent work
of (Zhang and Ross 2021) to the current setting. We find that
the gap between any two entropy-regularized reward-rates
can be expressed in the following manner.

4Equation (7) is an extension of V π
soft in (Haarnoja et al. 2017)

to the case of non-uniform prior policy.

Lemma 1 (ERAR Rate Gap). Consider two policies
π, π′ absolutely continuous w.r.t. π0. Then the gap
between their corresponding entropy-regularized re-
ward rates is:

θπ
′
− θπ = E

s∼dπ′
a∼π′

(
Aπ

θ (s, a)−
1

β
log

π′(a|s)
π0(a|s)

)
, (8)

where Aπθ (s, a) = Qπθ (s, a) − V πθ (s) is the advan-
tage function of policy π and dπ′ is the steady-state
distribution induced by π′.

The proof of this result, and all other results stated in this
section, can be found in Appendix A. As a consequence of
this result, we find that a proper choice of the policy π′ guar-
anteed to make the right-hand side of Equation (8) positive
implies that PI holds. Using the Boltzmann form of a policy
(Haarnoja et al. 2018b) with the differential Q-values as the
energy function and the appropriate prior distribution (π0),
gives the desired result:

Theorem 1 (ERAR Policy Improvement). Let a pol-
icy π absolutely continuous w.r.t. π0 and its corre-
sponding differential value Qπθ (s, a) be given. Then,
the policy

π′(a|s) .= π0(a|s)eβQ
π
θ (s,a)∑

a π0(a|s)eβQ
π
θ (s,a)

(9)

achieves a greater entropy-regularized reward-rate.
That is, θπ

′ ≥ θπ , with equality only at convergence,
when π′ = π = π∗.

It is noteworthy that the corresponding result in Lemma
2 of (Haarnoja et al. 2018b) for SAC (which uses a uniform
prior policy), involves the total value function. On the other
hand, in the ASAC case PI is determined by the differen-
tial value function. Intuitively, this result can be understood
as the γ → 1 limit of PI for SAC since the “bulk” contri-
bution to the total value function, which comes from accru-
ing a per-timestep reward θπ , will cancel in the numerator
and denominator of Equation (9). In the case of SAC, the
bulk contribution is included in the evaluation of the total
value function and a discount factor γ < 1 is required to
ensure that the total value function is bounded in the limit
of large N (in the sense of Equation (3)). In contrast, for the
case of ASAC, the bulk contribution is excluded from the
corresponding evaluation (by definition), and the differen-
tial value function remains bounded in the limit of large N ,
obviating the need to introduce a discount factor.

Finally, to ensure the convergence of ASAC, the policy
evaluation step must also converge.

Lemma 2 (ERAR Policy Evaluation). Consider a fixed pol-
icy π, for which θπ of Equation (1) has been calculated (e.g.
with direct rollouts). The iteration of Equations (2) and (7)

converges to the entropy-regularized differential value of π:
Qπθ (s, a).

Proof. The proof follows from the convergence results es-
tablished in the un-regularized case, e.g. (Wan, Naik, and
Sutton 2021). Since the policy π is fixed, the entropic cost
−β−1KL (π||π0) can be incorporated into the reward func-
tion’s definition.

Algorithm
As in SAC (Haarnoja et al. 2018c), we propose to interleave
steps of policy evaluation (PE) and policy improvement (PI)
using stochastic approximation to train the actor and critic
networks. Let Qψ denote the online critic network while
Qψ̄ denotes the target critic, updated periodically through
Polyak averaging of the parameters. To implement a PI step,
we use the KL divergence loss to update the parameters of an
actor πϕ based on the policy improvement theorem (Equa-
tion (9)):

Lϕ =
∑
s∈B

KL
(
πϕ(·|s)

∣∣∣∣∣∣∣∣π0(·|s)eβQψ(s,·)Z(s)

)
(10)

And now we update the critic (differential value) by per-
forming a policy evaluation step with the current actor net-
work. The mean squared error loss is calculated by com-
paring the expected Q value to the right-hand side of Equa-
tion (6):

Lψ =
∑

s,a,r,s′∼B

∣∣∣∣Qψ(s, a)− ŷ∣∣∣∣2, (11)

where ŷ is the target:

ŷ = r − θ + E
a′∼πϕ(·|s′)

[
Qψ̄(s

′, a′)− 1

β
log

πϕ(a
′|s′)

π0(a′|s′)

]
.

Finally, we update θ by considering its definition as in
Equation (3):

θk+1 = (1− τθ)θk + τθ

[∑
s,a,r

(
r − 1

β
log

π(a|s)
π0(a|s)

)]
, (12)

where τθ is a learning rate for θ, and samples in the sum are
taken uniformly from the replay buffer. We note that this is
not exact in the sense that the samples from the replay buffer
will possibly mix the θπ from different policies. However,
if we assume that the batch is a representative sample of
the current policy’s steady-state distribution, then the term
in brackets represents an unbiased estimate of θπ .

Experimental Validation
For our extension of soft actor-critic we use continu-
ous action environments of various complexity including
Pendulum-v1, HalfCheetah-v4, Ant-v4, Swimmer-v4 (see
Appendix) from the Gymnasium Mujoco suite (Todorov,
Erez, and Tassa 2012; Towers et al. 2024). We compare the
performance (average evaluation reward across 10 episodes)
for ASAC (ours), SAC, and arDDPG (which was shown to

Figure 2: Mujoco benchmark comparing soft actor critic (SAC), average-reward deep deterministic policy gradient (arDDPG)
and ours: average-reward soft actor critic ASAC. Each curve corresponds to an average over 20 random seeds, with standard
errors indicated by the shaded region.

outperform the other known average-reward algorithms of
ATRPO (Zhang and Ross 2021) and APO (Ma et al. 2021)).

The results of these experiments are shown in Figure 2.
Broadly, we see an increase in state-of-the-art performance
on the average-reward objective (comparing ASAC to arD-
DPG), and even an improvement against the discounted al-
gorithm SAC. However, we do note that our algorithm did
require some further hyperparameter tuning and requires
further work for more complex domains. We provide further
details on the implementation and hyperparameter sweeps
and selection in Appendices B, C. All code for reproduc-
ing the experiments is available at https://anonymous.4open.
science/r/u-chi-learning-521B/

Soft Q-Learning for the Average-Reward
Objective

In this section, we present an extension of the SQL algorithm
to the average-reward setting, which we denote ASQL. For
simplicity we focus on the case of discrete actions, in which
case the necessary action integrals can be calculated exactly.

Theory
In soft Q-learning (Haarnoja et al. 2017), one re-
fines estimates of the optimal (soft) Q function by it-
erating the Bellman optimality operator which is de-
fined as T (·) .= r(s, a) + γβ−1 Es′ logEa′ expβ (·). Since
γ ∈ (0, 1), this operator is a contraction, and hence con-
verges to its (unique) fixed point, the optimal Q-function:
T ∞ (Q0) = T (Q∗) = Q∗. In the ASQL case, the lack of
discount factor poses a challenge in terms of ensuring con-
vergence. However, for the case of deterministic dynam-
ics, it can be shown by mapping to exponential space that
the corresponding undiscounted equation (Equation (13))
is simply an eigenvector equation (Arriojas et al. 2023b),
which has a unique non-trivial solution corresponding to
the entropy-regularized average-reward rate (eigenvalue)
and differential Q function (eigenvector). Additional details
about this connection are provided in the Appendix.

Furthermore, we obtain the optimality equation for the
entropy-regularized differential value, allowing us to solve

the ERAR MDP through Q-learning iterations:
Lemma 3. The optimal ERAR Q-function satisfies the fol-
lowing Bellman equation:

Q(s, a) = r(s, a)− θ + 1

β
E
s′∼p

log E
a′∼π0

eβQ(s′,a′), (13)

where θ is the maximum ERAR rate, θ = maxπ θ
π (with θπ

given in Equation (3).
The proof follows from the limit of policy improvement

(given in Appendix A). In accordance with SQL’s temporal
difference update, we propose to iterate Equation (13) until
convergence.

Algorithm
To implement this procedure in the spirit of SQL, we use
a mean squared error loss between an online network and
corresponding estimate of Equation (13) calculated through
a target network,

J (ψ) = 1

2
E

s,a,r,s′∼D
(Qψ(s, a)− ŷ)2 , (14)

where the target is

ŷ = r − θ + β−1 log E
a′∼π0

eβQψ̄(s
′,a′), (15)

and where D denotes a replay buffer based on past ex-
perience. Note that the temporal difference (TD) target is
calculated from a target network (lagging weights relative to
the online network), denoted ψ̄. Appendix B contains fur-
ther implementation details. The algorithm’s pseudocode is
shown in Algorithm 1, with the main differences from SQL
highlighted in red. The value of θ must be updated online as
well, and we use the same Equation (12) as discussed in the
previous section to update its value. The value of θ is up-
dated after averaging its new value over the “gradient steps”
loop in Algorithm 1.

The algorithm implements three key components present
in many value-based deep RL methods: (1) an estimate
of the value function parameterized by two deep neural
nets (inspired by (Van Hasselt, Guez, and Silver 2016)),

Figure 3: For ASQL, we use a discrete action Pendulum environment and compare against DQN and SQL. We use
finetuned hyperparameters, and find that ASQL has a strong performance regardless of episode length, expected
based on the discussion in (Saxena et al. 2023).

Algorithm 1: ASQL

1: IN: sample budget, environment, β, hyperparameters
2: Initialize:
3: Online network weights: ψi ∼ init. distribution
4: Target network weights: ψ̄i = ψi
5: Entropy-regularized reward-rate: θ = 0
6: Replay buffer: D = {}
7: while t < sample budget do
8: Collect experience:
9: Sample action a ∼ π0

10: Take step in environment s′ ∼ p(·|s, a)
11: Save to replay buffer: D ← {s, a, r, s′}
12: if train this step then
13: for each gradient step do
14: Sample minibatch B ⊂ D
15: Calculate loss via Equation (14)
16: Do gradient descent on Q network(s)
17: Update θ via Equation (12)
18: end for
19: end if
20: if update target parameters then
21: Update target parameters (Polyak averaging with

parameters τψ).
22: end if
23: end while
24: OUT: Optimal policy for ERAR-MDP

(2) stochastic gradient descent on a TD error with Adam
(Kingma and Ba 2015) and (3) a replay buffer of stored ex-
perience. In principle, the replay buffer can be collected by
any behavior policy such as an ε-greedy policy (Mnih et al.
2015), but we use the learnt policy (obtained from the expo-
nential in Equation (9)) for more effective exploration as in
(Haarnoja et al. 2018b).

Inspired by (Van Hasselt, Guez, and Silver 2016; Fuji-
moto, Hoof, and Meger 2018), we will train two online
networks in parallel. We find this to help considerably im-

prove the evaluation reward. Interestingly, we have found
that the popular choice of taking a pessimistic estimate (i.e.
min) is not optimal in our experiments. Instead we treat
the “aggregation function” as a hyperparameter, and tune
it over the choices of min,max,mean. Across all environ-
ments, we have found max to be the optimal choice for
aggregation. We use two online networks and two corre-
sponding target networks for updates, and upon calculat-
ing an aggregated estimate of Qψ̄ we use the max over
the two target networks, calculated (s, a)-wise: Qψ̄(s, a) =

max
{
Q

(1)

ψ̄
(s, a), Q

(2)

ψ̄
(s, a)

}
. We train both of the online

networks independently to minimize the same loss in Equa-
tion (14), measured against the aggregated target value.
This is the same technique employed in (Fujimoto, Hoof,
and Meger 2018) for discounted un-regularized RL and in
(Haarnoja et al. 2018c) for discounted regularized RL. We
use the same aggregation method (max) on the online net-
works Q(i)

ψ to calculate θ across the current batch of data via
Equation (3).

Experimental Validation
For experimental benchmarking of ASQL we consider dis-
crete action environments. Specifically, we take a discrete
action version of Pendulum-v1 (3 actions: min. torque, zero
torque, and max. torque) and the Pong game from the
Atari suite. We provide benchmark experiments, comparing
ASQL against DQN (Mnih et al. 2015) (as it shares many
implementation details) and SQL (Haarnoja et al. 2017) (for
its entropy-regularized objective). Although we recognize
that these algorithms are not designed to optimize the same
objective function, we do not have other benchmarks with
which to compare in the discrete-action setting. On the other
hand, we emphasize that the metric of interest in discounted
RL is often the average evaluation reward. Against this met-
ric, ASQL has stronger performance in terms of sample
complexity compared to DQN and SQL.

Using DQN from (Raffin et al. 2021) and our own im-

Figure 4: PongNoFrameskip-v4 with DeepMind preprocess-
ing. The main text and Appendix B discusses further im-
plementation details. ASQL outperforms DQN in terms of
sample complexity. Each curve corresponds to an average
over 10 random seeds, with the standard error plotted by the
shaded region.

plementation of discrete-action SQL (Haarnoja et al. 2017),
we provide benchmarks in Figures 3 and 4. Hyperparame-
ter tuning has been performed for each algorithm, with the
associated values shown in Appendix C. Then, with those
tuned hyperparameters, we test the algorithms on a longer
episode version (which corresponds to keeping the Pendu-
lum upright for 2000 steps rather than 200), finding that
ASQL continues to perform well for both cases.

Note that the evaluation phase for all algorithms uses the
greedy policy derived from the learned stochastic policy as is
standard. Every one thousand environment steps, we pause
the training to perform the evaluation, averaged over ten
episodes. The resulting reward curve from each algorithm
is then averaged over twenty random initializations.

To test the capability of ASQL on more complex discrete
action environments, we turn to the Atari suite (Bellemare
et al. 2013). Using the standard pre-processing techniques
(downsampling, square cropping, greyscaling, frameskip-
ping, and framestacking), we use a CNN (rather than MLP
as in all other experiments) model for the differential Q
function architecture. The resulting comparison for Pong is
shown in Fig. 4 where ASQL shows a favorable performance
against the (discounted) DQN baseline.

Discussion
The motivation for developing novel algorithms for aver-
age rewards RL arises from the problems generally associ-
ated with discounting. When the RL problem is posed in
the discounted framework, a discount factor γ is a required
input parameter. However, there is often no principled ap-
proach for choosing the value of γ corresponding to the
specific problem being addressed. Thus, the experimenter
must treat γ as a hyperparameter. This reduces the choice
of γ to a trade-off between large values to capture long-
term rewards and small values to capture computational ef-
ficiency which typically scales polynomially with the hori-

zon, (1 − γ)−1 (Kakade 2003). The horizon introduces a
natural timescale to the problem, but this timescale may not
be well-aligned with another timescale corresponding to the
optimal dynamics: the mixing time of the induced Markov
chain. For the discounted approach to accurately estimate
the optimal policy, the discounting timescale (horizon) must
be larger than the mixing time; however the estimation of
the mixing time for the optimal dynamics can be challeng-
ing to obtain in the general case, even when the transition
dynamics are known. Therefore, an arbitrary “sufficiently
large” choice of γ is often made without knowledge of the
relevant problem-dependent timescale. This can be problem-
atic from a computational standpoint as evidenced by recent
work (Jiang et al. 2015; Schulman et al. 2017; Andrychow-
icz et al. 2020). These points are illustrated in Figure 1 which
shows the performance of SAC for the Swimmer-v4 en-
vironment for different choices of γ. For the widely used
choice γ = 0.99 the evaluation rewards are low relative to
the optimal case, whereas the average rewards algorithms
perform well (cf. Appendix), highlighting the benefits of us-
ing the average-rewards framework.

In this work, we have developed a framework for com-
bining the benefits of the average rewards approach with en-
tropy regularization. In particular, we have focused on ex-
tensions of the discounted algorithms SAC and SQL to the
average rewards domain. By leveraging the connection of
the ERAR objective to the soft discounted framework, we
have presented the first solution to ERAR MDPs in contin-
uous state and action spaces by use of function approxima-
tion. Our experiments suggest that ASQL and ASAC com-
pare favorably in several respects to their discounted coun-
terparts. Our algorithm leverages existing codebases allow-
ing for a straightforward and easily extendable implementa-
tion for solving the ERAR objective.

Future Work

The current work suggests multiple extensions which we
plan to explore in future research. Following the line of work
in (Arriojas et al. 2023b), recent work by the same authors
shows a method for the more general case of stochastic tran-
sition dynamics, by iteratively learning biases for the dy-
namics and rewards (Arriojas et al. 2023a). With a model-
based algorithm, this seems to be a promising avenue for
future exploration for an alternative approach to ASQL in
stochastic environments. As a value-based technique, other
ideas from the literature such as TD(n), REDQ (Chen et al.
2021), DrQ (Kostrikov, Yarats, and Fergus 2020), combat-
ing estimation bias (Hussing et al. 2024), or dueling archi-
tectures (Wang et al. 2016) may be included. From the per-
spective of sampling, the calculation of θ can likely benefit
from more complex replay sampling, e.g. PER (Schaul et al.
2015). An important contribution for future work is study-
ing the sample complexity and convergence properties of the
proposed algorithms. We believe that the average-reward ob-
jective with entropy regularization is a fruitful direction for
further research and real-world application, with this work
addressing a gap in the existing literature.

Acknowledgements
JA would like to acknowledge the use of the supercomput-
ing facilities managed by the Research Computing Depart-
ment at UMass Boston; the Unity high-performance com-
puting cluster; and funding support from the Alliance In-
novation Lab – Silicon Valley. RVK and JA would like to
acknowledge funding support from the NSF through Award
No. DMS-1854350 and PHY-2425180. ST was supported
in part by NSF Award (2246221), PAZY grant (195-2020),
and WCoE, Texas Tech U. This work is supported by the
National Science Foundation under Cooperative Agreement
PHY-2019786 (The NSF AI Institute for Artificial Intelli-
gence and Fundamental Interactions, http://iaifi.org/).

References
Abbasi-Yadkori, Y.; Bartlett, P.; Bhatia, K.; Lazic, N.;
Szepesvári, C.; and Weisz, G. 2019. Politex: Regret bounds
for policy iteration using expert prediction. In International
Conference on Machine Learning, 3692–3702. PMLR.
Abounadi, J.; Bertsekas, D.; and Borkar, V. S. 2001. Learn-
ing Algorithms for Markov Decision Processes with Aver-
age Cost. SIAM Journal on Control and Optimization, 40(3):
681–698.
Andrychowicz, M.; Raichuk, A.; Stańczyk, P.; Orsini, M.;
Girgin, S.; Marinier, R.; Hussenot, L.; Geist, M.; Pietquin,
O.; Michalski, M.; et al. 2020. What matters in on-policy
reinforcement learning? a large-scale empirical study. arXiv
preprint arXiv:2006.05990.
Arriojas, A.; Adamczyk, J.; Tiomkin, S.; and Kulkarni, R. V.
2023a. Bayesian inference approach for entropy regularized
reinforcement learning with stochastic dynamics. In Evans,
R. J.; and Shpitser, I., eds., Proceedings of the Thirty-Ninth
Conference on Uncertainty in Artificial Intelligence, volume
216 of Proceedings of Machine Learning Research, 99–109.
PMLR.
Arriojas, A.; Adamczyk, J.; Tiomkin, S.; and Kulkarni, R. V.
2023b. Entropy regularized reinforcement learning using
large deviation theory. Phys. Rev. Res., 5: 023085.
Bellemare, M. G.; Naddaf, Y.; Veness, J.; and Bowling, M.
2013. The arcade learning environment: An evaluation plat-
form for general agents. Journal of Artificial Intelligence
Research, 47: 253–279.
Bertsekas, D. 2012. Dynamic programming and optimal
control: Volume I, volume 4. Athena scientific.
Blackwell, D. 1962. Discrete dynamic programming. The
Annals of Mathematical Statistics, 719–726.
Chen, X.; Wang, C.; Zhou, Z.; and Ross, K. W. 2021.
Randomized Ensembled Double Q-Learning: Learning Fast
Without a Model. In International Conference on Learning
Representations.
Even-Dar, E.; Kakade, S. M.; and Mansour, Y. 2009. On-
line Markov decision processes. Mathematics of Operations
Research, 34(3): 726–736.
Eysenbach, B.; and Levine, S. 2022. Maximum Entropy RL
(Provably) Solves Some Robust RL Problems. In Interna-
tional Conference on Learning Representations.

Franceschetti, M.; Lacoux, C.; Ohouens, R.; Raffin, A.; and
Sigaud, O. 2022. Making reinforcement learning work on
swimmer. arXiv preprint arXiv:2208.07587.
Fujimoto, S.; Hoof, H.; and Meger, D. 2018. Addressing
function approximation error in actor-critic methods. In
International conference on machine learning, 1587–1596.
PMLR.
Geist, M.; Scherrer, B.; and Pietquin, O. 2019. A theory
of regularized Markov decision processes. In International
Conference on Machine Learning, 2160–2169. PMLR.
Haarnoja, T.; Pong, V.; Zhou, A.; Dalal, M.; Abbeel, P.; and
Levine, S. 2018a. Composable deep reinforcement learn-
ing for robotic manipulation. In 2018 IEEE international
conference on robotics and automation (ICRA), 6244–6251.
IEEE.
Haarnoja, T.; Tang, H.; Abbeel, P.; and Levine, S. 2017. Re-
inforcement Learning with Deep Energy-Based Policies. In
Precup, D.; and Teh, Y. W., eds., Proceedings of the 34th
International Conference on Machine Learning, volume 70
of Proceedings of Machine Learning Research, 1352–1361.
PMLR.
Haarnoja, T.; Zhou, A.; Abbeel, P.; and Levine, S. 2018b.
Soft Actor-Critic: Off-Policy Maximum Entropy Deep Re-
inforcement Learning with a Stochastic Actor. In Dy, J.; and
Krause, A., eds., Proceedings of the 35th International Con-
ference on Machine Learning, volume 80 of Proceedings of
Machine Learning Research, 1861–1870. PMLR.
Haarnoja, T.; Zhou, A.; Hartikainen, K.; Tucker, G.; Ha, S.;
Tan, J.; Kumar, V.; Zhu, H.; Gupta, A.; Abbeel, P.; et al.
2018c. Soft actor-critic algorithms and applications. arXiv
preprint arXiv:1812.05905.
Hessel, M.; Modayil, J.; Van Hasselt, H.; Schaul, T.; Os-
trovski, G.; Dabney, W.; Horgan, D.; Piot, B.; Azar, M.; and
Silver, D. 2018. Rainbow: Combining improvements in deep
reinforcement learning. In Proceedings of the AAAI confer-
ence on artificial intelligence, volume 32.
Hussing, M.; Voelcker, C.; Gilitschenski, I.; Farahmand, A.-
m.; and Eaton, E. 2024. Dissecting Deep RL with High Up-
date Ratios: Combatting Value Overestimation and Diver-
gence. arXiv preprint arXiv:2403.05996.
Jiang, N.; Kulesza, A.; Singh, S.; and Lewis, R. 2015. The
dependence of effective planning horizon on model accu-
racy. In Proceedings of the 2015 International Conference
on Autonomous Agents and Multiagent Systems, 1181–1189.
Kakade, S. M. 2003. On the sample complexity of reinforce-
ment learning. Ph.D. thesis, University College London.
Kingma, D.; and Ba, J. 2015. Adam: A Method for Stochas-
tic Optimization. In International Conference on Learning
Representations (ICLR). San Diego, CA, USA.
Kostrikov, I.; Yarats, D.; and Fergus, R. 2020. Image aug-
mentation is all you need: Regularizing deep reinforcement
learning from pixels. arXiv preprint arXiv:2004.13649.
Levine, S. 2018. Reinforcement learning and control as
probabilistic inference: Tutorial and review. arXiv preprint
arXiv:1805.00909.

Li, T.; Wu, F.; and Lan, G. 2022. Stochastic first-order meth-
ods for average-reward markov decision processes. arXiv
preprint arXiv:2205.05800.
Ma, X.; Tang, X.; Xia, L.; Yang, J.; and Zhao, Q. 2021.
Average-Reward Reinforcement Learning with Trust Region
Methods. In Zhou, Z.-H., ed., Proceedings of the Thirti-
eth International Joint Conference on Artificial Intelligence,
IJCAI-21, 2797–2803. International Joint Conferences on
Artificial Intelligence Organization. Main Track.
Mahadevan, S. 1996. Average reward reinforcement learn-
ing: Foundations, algorithms, and empirical results. Ma-
chine learning, 22: 159–195.
Mitter, S. K.; and Newton, N. 2000. The duality between
estimation and control. Published in Festschrift for A. Ben-
noussan.
Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A. A.; Ve-
ness, J.; Bellemare, M. G.; Graves, A.; Riedmiller, M.; Fidje-
land, A. K.; Ostrovski, G.; et al. 2015. Human-level control
through deep reinforcement learning. Nature, 518(7540):
529–533.
Naik, A.; Shariff, R.; Yasui, N.; Yao, H.; and Sutton, R. S.
2019. Discounted reinforcement learning is not an optimiza-
tion problem. arXiv preprint arXiv:1910.02140.
Neu, G.; Jonsson, A.; and Gómez, V. 2017. A unified view
of entropy-regularized Markov decision processes. arXiv
preprint arXiv:1705.07798.
Park, S.; Lee, K.; Lee, Y.; and Abbeel, P. 2023.
Controllability-Aware Unsupervised Skill Discovery. arXiv
preprint arXiv:2302.05103.
Raffin, A.; Hill, A.; Gleave, A.; Kanervisto, A.; Ernestus,
M.; and Dormann, N. 2021. Stable-Baselines3: Reliable Re-
inforcement Learning Implementations. Journal of Machine
Learning Research, 22(268): 1–8.
Rawlik, K. C. 2013. On probabilistic inference approaches
to stochastic optimal control. Ph.D. thesis, The University
of Edinburgh.
Rose, D. C.; Mair, J. F.; and Garrahan, J. P. 2021. A re-
inforcement learning approach to rare trajectory sampling.
New Journal of Physics, 23(1): 013013.
Saxena, N.; Khastagir, S.; Shishir, N.; and Bhatnagar, S.
2023. Off-policy average reward actor-critic with determin-
istic policy search. In International Conference on Machine
Learning, 30130–30203. PMLR.
Schaul, T.; Quan, J.; Antonoglou, I.; and Silver, D.
2015. Prioritized experience replay. arXiv preprint
arXiv:1511.05952.
Schulman, J.; Levine, S.; Abbeel, P.; Jordan, M.; and Moritz,
P. 2015. Trust region policy optimization. In International
conference on machine learning, 1889–1897. PMLR.
Schulman, J.; Moritz, P.; Levine, S.; Jordan, M.; and Abbeel,
P. 2016. High-Dimensional Continuous Control Using Gen-
eralized Advantage Estimation. In Proceedings of the Inter-
national Conference on Learning Representations (ICLR).
Schulman, J.; Wolski, F.; Dhariwal, P.; Radford, A.; and
Klimov, O. 2017. Proximal policy optimization algorithms.
arXiv preprint arXiv:1707.06347.

Schwartz, A. 1993. A reinforcement learning method for
maximizing undiscounted rewards. In Proceedings of the
tenth international conference on machine learning, volume
298, 298–305.
Sutton, R. S.; and Barto, A. G. 2018. Reinforcement learn-
ing: An introduction. MIT press.
Tessler, C.; and Mannor, S. 2020. Reward tweaking: Max-
imizing the total reward while planning for short horizons.
arXiv preprint arXiv:2002.03327.
Theodorou, E. A.; and Todorov, E. 2012. Relative entropy
and free energy dualities: Connections to path integral and
kl control. In 2012 ieee 51st ieee conference on decision and
control (cdc), 1466–1473. IEEE.
Todorov, E. 2006. Linearly-solvable Markov decision prob-
lems. In Schölkopf, B.; Platt, J.; and Hoffman, T., eds.,
Advances in Neural Information Processing Systems, vol-
ume 19. MIT Press.
Todorov, E. 2009. Efficient computation of optimal actions.
Proceedings of the national academy of sciences, 106(28):
11478–11483.
Todorov, E.; Erez, T.; and Tassa, Y. 2012. Mujoco: A physics
engine for model-based control. In 2012 IEEE/RSJ interna-
tional conference on intelligent robots and systems, 5026–
5033. IEEE.
Towers, M.; Kwiatkowski, A.; Terry, J.; Balis, J. U.; Cola,
G. D.; Deleu, T.; Goulão, M.; Kallinteris, A.; Krimmel, M.;
KG, A.; Perez-Vicente, R.; Pierré, A.; Schulhoff, S.; Tai,
J. J.; Tan, H.; and Younis, O. G. 2024. Gymnasium: A Stan-
dard Interface for Reinforcement Learning Environments.
arXiv:2407.17032.
Van Hasselt, H.; Guez, A.; and Silver, D. 2016. Deep rein-
forcement learning with double Q-learning. In Proceedings
of the AAAI conference on artificial intelligence, volume 30.
Wan, Y.; Naik, A.; and Sutton, R. S. 2021. Learning
and planning in average-reward Markov decision processes.
In International Conference on Machine Learning, 10653–
10662. PMLR.
Wang, Z.; Schaul, T.; Hessel, M.; Hasselt, H.; Lanctot, M.;
and Freitas, N. 2016. Dueling network architectures for deep
reinforcement learning. In International conference on ma-
chine learning, 1995–2003. PMLR.
Wu, F.; Ke, J.; and Wu, A. 2024. Inverse reinforcement
learning with the average reward criterion. Advances in Neu-
ral Information Processing Systems, 36.
Wu, Y.; Tucker, G.; and Nachum, O. 2019. Behavior
regularized offline reinforcement learning. arXiv preprint
arXiv:1911.11361.
Zhang, Y.; and Ross, K. W. 2021. On-policy deep reinforce-
ment learning for the average-reward criterion. In Inter-
national Conference on Machine Learning, 12535–12545.
PMLR.
Zhang, Z.; and Tan, X. 2024. An Implicit Trust Region
Approach to Behavior Regularized Offline Reinforcement
Learning. In Proceedings of the AAAI Conference on Ar-
tificial Intelligence, volume 38, 16944–16952.

Ziebart, B. D. 2010. Modeling purposeful adaptive behav-
ior with the principle of maximum causal entropy. Carnegie
Mellon University.

Technical Appendix

A Proofs
Lemma 1 (ERAR Backup Equation). Let an ERAR MDP be given with reward function r(s, a), fixed evaluation policy π and
prior policy π0. Then the differential value of π, Qπθ (s, a), satisfies

Qπθ (s, a) = r(s, a)− θπ + Es′∼pV πθ (s′), (16)

with the entropy-regularized definition5 of state-value function

V πθ (s) = Ea∼π
[
Qπ(s, a)− 1

β
log

π(a|s)
π0(a|s)

]
. (17)

Proof. We begin with the definitions

Qπθ (s, a) = r(s, a)− θπ + E
s′∼p,π

[∞∑
t=1

(
r(st, at)−

1

β
log

π(at|st)
π0(at|st)

− θπ
)]

, (18)

for the current state-action and

Qπθ (s
′, a′) = r(s′, a′)− θπ + E

s′′∼p,π

[∞∑
t=2

(
r(st, at)−

1

β
log

π(at|st)
π0(at|st)

− θπ
)]

, (19)

for the next state-action.
Re-writing Qπθ (s, a) and highlighting the terms of Qπθ (s

′, a′) in blue,

Qπθ (s, a) = r(s, a)− θπ + E
τ∼p,π

[∞∑
t=2

(
r(st, at)−

1

β
log

π(at|st)
π0(at|st)

− θπ
)
+ r(s′, a′)− 1

β
log

π(a′|s′)
π0(a′|s′)

−θπ
]
, (20)

Qπθ (s, a) = r(s, a)− θπ + E
s′∼p,a′∼π

[
Qπθ (s

′, a′)− 1

β
log

π(a′|s′)
π0(a′|s′)

]
, (21)

and identifying the entropy-regularized state value function as V (s) = Ea∼π
[
Qπθ (s, a)− 1

β log π(a|s)
π0(a|s)

]
.

Lemma 1 (ERAR Rate Gap). Consider two policies π, π′ absolutely continuous w.r.t. π0. Then the gap between their corre-
sponding entropy-regularized reward rates is:

θπ
′
− θπ = E

s∼dπ′ ,a∼π′

(
Aπθ (s, a)−

1

β
log

π′(a|s)
π0(a|s)

)
, (22)

where Aπθ (s, a) = Qπθ (s, a) − V πθ (s) is the advantage function of policy π and dπ′ is the steady-state distribution induced by
π′.

Proof. Working from the right-hand side of the equation,

E
s∼dπ′ ,a∼π′

(
Aπθ (s, a)−

1

β
log

π(a|s)
π0(a|s)

)
= E
s∼dπ′ ,a∼π′

(
Qπθ (s, a)− V πθ (s)− 1

β
log

π′(a|s)
π0(a|s)

)
= E
s∼dπ′ ,a∼π′

(
r(s, a)− θπ + E

s′∼p
V πθ (s′)− V πθ (s)− 1

β
log

π′(a|s)
π0(a|s)

)
= θπ

′
− θπ + E

s∼dπ′ ,a∼π′

(
E

s′∼p(·|s,a)
V πθ (s′)− V πθ (s)

)
= θπ

′
− θπ.

where we have used the definition

θπ
′
= E
s∼dπ′ ,a∼π′

(
r(s, a)− 1

β
log

π′(a|s)
π0(a|s)

)
(23)

and
E

s∼dπ′
E

a∼π′
E
s′∼p

V πθ (s′) = E
s∼dπ′

V πθ (s), (24)

which follows given that dπ′ is the stationary distribution. In other words, dπ′ is an eigenvector of the transition operator
p(s′|s, a) · π′(a′|s′).

5Equation (17) is an extension of V π
soft in (Haarnoja et al. 2017) to the case of a non-uniform prior policy.

Theorem 1 (ERAR Policy Improvement). Let a policy π absolutely continuous w.r.t. π0 and its corresponding differential
value Qπθ (s, a) be given. Then, the policy

π′(a|s) .= π0(a|s)eβQ
π
θ (s,a)∑

a π0(a|s)eβQ
π
θ (s,a)

(25)

achieves a greater entropy-regularized reward-rate. That is, θπ
′ ≥ θπ , with equality only at convergence, when π′ = π = π∗.

Proof. Let π′ be defined as above. Then

1

β
log

π′(a|s)
π0(a|s)

= Qπθ (s, a)−
1

β
log E

a∼π0

eβQ
π
θ (s,a). (26)

Using Lemma 1,

θπ
′
− θπ = E

s∼dπ′ ,a∼π′

(
Aπθ (s, a)−

1

β
log

π′(a|s)
π0(a|s)

)
= E
s∼dπ′ ,a∼π′

(
Qπθ (s, a)− V πθ (s)− 1

β
log

π′(a|s)
π0(a|s)

)
= E
s∼dπ′ ,a∼π′

(
1

β
log E

a∼π0

eβQ
π
θ (s,a) − V πθ (s)

)
≥ 0

where the last line follows from the variational formula (Mitter and Newton 2000; Theodorou and Todorov 2012),

1

β
log E

a∼π0

eβQ
π
θ (s,a) = inf

π
E
a∼π

(
Qπ(s, a)− 1

β
log

π(a|s)
π0(a|s)

)
. (27)

A.1 Soft Q-Learning Proofs
Lemma 4. The optimal ERAR Q function satisfies

Q(s, a) = r(s, a)− θ + 1

β
E
s′∼p

log E
a′∼π0

eβQ(s′,a′), (28)

Proof. Policy iteration monotonically improves the ERAR rate until θ′ = θ at convergence. So by the case of equality seen in
the previous proof, we have a relation between the optimal state and action value functions:

V (s) =
1

β
log E

a∼π0

eβQ(s,a) (29)

from which the desired result follows immediately via Lemma 1.

A.2 Eigenvector Equation
This update equation is in fact the same (in exponential space) as derived by Arriojas et al. (2023b) for deterministic dynamics.
Since in the exponential space, this is an eigenvalue equation for a primitive matrix, the unique solution (eigenvector) exists
and can be obtained e.g. by the power method. The eigenvector given by (Arriojas et al. 2023b) is

u(s, a) = eβ(r(s,a)−θ) E
s′∼p,a′∼π0

u(s′, a′), (30)

which in the case of deterministic dynamics can be written in log-space as:

log u(s, a) = β (r(s, a)− θ) + E
s′∼p

log E
a′∼π0

u(s′, a′), (31)

Upon dividing by β and defining q = β−1 log u:

q(s, a) = r(s, a)− θ + 1

β
E
s′∼p

log E
a′∼π0

eβq(s
′,a′), (32)

which is identical to our Equation (13).
For the case of stochastic dynamics, (Arriojas et al. 2023a) has shown that the average-reward RL problem can be mapped

onto another eigenvector equation with a different (learnable) choice of dynamics and reward function. So for both cases (i.e.
for deterministic dynamics and for stochastic dynamics) the update equation can be mapped on to an eigenvalue equation (in
exponential space).

B Implementation Details
B.1 Atari
For the Atari environments, we use a (standard, (Mnih et al. 2015)) CNN architecture with 32, 64, 64 channels and kernel sizes
of 8, 4, 3 and strides of 4, 2, 1 respectively in the three convolutional layers. Finally, there is a fully connected layer of width 512
before the |A|-dimensional output. As in (Mnih et al. 2015) we use the center and square cropping (84×84) and stack 4 frames
while skipping 4. This ensures each frame renders the moving sprite (e.g. ball, enemies) and gives important information about
velocities. We grey-scale the images to reduce channel dimension from 12 to 4 and use uint8 encoding of images to reduce
memory size. A “FireReset” wrapper is used to ensure that the game is started at the first step of each episode, as some games
require pressing the “Fire” button for initialization. Whenever a life is lost, the environment emits a termination signal. Many
of these wrappers can be found in Gymnasium’s wrapper subpackage (“AtariPreprocessing”). The Pong finetuned runs (shown
in Fig. 4) cost ∼ 40 GPU hours (A100 workstation), and we swept the ASQL hyperparameters for ∼ 100 GPU hours. Each run
requires roughly ∼ 7 GB of RAM.

Figure 5: Performance profile of τ comparison test for the Pong environment.

B.2 MuJoCo
For all SAC runs, we used (Raffin et al. 2021) implementation of SAC with hyperparameters (beyond the default values)
shown below in Section C. The finetuned runs here took ∼ 200 GPU hours for all environments, and sweeping the ASAC
hyperparameter ranges cost ∼ 1000 GPU hours. Each run requires roughly ∼ 1 GB of RAM.

Figure 6: Performance profile of τ comparison test for the Mujoco suite.

C Hyperparameters
C.1 Atari
We use the default Atari Suite hyperparameters for DQN in (Mnih et al. 2015).

We finetuned the hyperparameters for Pong on ASQL (shown in Table 2, using the sweep ranges shown below in Table 1.

Table 1: Atari Sweep

Environment Sweep Range

τθ (uniform) 0.00− 1.00
batch size 16, 32
learning rate (log uniform values) 1.00× 10−6 − 1.00× 10−3

β (uniform) 1.00× 10−2 − 10.0
target update interval 10000
τ 1
grad steps 4
train freq 4
hidden dim 512
number of networks 2
aggregation function min, mean, max
learning starts 50000

Table 2: Finetuned Hyperparameter Values for ASQL, PongNoFrameskip-v4

Environment Finetuned Value

τθ 5.00× 10−2

learning rate 3.50× 10−5

τ 1.00

C.2 MuJoCo

Table 3: MuJoCo sweep

Environment Sweep Range

aggregation max, min, mean
number networks 2
τθ (uniform) 0.00− 1.00
actor learning rate 1.00× 10−5, 5.00× 10−5, 1.00× 10−4, 2.00× 10−4, 5.00× 10−4

learning rate 1.00× 10−4, 2.00× 10−4 ,3.00× 10−4, 5.00× 10−4, 8.00× 10−4, 1.00× 10−3

buffer size 100000, 1000000
hidden dim 256
batch size 256
target update interval 1
τ 0.0003, 0.0005, 0.0008, 0.001, 0.003, 0.005, 0.007, 0.01, 0.03, 0.05
max gradient norm 0, 10, 1000

Table 4: Finetuned Hyperparameter Values for SAC

Environment Pendulum-v1 Ant-v4 Swimmer-v4 HalfCheetah-v4

ent coef, β−1 2.00× 10−1 2.00× 10−1 5.00× 10−2 2.00× 10−1

For SAC, we set the temperature parameter fixed (shown in the table below). We found this to perform better than the auto-
matically adjusted temperature parameter used by default. However, future work can explore the use for a learned temperature
parameter for ASAC and compare these methods as well.

Table 5: Finetuned Hyperparameter Values for ASAC

Environment Pendulum-v1 Ant-v4 Swimmer-v4 HalfCheetah-v4

learning rate 2.00× 10−3 2.00× 10−4 3.00× 10−4 5.00× 10−4

τ 5.00× 10−2 5.00× 10−4 5.00× 10−3 8.00× 10−4

τθ 5.00× 10−1 2.84× 10−1 6.84× 10−1 7.30× 10−2

actor learning rate 1.00× 10−4 1.00× 10−5 1.00× 10−4 1.00× 10−4

Figure 7: Results on the Swimmer-v4 environment for the undiscounted objective.

C.3 Pendulum

Table 6: Pendulum sweep

Hyperparameter Sweep Range

τθ (uniform) 0.00− 1.00
batch size 32, 64, 128, 256
learning rate (log uniform values) 1.00× 10−4 − 1.00× 10−2

β (log uniform values) 1.00× 10−2 − 10.0
target update interval 2, 10, 50, 100, 200, 500, 1000, 5000
τ 1.00
max gradient norm 10.0, 0.00
train freq 1
hidden dim 64, 128, 256
learning starts 0

Table 7: Finetuned Hyperparameter Values for ASQL

Environment Pendulum-v1

β 1.50× 10−1

τθ 2.50× 10−2

learning rate 3.20× 10−3

τ 1.00

Table 8: Finetuned Hyperparameter Values for DQN

Environment Pendulum-v1

exploration final ε 1.00× 10−1

exploration fraction 1.20× 10−1

γ 0.99
learning rate 1.00× 10−3

τ 1.00

Table 9: Finetuned Hyperparameter Values for SQL

Environment Pendulum-v1

β 1.00
γ 0.99
learning rate 1.00× 10−3

τ 1.00

