
Networked Restless Multi-Arm Bandits with Reinforcement Learning

Hanmo Zhang1, Kai Wang1

1 Georgia Institute of Technology
hanmo@gatech.edu, kwang692@gatech.edu

Abstract

Restless Multi-Armed Bandits (RMABs) are a powerful
framework for sequential decision-making, widely applied in
public health challenges such as resource allocation and inter-
vention optimization. However, traditional RMABs assume
independence among arms, limiting their ability to account
for interactions between individuals, which can be common
and significant in a real-world environment. This paper intro-
duces Networked RMAB, a novel framework that integrates
the RMAB model with the independent cascade model to cap-
ture interactions between arms in networked environments.
We establish the submodularity of Bellman’s Equation for
that model, enabling efficient policy design and proposing a
Q-learning algorithm to account for the networked setting.
Initial experimental results demonstrate that our network-
aware approach outperforms a network-blind approach, high-
lighting the importance of capturing and leveraging network
effects where they exist.

1 Introduction
Public health challenges such as infectious disease con-
trol, vaccination strategies, and the management of
chronic illnesses increasingly require sophisticated sequen-
tial decision-making under uncertainty. These challenges in-
volve allocating limited resources to interventions whose
outcomes are uncertain and where timely decisions can sig-
nificantly impact population health outcomes (World Health
Organization 2019).

The Restless Multi-Armed Bandit (RMAB) framework
has emerged as a powerful tool for addressing such sequen-
tial decision-making problems under resource constraints.
Prior work has successfully applied variations of RMABs
to various public health settings, including optimizing treat-
ment strategies for infectious diseases (Mate et al. 2020)
and designing treatment policies for tuberculosis patients in
Mumbai, India (Mate, Perrault, and Tambe 2021).

However, a significant limitation of traditional RMAB
models is the assumption of independence among arms. In
many real-world applications, especially in public health,
the state of one individual can directly affect others due
to social interactions or network effects. For instance, the

Copyright © 2025, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

spread of infectious diseases is inherently a networked pro-
cess where an individual’s health status influences the infec-
tion risk of their contacts (Pastor-Satorras and Vespignani
2001). To model such interactions, the Independent Cascade
(IC) model has been widely used to capture the probabilistic
spread of influence through a network (Kempe, Kleinberg,
and Tardos 2003).

In this paper, we introduce the Networked Restless
Multi-Armed Bandit (NRMAB) framework, which integrates
RMABs with the IC model to capture interactions between
arms in a networked environment. By incorporating network
effects, our model allows the action on one arm to influence
not only its own state transitions but also those of neighbor-
ing arms through cascades. We formulate Bellman’s Equa-
tion for this networked setting and prove its submodular-
ity. This property enables us to design efficient greedy al-
gorithms with performance guarantees close to the optimal
policy (Nemhauser, Wolsey, and Fisher 1978).

Building on this theoretical foundation, we develop a Q-
learning algorithm tailored for NRMABs. Our algorithm ap-
proximates the optimal policy without the need to compute
the exact value function – which is computationally infeasi-
ble in large networks – while maintaining the submodular-
ity of the value function to guide the learning process. We
validate our approach through experiments on synthetic net-
works, demonstrating that our network-aware algorithm sig-
nificantly outperforms network-blind baselines, including
the traditional Whittle Index policy (Whittle 1988). These
results highlight the importance of capturing network effects
in sequential decision-making problems and suggest that
NRMABs can provide more effective intervention strategies
in public health and other domains where such networked
interactions are significant.

2 Related Works
Restless multi-armed bandits: Restless Multi-Armed
Bandits (RMABs), first introduced by Whittle (Whittle
1988), extend the classic Multi-Armed Bandit framework
to scenarios where each arm evolves over time regardless
of whether it is selected. This extension makes RMABs a
powerful tool for modeling decision-making problems in
uncertain and evolving environments. However, finding op-
timal policies for RMABs is PSPACE-hard (Papadimitriou
and Tsitsiklis 1999), leading researchers to develop various

approximation algorithms and heuristics. The Whittle index
policy (Whittle 1988) is a well-known heuristic that pro-
vides near-optimal solutions under certain conditions, par-
ticularly when the problem is indexable. RMABs have been
applied in domains such as machine maintenance (Glaze-
brook, Mitchell, and Ansell 2005), healthcare (Mate et al.
2020), and communication systems (Liu and Zhao 2010).

Independent Cascade Model: The Independent Cascade
model, introduced by Kempe et al. (Kempe, Kleinberg, and
Tardos 2003), captures the probabilistic spread of influence
through networks and has become a fundamental framework
for studying diffusion processes in social networks. In the
IC model, active nodes have a single chance to activate each
inactive neighbor with a certain probability, modeling phe-
nomena such as information spread, and epidemic propa-
gation. The problem of influence maximization—selecting
a set of initial nodes to maximize the expected spread—is
NP-hard but benefits from the property of submodularity,
which allows for efficient approximation algorithms with
provable guarantees (Nemhauser, Wolsey, and Fisher 1978).
Submodular function maximization has been extensively
studied and applied to various network optimization prob-
lems (Leskovec et al. 2007; Chen, Wang, and Wang 2010).

Networked Bandits: In the domain of health monitoring
and intervention, prior work has explored extending RMABs
to account for network effects. For example, Ou et al.
(2022) introduced a Networked Restless Multi-Armed Ban-
dits framework for location-based by accounting for move-
ment of people between locations. While this networked
approach enhances resource allocation effectiveness in this
scenario, it is particular to this narrow problem and difficult
to generalize. In contrast, our work advances this foundation
by modeling a wider range of interactions, enabling more
nuanced and comprehensive resource allocation strategies in
more complex and interconnected environments.

3 Problem Setting
3.1 Motivation
Efficient distribution of health resources is a critical chal-
lenge faced by public health authorities, particularly dur-
ing outbreaks and pandemics. Traditional resource alloca-
tion strategies often rely on static models that assume in-
dependence among individuals, neglecting the complex in-
teractions inherent in social and contact networks. For in-
stance, during the COVID-19 pandemic, the effectiveness
of interventions such as vaccination or quarantine depends
not only on targeting specific individuals but also on how
these interventions influence the broader network of interac-
tions (World Health Organization 2020). Ignoring these net-
work effects can lead to suboptimal allocation of limited re-
sources, resulting in higher transmission rates and increased
morbidity and mortality (Pastor-Satorras and Vespignani
2001).

To address this limitation, our work introduces the Net-
worked Restless Multi-Armed Bandit (NRMAB) frame-
work, which integrates the RMAB model with the Indepen-
dent Cascade model to account for interactions between in-

dividuals in a networked environment. This integration al-
lows for a more realistic representation of how interventions
on one individual can propagate through the network, influ-
encing the health states of others. The novelty of our ap-
proach lies in the formal incorporation of network effects
into the RMAB framework and the demonstration of sub-
modular properties in this combined model. These theoreti-
cal advancements facilitate the development of scalable al-
gorithms capable of handling large and complex networks,
which are common in public health applications. Addi-
tionally, our reinforcement learning-based solutions provide
practical tools for decision-makers to dynamically adapt re-
source allocation strategies in response to evolving network
dynamics.

3.2 Network RMAB Problem Formulation
An instance of the network RMAB problem is composed of
a graph G = (V, E), where each node v ∈ V represents
an arm that can transition between different states s ∈ S.
In this paper, we assume each node can only be in one of
two states: inactive (s = 0) or active (s = 1). Each arm
v can be targeted with an action a ∈ {0, 1} corresponding
to passive and active intervention, respectively. We assume
each iteration we can only pick k arms to provide actions.
This can be expressed as a budget constraint on the actions:∑

i∈[n] ai ≤ k.

Independent arm transition: Given the state s and the
action a of node v, the state transitions to the next state
u based on the transition probability Pv(s, a, u). We as-
sume that active actions yield higher probabilities of ben-
eficial transitions compared to passive actions. Specifically,
for each node v ∈ V:

Pv(s = 0, a = 1, u = 1) ≥ Pv(s = 0, a = 0, u = 1), (1)
Pv(s = 1, a = 1, u = 1) ≥ Pv(s = 1, a = 0, u = 1). (2)

In short, we can write the independent transition of the cur-
rent state of all nodes s = [sv]v∈V under action a = [av]v∈V
to a temporary next state u = [uv]v∈V by:

P (u|s,a) =
∏

v∈V
Pv(sv, av, uv) (3)

Independent cascade: Nodes are interconnected through
undirected edges e ∈ E , where each edge has a weight
0 < we < 1, representing the probability that an active node
activates its neighbor via a cascade. This is motivated by the
independent cascade model that disease or information can
cascade from active nodes to their neighbors. We use a func-
tion PG to denote the probability that the temporary state u
cascades to the next state s′ = [s′v]v∈V through the graph G
and the cascade probability of each edge by:

PG(s
′|u) (4)

Reward objective: Our goal is to select the optimal k nodes
at each timestep to maximize the cumulative reward over
multiple timesteps t. This objective is formalized using the
discounted return: ∑∞

t=0
γtR(st,at), (5)

where γ is the discount factor (0 ≤ γ < 1) that prioritizes
immediate rewards over distant future rewards. The reward
function R(s, a) is the immediate reward received after tak-
ing action a in state s, which is defined as:

R(s,a) =
∑

v∈V
r(v), (6)

where V represents the set of all nodes in the graph, and r(v)
is the value associated with node v if it is active (s(v) = 1),
or zero otherwise.

4 Methodology
Our objective is to develop an algorithm capable of consis-
tently selecting near-optimal actions in a scalable manner to
maximize the accumulated value in each state. To represent
action optimality, we use Bellman’s Equation:

V (s) = max
a∈An

Q(s,a), (7)

Q(s,a) = R(s,a)+γ
∑

u
P (u | s,a)

∑
s′
PG(s

′ | u)V (s′),

where u denotes the temporary state that each arm transi-
tions independently based on their active and passive transi-
tion probabilities, and PG further transitions from the tem-
porary state u based on the independent cascade model.
However, one challenge in the Bellman equation is the expo-
nential number of actions to consider in Equation 7, which
can be computationally challenging to optimize.

4.1 Submodularity of the Q-Function
In our algorithm, we first prove that Q(s,a) is submodu-
lar with respect to a. Our problem aligns with the influence
maximization problem, where a greedy hill-climbing strat-
egy can achieve a performance guarantee of 1− 1

e , approxi-
mately 63% of the optimal solution (Kempe, Kleinberg, and
Tardos 2003). We proceed with a proof of the submodularity
of Q(s,a).
Theorem 1. Given a known V (s) function and a constant
state s, we show that Q(s,a) is submodular with respect to
a.

Proof sketch. We show that for any A ⊆ B ⊆ N and t /∈ B:

Q(s,A ∪ {t})−Q(s,A) ≥ Q(s,B ∪ {t})−Q(s,B)

In Q(s, a), the reward function R(s, a) is inherently sub-
modular. We focus on the expected future value component:

σ(a) =
∑

s′,u
PG(s

′ | u)P (u | s, a)V (s′)

We model the state transitions and cascades using coupled
probabilistic simulations. For each node v ∈ V , we sim-
ulate two coin flips: xv , which represents the node’s out-
come in the transition step under a passive action, and yv ,
the same node’s outcome under an active action. We couple
these coinflips such that if x results in activation, the cor-
responding y must also result in activation. For each edge
e ∈ E , we simulate a coin flip ze to determine if an ac-
tive node activates its neighbor via a cascade. With a full
set of coinflips X,Y, Z, we deterministically know the set

of active nodes after applying an action. Let σXY (A) de-
note the set of active nodes after the Transition Step, and
σZ(σXY (A)) denote the set of active nodes after both Tran-
sition and Cascade Steps.

We know that σXY (A) ⊆ σXY (B) for A ⊆ B and
σXY (A ∪ {t}) \ σXY (A) = σXY (B ∪ {t}) \ σXY (B).
Using these properties, the submodularity inequality can be
rewritten for the independent cascade as:

σZ(σXY (A ∪ {t}))− σZ(σXY (A))

≥ σZ(σXY (B ∪ {t}))− σZ(σXY (B)).

Since V (s) depends directly on the total weighted
node value and each active node contributes positively,
V (σX,Y,Z(A)) is also submodular. Consequently, our ex-
pected future value can be formulated as:

σ(A) =
∑

X,Y,Z
P (XY Z) · V (σX,Y,Z(A))

which is a non-negative linear combination of submodular
functions, maintaining submodularity. Therefore, Q(s, a),
being a sum of submodular functions, is itself submodular.

4.2 Deep Q-Learning with Hill Climbing
Deep Q Network To solve a NRMAB problem, we pro-
pose a Deep Q-Network using Hill Climbing. Our neural
network takes in a representation of the state and action and
pass it through three fully connected hidden layers to pro-
ducing a Q-value for each state-action pair Q(s,a). How-
ever, if we have a large number of nodes and a large action
size, then combinations of possible actions quickly becomes
infeasible to calculate.

Incorporating Hill Climbing Thus, we iterate through
the list of all possible single actions and utilize a neural net-
work to predict the Q value of each single action a. Then,
we greedily select the k actions with the highest Q-values.
This should leverage the submodular properties of Bell-
man’s Equation to achieve the 1− 1

e performance guarantee.
We combine DQN and hill climbing to design a scalable Q-
learning algorithm to solve the network RMAB problems,
where the algorithm can be found in Algorithm 1.

Algorithm 1: Hill climbing DQN

1: Initialization: Neural network Q(s, a; θ), replay buffer
2: while until θ converges do
3: Hill climbing action: intervention set A = ∅.
4: while |A| < k (budget for intervention) do
5: Solve v∗ = argmaxv∈V Q(s, 1A∪{v})
6: Update A← A ∪ {v}
7: end while
8: Execute a = 1A and collect experience
9: DQN Updates: Sample mini-batches from the replay

buffer and run gradient descent to update θ.
10: end while
11: Output: Q network parameter θ

Figure 1: Mean Cumulative Reward Per Timestep for Tabu-
lar Q-Learning compared and DQN. Max timestep reward is
around 70 and max cumulative reward is around 980.

Figure 2: Reward difference between DQN, Hill Climbing,
and Whittle Index versus no selection. Max timestep reward
is around 430 and max cumulative reward is around 6100.

5 Experiments
5.1 Algorithms
To evaluate the effectiveness of our DQN algorithm, we
compare it with three other algorithms:

1. Tabular Q-Learning: Solves the full Bellman’s Equa-
tion for each state-action pair for small state-action sizes.

2. Naive Hill-Climbing: performs hill-climbing by calcu-
lating the value of activating a node in a state, taking into
account network effect but ignoring future states.

3. Whittle Index: A traditional method for solving RMABs
without considering network effects

We evaluate our algorithms on synthetic networks of vary-
ing sizes to assess their scalability and performance. The
DQN is independently defined and trained using TianShou
and PyTorch for the neural network, and Gymnasium for the
simulation environment. The neural network is trained over
three epochs of 1000 steps.

Simulation Protocol After training, each algorithm is
evaluated through 100 simulations, each spanning 15
timesteps. The following metrics are collected:
1. Mean Cumulative Reward: The average total reward

gathered at the end of all simulations
2. Mean Reward Per Timestep: The average reward

gained at each timestep
For a baseline comparison, we also collect the above data

on an algorithm that does not select any actions (no-select).
We compare the difference in mean cumulative reward per
timestep and mean reward per timestep of each algorithm
against the no-select algorithm; this is calculated by dividing
the cumulative reward at timestep t by t.

6 Results & Discussion
Overall, DQN performs comparably to the Hill Climbing al-
gorithm, and both outperform the whittle index.

Submodularity Verification Figure 1, shows the perfor-
mance of DQN compared to Tabular Q-Learning, an ap-
proach that gives near-optimal solutions at every timestep.
We see the optimality guarantee of submodularity: DQN

does not perform at less than a 63% threshold compared to
Tabular Q-Learning.

DQN Algorithmic Effectiveness Figure 2 displays the
difference in average cumulative reward between DQN, Hill
Climbing, and Whittle Index compared to no selection on
a graph with 300 nodes and 300 edges, with data collected
over the same simulation parameters. Although the differ-
ence is small, we see a clear and consistent average outper-
formance of DQN against the other two methodologies.

6.1 Discussion
We observe several key results:

1. Performance of Q-Learning Approaches: In most
cases, DQN exhibits better performance than Hill Climb-
ing and Whittle Index, and does not perform notably
worse than an optimal algorithm for small graph sizes.
This similarity can be attributed to the submodular nature
of the reward function, which allows both algorithms to
achieve the 1− 1

e performance guarantee.
2. Importance of Network Effects: The Whittle Index,

which does not account for network cascades, underper-
forms compared to network-aware approaches. This find-
ing underscores the critical role of modeling network in-
teractions in resource allocation problems. However, this
performance difference decreases as the range of node
values increases.

3. Activation Dynamics: There appears to be a saturation
point in the number of active nodes, where the rate of ac-
tivation balances with the deactivation rate. This suggests
a theoretical maximum activation level achievable given
the network structure and resource constraints.

4. Ratio of Graph Sizes to Actions Taken Performance
differences between the algorithms decrease as the ratio
between graph and action size increases. This is likely
due to more passive transitions decreasing the impact of
active actions and the existence of many near-optimal ac-
tions making them easier to find for all algorithms.

The superior performance of network-aware algorithms
over the Whittle Index emphasizes the necessity of consid-
ering interdependencies in real-world applications.

References
Bellemare, M. G.; Dabney, W.; and Munos, R. 2017. A dis-
tributional perspective on reinforcement learning. Interna-
tional Conference on Machine Learning, 449–458.
Chen, W.; Wang, C.; and Wang, Y. 2010. Scalable influence
maximization for prevalent viral marketing in large-scale so-
cial networks. In Proceedings of the 16th ACM SIGKDD In-
ternational Conference on Knowledge Discovery and Data
Mining, KDD ’10, 1029–1038. New York, NY, USA: Asso-
ciation for Computing Machinery. ISBN 9781450300551.
Glazebrook, K.; Mitchell, H.; and Ansell, P. 2005. Index
policies for the maintenance of a collection of machines by
a set of repairmen. European Journal of Operational Re-
search, 165(1): 267–284.
Hasselt, H. v. 2010. Double Q-learning. Advances in Neural
Information Processing Systems, 2613–2621.
Kempe, D.; Kleinberg, J.; and Tardos, E. 2003. Maximizing
the Spread of Influence through a Social Network. In Pro-
ceedings of the Ninth ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining (KDD-03),
137–146. New York, NY, USA: ACM.
Leskovec, J.; Krause, A.; Guestrin, C.; Faloutsos, C.; Van-
briesen, J.; and Glance, N. 2007. Cost-effective outbreak
detection in networks. volume 420-429, 420–429.
Liu, K.; and Zhao, Q. 2010. Indexability of Restless Ban-
dit Problems and Optimality of Whittle Index for Dynamic
Multichannel Access. IEEE Transactions on Information
Theory, 56(11): 5547–5567.
Mate, A.; Killian, J. A.; Xu, H.; Perrault, A.; and Tambe, M.
2020. Collapsing Bandits and Their Application to Public
Health Interventions. Neural Information Processing Sys-
tems.
Mate, A.; Perrault, A.; and Tambe, M. 2021. Risk-Aware In-
terventions in Public Health: Planning with Restless Multi-
Armed Bandits. In AAMAS ’21.
Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A. A.; Ve-
ness, J.; Bellemare, M. G.; et al. 2015. Human-level control
through deep reinforcement learning. Nature, 518(7540):
529–533.
Nemhauser, G. L.; Wolsey, L. A.; and Fisher, M. L. 1978.
An Analysis of Approximations for Maximizing Submod-
ular Set Functions—I. Mathematical Programming, 14(1):
265–294.
Ou, H.-C.; Siebenbrunner, C.; Killian, J.; Brooks, M. B.;
Kempe, D.; Vorobeychik, Y.; and Tambe, M. 2022. Net-
worked Restless Multi-Armed Bandits for Mobile Interven-
tions.
Papadimitriou, C. H.; and Tsitsiklis, J. N. 1999. The com-
plexity of optimal queueing network control. Mathematics
of Operations Research, 24(2): 293–305.
Pastor-Satorras, R.; and Vespignani, A. 2001. Epidemic
Spreading in Scale-Free Networks. Phys. Rev. Lett., 86:
3200–3203.
Sutton, R. S. 1999. Policy Gradient Methods for Reinforce-
ment Learning with Function Approximation. In Advances
in Neural Information Processing Systems, 1057–1063.

Sutton, R. S.; and Barto, A. G. 2018. Reinforcement Learn-
ing: An Introduction. MIT press.
Whittle, P. 1988. Restless bandits: Activity allocation in a
changing world. Journal of Applied Probability, 25: 287–
298.
World Health Organization. 2019. World Health Statistics
2019: Monitoring Health for the SDGs, Sustainable Devel-
opment Goals. Geneva, Switzerland: World Health Organi-
zation.
World Health Organization. 2020. World Health Organiza-
tion guidelines on COVID-19: Evidence synthesis and rec-
ommendations. World Health Organization.

Appendix
A Full Proof of Submodularity

We demonstrate that our implementation of Bellman’s Equation exhibits submodular properties, which are crucial for the
efficiency and effectiveness of greedy algorithms. Submodularity ensures that the marginal gain of adding an element to a set
decreases as the set grows, a property leveraged in influence maximization.

Formally, we aim to show that for any A ⊆ B ⊆ N and v /∈ B:

Q(s,A ∪ {v})−Q(s,A) ≥ Q(s,B ∪ {v})−Q(s,B)

where Q(s,A) represents the value of taking action set A in state s.
The reward function R(s, a) is inherently submodular. We focus on the expected future value component:

σ(a) =
∑
s′,u

PG(s
′ | u)P (u | s, a)V (s′)

To analyze σ(a), we model the state transitions using coupled probabilistic simulations. Specifically, for each node n ∈ N , we
simulate two coin flips:
• xn: Outcome under passive action with probability P (s = 0, a = 0, s′ = 1).
• yn: Outcome under active action with probability P (s = 0, a = 1, s′ = 1).

We couple these coin flips such that if xn results in activation (s′ = 1), then yn also results in activation. This coupling reflects
the assumption that active actions have transition probabilities at least as good as passive actions, ensuring:

P (s = 0, a = 1, s′ = 1) ≥ P (s = 0, a = 0, s′ = 1),

P (s = 1, a = 1, s′ = 1) ≥ P (s = 1, a = 0, s′ = 1).

Additionally, for each edge e ∈ E, we simulate a coin flip ze with bias pv,w to determine if an active node activates its
neighbor via a cascade. A heads outcome denotes an active edge, leading to activation, while tails denote no activation.

Through these coupled simulations, we can deterministically determine the set of active nodes after applying an action. Let
σXY (A) denote the set of active nodes after the Transition Step, and σZ(σXY (A)) denote the set of active nodes after both
Transition and Cascade Steps.

We establish the following properties:
1. σXY (A) ⊆ σXY (B) for A ⊆ B. This is because adding more actions (from A to B) cannot decrease the set of active nodes

due to the coupling of xn and yn.
2. σXY (A ∪ {v}) \ σXY (A) = σXY (B ∪ {v}) \ σXY (B) = v′, where v′ represents the newly activated nodes resulting from

adding action v. This holds because the additional action v affects nodes in the same manner regardless of the existing set
A or B, thanks to the coupling ensuring yn ≥ xn.

Using these properties, the submodularity inequality can be rewritten for the independent cascade as:

σZ(σXY (A ∪ {v}))− σZ(σXY (A))

≥ σZ(σXY (B ∪ {v}))− σZ(σXY (B)).

This inequality demonstrates that the number of active nodes after an action is submodular with respect to the size of the action
set.

Since V (s) depends directly on the total weighted node value and each active node contributes positively, V (σX,Y,Z(A)) is
also submodular. Consequently, our expected future value can be formulated as:

σ(A) =
∑

X,Y,Z

P (XY Z) · V (σX,Y,Z(A))

which is a non-negative linear combination of submodular functions, maintaining submodularity. Therefore, Q(s, a), being a
sum of submodular functions, is itself submodular.

B Implementation Details for DQN
To handle the computational challenges posed by large graph sizes, we implement our algorithms using efficient data structures
and optimization techniques. Specifically, we employ the following strategies during the calculation of Bellman’s Equation:

• Sampling Actions: Instead of iterating through all possible actions, we sample a subset of actions to estimate the value
function, reducing computational overhead. This approach is grounded in methods discussed by Sutton and Barto (Sutton
and Barto 2018) and has been effectively utilized in large action space scenarios (Sutton 1999).

• Monte Carlo Simulations: To account for stochastic state transitions, we perform multiple simulations and average the
results to approximate the expected future value. Monte Carlo methods provide a robust framework for estimating value
functions in complex environments (Sutton and Barto 2018; Bellemare, Dabney, and Munos 2017).

• Reinforcement Learning Framework: For DQN, we utilize frameworks such as PyTorch to build and train neural networks
that approximate the Q-values. This aligns with standard practices in deep reinforcement learning research (Mnih et al. 2015;
Hasselt 2010).

These implementation choices enable our algorithms to scale effectively with larger networks while maintaining high perfor-
mance.

State and Action Encoding The state of the graph is one-hot encoded into a tensor where active nodes are represented by 1
and inactive nodes are represented by 0. Actions are similarly encoded, with 1 being active action and 0 inactive. These tensors
are concatenated and fed into the first layer of the neural network.

Network Setup We use a 5-layer fully connected Q-network Q(s, a; θ), each hidden layer having 128 nodes and ReLU
activation function. We initialize an Adam optimizer for the Q-network parameters θ, and a replay buffer that stores 20, 000
transitions and training and testing collectors to gather experience. We use a custom Q policy that chooses k actions each step.
For each action in k, with probability ϵ select a random action, otherwise select the action with the highest Q value. Every 50
steps, the policy is updated from mini-batches from the replay buffer using loss calculated and gradient descent. The network
is trained for 3 epochs of 100 steps, with a batch size of 64 and γ of 0.9. The terminal state for training is defined by reaching a
specific activation percentage.

C Experimental Configurations
For evaluating DQN against Tabular Q-Learning, we train both algorithms on a graph with 15 nodes, 30 edges, and randomly
assigned integer values between 1 and 10. Each algorithm selects 2 nodes per timestep.

For evaluating DQN against Hill-Climbing and Whittle Index, we run experiments with two graph sizes: 300 nodes and 300
edges and 2500 nodes and 5000 edges. Nodes are generated with integer values between 1 and 2, and each algorithm selects 10
nodes per timestep.

For all graphs, nodes and edges are randomly generated. Additionally, each node is randomly assigned transition probabilities
such that the active transitions are better than passive transitions. Edges between nodes are randomly generated, with a static
cascade probability of 0.1 for each edge.

D Supplementary Results
Figure 3 displays the difference in rewards between the algorithms on a large graph with 2500 nodes. Note how the difference
in average cumulative reward and reward per timestep are both less than that of the experiment with 300 nodes; this shows
actions performed on a larger graph have a smaller impact.

Figure 3: Difference in rewards between DQN, Hill Climbing, and Whittle Index compared to no selection for a large graph.
Note how each algorithm is less differentiated compared to No Selection. Max timestep reward is around 2900 and max cumu-
lative reward is around 41500.

