
Controller Synthesis from Deep Reinforcement Learning Policies

Florent Delgrange1, 2, Guy Avni3, Anna Lukina4, Christian Schilling5, Ann Nowé1, Guillermo A. Pérez2, 6

1Vrije Universiteit Brussel, Belgium 2University of Antwerp, Belgium 3University of Haifa, Israel 4Delft University of
Technology, The Netherlands 5Aalborg University, Denmark 6Flanders Make, Belgium

Abstract
We propose a novel framework to controller design in en-
vironments with a two-level structure: a known high-level
graph (“map”) in which each vertex is populated by a Markov
decision process, called a “room”. The framework “sepa-
rates concerns” by using different design techniques for low-
and high-level tasks. We apply reactive synthesis for high-
level tasks: given a specification as a logical formula over
the high-level graph and a collection of low-level policies
given on “concise” latent structures, we construct a “planner”
that selects which low-level policy to apply in each room.
We develop a reinforcement learning procedure to train low-
level policies on latent structures, which unlike previous ap-
proaches, circumvents a model distillation step. It pairs the
policy with probably approximately correct guarantees on its
performance and abstraction quality, which are lifted to guar-
antees on the high-level task. These formal guarantees are the
main advantage of the framework. Other advantages include
scalability (rooms are large and their dynamics is unknown)
and reusability of low-level policies. We demonstrate feasi-
bility in challenging case studies involving agent navigation
in environments with moving obstacles and visual inputs.

1 Introduction
We consider the fundamental problem of constructing con-
trol policies for environments modeled as Markov decision
processes (MDPs) with formal guarantees. We deal with
long-horizon tasks in environments with some prior knowl-
edge of the environment structure: the input to our method
is a (high-level) map given as a graph, where each vertex
is populated by an (possibly large) MDP with unknown dy-
namics called a room, and the long-horizon task is given on
the map. We argue that such settings arise naturally. Our
running example is a robot for delivering a package in a
warehouse with moving obstacles (e.g., forklifts, workers,
or other robots); while it is infeasible to model the low-
level interactions of the agent with its immediate surround-
ings, modeling the high-level map of the rooms in the ware-
house requires minimal engineering effort. We list other ex-
amples of two-level domains with prior knowledge of the
high-level architecture and in which our method is relevant:
(i) routing (Junges and Spaan 2022): the network topol-
ogy, e.g., connection between routers, is often known but

Copyright © 2025, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

modeling low-level routing decisions is intricate; (ii) skill
graphs (Bagaria et al. 2021) of agents, e.g., “grab a key” and
“open a door”, and their dependencies are naturally modeled
as a graph; (iii) software systems (Ryzhyk et al. 2009), in
particular probabilistic programs (Junges and Spaan 2022):
each vertex represents a software component (an MDP in
a probabilistic program) and edges capture dependencies or
interactions.

Our framework “separates concerns” by using different
design techniques for low- and high-level tasks with com-
plementary benefits and drawbacks. For high-level tasks, we
apply reactive synthesis (Pnueli and Rosner 1989), which
constructs an optimal policy based on a model of the en-
vironment and objectives specified as a logical formula.
Its main advantage is a guarantee that the policy satisfies
the specification. Also, synthesis allows users an intuitive
and natural specification language. The reliance on an ex-
plicit model of the environment hinders scalability as well
as reasoning about domains with partially-known dynamics.
Hence, we solve low-level tasks via reinforcement learning
(RL (Sutton and Barto 1998)). In particular, we may use
deep RL (DRL (Mnih et al. 2013)), which is successful in
domains of high-dimensional feature spaces with unknown
dynamics. However, RL generally lacks formal guarantees
and struggles with long-term objectives, where one needs to
deal with the notorious problem of sparse rewards (Ladosz
et al. 2022) by guiding the agent (Liu et al. 2022), which in
turn poses an engineering effort.
Framework (Fig. 1) We output a two-level controller for an
agent, consisting of a collection of low-level policies Π and
a high-level planner τ . When the agent enters a room cor-
responding to a vertex v of the map, the planner chooses an
outgoing edge e and deploys the associated policy πv,e ∈ Π.
The agent follows πv,e until it exits the room. For example,
e can model a door between two rooms. Note that the agent
may exit from direction e′ ̸= e. It is thus key to have an es-
timate on the success probability of πv,e when designing τ .

We obtain low-level policies by developing a novel RL
procedure that is run locally in each room v and outputs la-
tent policies πv,e, for each direction e. These policies are
represented on a concise model of the room (Fig. 1(b)). We
stress that we only assume simulation access to the rooms;
the latent policies are learned. Importantly, each latent pol-
icy is paired with probably approximately correct (PAC)

%

Environment

Map v
e

e′

t

(a) Two-level environment
partitioned into rooms.

Low-level RL

Latent
Model

action

next latent

observation

πv,e
Latent policy

state

abstraction

Room

v

Agent

reward

(b) Latent models and policies are learned con-
jointly with the RL process. Both are paired with
PAC guarantees on the abstraction quality of the
model and the performance of the policy.

Map
Synthesis

construct a
that satisfies φ with guarantees

Specification φ :

low-level latent models/policies

high-level planner τ

v
e

e′

(one per room, direction)

t

t

“reach ”t

(c) Planner synthesis.

Figure 1: (a) Environment in which the agent (top-right) needs to reach the target (green, bottom-left) while avoiding moving
adversaries (in red). The target appears in the map as a dedicated vertex t. (b) The agent is trained to exit each room, in
every possible direction. Training is performed in parallel simulations. An abstraction of the environment is learned via neural
networks, yielding a latent model for each room. Simultaneously, a policy is learned via RL on the learned latent representation,
which guarantees the agent’s low-level behavior conformity through PAC bounds. More details in Sect. 4. (c) Given a high-
level description of the environment, a collection of latent models and policies for each room, and the specifications, synthesis
outputs a high-level planner guaranteed to satisfy the specifications. The challenge resides in the way the low-level components
are merged to apply synthesis while maintaining their guarantees. More details in Sect. 5.

guarantees on its performance.
Finally, given a map, a collection of policies Π, and a

high-level specification φ given as a logical formula over
the map, we design an algorithm to find a planner τ that op-
timizes for φ while lifting the guarantees on the policies in
Π to τ (Fig. 1(c)).
Advantages. We point to advantages of the framework. First
and foremost, it provides guarantees on the operation of the
controller. A key design objective is to ease the engineering
burden: reward engineering is only done locally (for each
room), and the high-level map and tasks are given in an in-
tuitive specification language. Second, our framework en-
ables reusability: a policy πv,e, including its guarantees, is
reusable across similar rooms v′ and when the high-level
task or structure changes. Finally, our framework offers a
remedy for the notorious challenge of sparse rewards in RL.
Case study. We complement our theoretical results with two
case studies which illustrate the feasibility of the approach.
We consider a domain in which an agent needs to reach
a distant location while avoiding mobile adversarial obsta-
cles with stochastic dynamics. The first case study is a grid
world, while the second case study is a vision-based Doom
environment (Kempka et al. 2016). We show that DQN
struggles to find a policy in our domain, even with reward
shaping. In the rooms, we demonstrate our novel procedure
for training concise latent policies directly. We synthesize a
planner based on the latent policies and show the following
results. First, our two-level controller achieves high success
probability, demonstrating that our approach overcomes the
challenge of sparse rewards. Second, the values predicted in
the latent model are close to those observed, demonstrating
the quality of our automatically constructed model.
Contributions. We outline our key theoretical contributions.
(i) Learning guarantees for low-level policies. We tie be-

tween the values (the probability that the low-level ob-

jective is satisfied) of the latent model and that of the en-
vironment via a loss function (Thm. 1) and demonstrate
that PAC bounds can be computed for these value differ-
ences (Thm. 2).

(ii) Guarantees on the synthesized controller. We prove
memory bounds on the size of an optimal high-level plan-
ner (Thm. 3). Moreover, we show that an optimal planner
can be obtained by solving an MDP whose size is propor-
tional to the size of the map, i.e., disregarding the size of
the rooms (Thm. 4).

(iii) Unified learning and synthesis guarantees. We show that
the learning guarantees for the low-level policies can be
lifted to the two-level controller. Specifically, minimiz-
ing the loss function to learn an abstraction of each room
independently (and in parallel) guarantees that the values
obtained under the two-level controller in the abstraction
closely match those obtained in the true two-level envi-
ronment (Thm. 5).

Related work. Hierarchical RL (HRL) (Pateria et al. 2022)
(see also, the option framework (Sutton et al. 1999)) is an
approach that outputs two-level controllers. Our approach
is very different despite similarity in terms of outputs and
motivations (e.g., both enable reusability and modularity).
The most significant difference is that our framework pro-
vides guarantees, which HRL generally lacks. In our frame-
work, high-level planners are synthesized based on prior
knowledge of the environment (the map) and only after the
low-level policies are learned. In HRL, both low-level poli-
cies and two-level controllers can be learned concurrently
and with no prior knowledge. Another difference is that in
HRL, the low-level objectives generally need to be learned,
whereas in our approach they are known. We argue that the
“separation of concerns” in our framework eases the en-
gineering burden while HRL notoriously requires signifi-
cant engineering efforts. Finally, unlike option-inspired ap-

proaches, where the integration of high- and low-level com-
ponents results in a “semi-”Markovian process, our frame-
work ensures that a small amount of memory for the high-
level planner is sufficient to enable the agent to operate
within a fully Markovian process. This facilitates the design
of high-level planning and synthesis solutions.

Distillation (Hinton et al. 2015) is an established ap-
proach: a neural network (NN) is trained then distilled into
a concise latent model. Verification of NN controllers is
challenging, e.g., (Amir et al. 2021). Verification based dis-
tillation is a popular approach in which verification is ap-
plied to a latent policy, e.g., Ernst et al. (2005); Delgrange
et al. (2022); Bastani et al. (2018); Bacci et al. (2021); Carr
et al. (2021). In contrast, we study controller-synthesis based
on latent policies. To our knowledge, only Alamdari et al.
(2020) develops a synthesis based on distillation approach,
but with no guarantees. In addition, we develop a novel
training procedure that trains a latent policy directly and
circumvents the need for model distillation. We stress that
the abstraction is learned unlike Roderick et al. (2018); Joth-
imurugan et al. (2021).

CLAPS (Žikelić et al. 2023) is an approach that outputs
a two-level controller with correctness guarantees, which is
very different from ours. Low-level policies are paired with a
super-martingale on the environment states that gives rise to
reach-avoid guarantees. In contrast, our policies are trained
on a learned latent model, which we accompany with PAC
guarantees on the quality of the abstraction. They further as-
sume prior knowledge of the transitions whereas we only
assume simulation access, their policy is limited to be sta-
tionary and deterministic whereas our policies are general,
and their high-level structure arises from the logical specifi-
cation whereas ours arises from the environment’s structure.

Formal reasoning in RL is a timely research agenda.
Safety objectives in RL are intractable (Alur et al. 2022).
Shielding (Alshiekh et al. 2018; Könighofer et al. 2022)
circumvents the difficultly of ensuring safety during train-
ing by monitoring a policy at runtime and blocking un-
safe actions. Shielding has been applied to low-level poli-
cies in a hierarchical controller (Xiong et al. 2022). The
limitation of this approach is that interference with the
trained policy might break its guarantees. LTL objectives
add intractability (Yang et al. 2021) to the already com-
plex hierarchical scenarios in RL (Kulkarni et al. 2016)
and only allow for PAC guarantees if the MDP structure is
known (Fu and Topcu 2014). Reactive synthesis is applied
by Nayak et al. (2023) to obtain low-level controllers, but
scalability is a shortcoming of synthesis. Approaches en-
couraging but not ensuring safety use constrained policy
optimization (Achiam et al. 2017), safe padding in small
steps (Hasanbeig et al. 2020), time-bounded safety (Gia-
cobbe et al. 2021), safety-augmented MDPs (Sootla et al.
2022), differentiable probabilistic logic (Yang et al. 2023),
or distribution sampling (Badings et al. 2023).

2 Preliminaries
Markov Decision Processes (MDPs). Let ∆(X) denote
the set of distributions on X . An MDP is a tuple M =

⟨S,A,P, I⟩ with states S, actions A, transition func-
tion P : S × A → ∆(S), and initial distribution I ∈
∆(S). An agent interacts withM as follows. At each step,
the agent is in some state s ∈ S. It performs an ac-
tion a ∈ A and subsequently goes to the next state ac-
cording to the transition function: s′ ∼ P(· | s, a). A
policy π : S → ∆(A) prescribes which action to choose
at each step and gives rise to a distribution over paths
of M, denoted by PrMπ . The probability of finite paths is
defined inductively. Trivial paths s ∈ S have probabil-
ity PrMπ (s) = I(s). Paths ρ = s0, s1, . . . , sn have probabil-
ity PrMπ (s0, s1, . . . , sn−1) · Ea∼π(·|sn−1)P(sn | sn−1, a).
Limiting behaviors in MDPs. The transient measure
µn
π(s

′|s) = Pρ∼PrMπ [ρ ∈ {s0, . . . , sn|sn = s′} | s0 = s]

gives the probability of visiting each state s′ after exactly
n steps starting from s ∈ S. Under policy π, C ⊆ S is
a bottom strongly connected component (BSCC) of M if
(i) C is a maximal subset satisfying µn

π(s
′ | s) > 0 for any

s, s′ ∈ C and some n ≥ 0, and (ii) Ea∼π(·|s)P(C | s, a) =
1 for all s ∈ S . MDP M is ergodic if, under any station-
ary policy π, the set of reachable states Reach(M, π) =
{s ∈ S | ∃n ≥ 0,Es0∼I µ

n
π(s | s0) > 0} consist of a unique

aperiodic BSCC. Then, for s ∈ S, the stationary distribution
ofM under π is given by ξπ = limn→∞ µn

π(· | s).
Objectives and values. A qualitative objective is
a set of infinite paths O ⊆ Sω . For B, T ⊆ S ,
we consider reach-avoid objectives O(T,B) =
{s0, s1, . . . | ∃i. si ∈ T and ∀j ≤ i, sj /∈ B} (or just O
if clear from context) where the goal is to reach a “target”
in T while avoiding the “bad” states B. Henceforth, fix
a discount factor γ ∈ (0, 1). In this work, we consider
discounted value functions (see, e.g., (de Alfaro et al.
2003)). The value of any state s ∈ S for policy π w.r.t.
objective O is denoted by V π(s,O) and corresponds to
the probability of satisfying O from state s as γ goes to
one, i.e., limγ→1 V

π(s,O) = Pρ∼PrMπ [ρ ∈ O | s0 = s]. In
particular, for the reach-avoid objective O(T,B), V π(s,O)
corresponds to the discounted probability of visiting
T for the first time while avoiding B, i.e., V π(s,O) =
Eρ∼PrMπ

[
supi≥0 γ

i · 1 {si ∈ T ∧ ∀j ≤ i, sj ̸∈ B} | s0 = s
]
,

where si, sj are respectively the ith, jth state of ρ. We are
particularly interested in the values obtained from the begin-
ning of the execution, written V π

I (O) = Es0∼I [V
π(s0,O)].

We may sometimes omit O and simply write V π and V π
I .

Reinforcement learning obtains a policy in a model-free
way. Executing action ai in state si and transitioning
to si+1 incurs a reward ri = rew(si, ai, si+1), computed
via a reward function rew : S × A × S → R. An RL
agent’s goal is to learn a policy π∗ maximizing the return
Eρ∼PrM

π∗

[∑
i≥0 γ

iri

]
. The agent is trained by interacting

with the environment in episodic simulations, each ending
in one of three ways: success, failure, or an eventual reset.

3 Problem Formulation
In this section, we formally model a two-level environment
and state the problem of two-level controller synthesis. The

s1,v0

s3,v0

s1, u s2, u

s0, u

d0 =→

R0 R1
aexit

M

win

aexit
s0,v0

s2,v0 s3, u

s0, u
′

v0 d1 = ⟨v0, u⟩
G

ℓ(v0) = R0

u
d2 = ⟨u, u′⟩ u′

(a) A two-level model of a simple grid world environment.

v3

u

π↓

π→

π→

π↑

Bℓ(u)

v2

Oℓ(u)(→)v1

s2

s1

s3

(b) A two-level model for which an optimal plan-
ner requires memory, here flattened in 2D.

Figure 2: (a) Top: The high-level graph G with two rooms R0 = ℓ(v0) and R1 = ℓ(u). Middle: Part of the explicit MDP for
the bottom layer; e.g., the MDP R0 contains 16 states. Traversing the edge ⟨⟨s2, v0⟩, ⟨s0, u⟩⟩ corresponds to exiting R0 and
entering R1 from direction d1 = ⟨v0, u⟩. The goal of is to reach u′ by exiting the room R1 from direction d2 = ⟨u, u′⟩ while
avoiding the moving adversaries . For i ∈ {0, 1}, the entrance function IRi

models the distribution from which the initial
location of in Ri is drawn. (b) A room with four policies for a planner to choose from; e.g., π→(· | s1) leads to Bℓ(u) and
π↑(· | s1) leads to s3. Note that while these are deterministic policies, in general the policies in rooms are probabilistic.

environment MDP is given by a high-level map: an undi-
rected graph whose vertices are associated with “low-level”
MDPs called rooms (Fig. 2(a)). A two-level controller con-
sists of two components and operates as follows. In each
room, we assume access to a set of low-level policies, each
optimizing a local (room) reach-avoid objective (Fig. 2(b)).
When transitioning to a new room, a high-level planner se-
lects the next low-level policy.

Two-level model. A room R = ⟨SR,AR,PR, DR, IR,OR⟩
consists of SR, AR, PR as in an MDP, a set of direc-
tions DR, an entrance function IR : DR → ∆(SR) tak-
ing a direction from which the room is entered and produc-
ing an initial distribution over states, and an exit function
OR : DR → 2SR returning a set of exit states from the room
in a given direction d ∈ DR. States are assigned to at most
one exit, i.e., if s ∈ OR(d) and s ∈ OR(d

′), then d′ = d.
Example 1 (Room). Consider the grid world below as
a room R populated by an adversary . One can en-

IR(· |→)

OR(→)

code the position of in SR
and its behaviors through PR.
This can be achieved by, e.g.,
considering states of the form
s = ⟨(x1, y1), (x2, y2)⟩ ∈ SR
where (x1, y1) is the position

of and (x2, y2) the one of in the grid. Note that
the position of depends on the direction from which
enters R. Here, enters from the left in direction → to
the states of R distributed according to the entrance func-
tion IR(· | d =→) (the tiling patterns highlight its support).
While enters (deterministically) in the leftmost cell (yel-
low tiling), IR allows to (probabilistically) model the possi-
ble positions of when entering the room (red tiling) from
direction d =→. When reaching the green area, depicting
states from OR(→), exits R by the right direction→.

A map is a graph G = ⟨V, E⟩ with vertices V and undi-
rected edges E ⊆ V × V . As G is undirected, for any u, v ∈
V , ⟨u, v⟩ ∈ E if and only if ⟨v, u⟩ ∈ E. The neighbors of

v ∈ V are N(v) = {u ∈ V | ⟨u, v⟩ ∈ E} and the outgoing
edges from v are out(v) = {e = ⟨v, u⟩ ∈ E}. A two-level
model H = ⟨G,R, ℓ, v0, ⟨d0, d1⟩⟩ consists of a map G =
⟨V, E⟩, a set of rooms R, a labeling ℓ : V → R of each ver-
tex v ∈ V with a room ℓ(v) and directions Dℓ(v) = out(v),
an initial room v0 ∈ V , and directions d0, d1 ∈ out(v0) in
which v0 is respectively entered and must be exited.

Fix a two-level model H = ⟨G,R, ℓ, v0, ⟨d0, d1⟩⟩. Intu-
itively, the explicit MDPM corresponding toH is obtained
by “stitching” MDPs R ∈ R corresponding to neighbor-
ing rooms (Fig. 2(a)). Formally, M = ⟨S,A,P, I⟩, where
S =

{
⟨s, v⟩ : s ∈ Sℓ(v), v ∈ V

}
, A =

⋃
R∈RAR ∪ {aexit}.

The initial distribution I simulates starting in room ℓ(v0)
from direction d0; thus, for each s ∈ Sℓ(v0), I(⟨s, v0⟩) =
Iℓ(v0)(s | d0). The transitions P coincide with PR for non-
exit states. Let d = ⟨v, u⟩ ∈ E with v ∈ N(u); OR(d) are
the exit states in room R associated with v in direction d,
and Iℓ(u)(· | d) is the entrance distribution in R associated
with u in direction d. The successor state of s ∈ OR(d) fol-
lows Iℓ(u)(· | d) when aexit is chosen. Each path ρ in M
corresponds to a unique path(ρ) in G.

High-level reach and low-level reach-avoid objectives.
The high-level reachability objective we consider is “♢T ,”
where T ⊆ V is a subset of vertices in the graph of H.
Here, ♢T is a temporal logic notation meaning “eventu-
ally visit the set T .” Formally, a path ρ in M satisfies ♢T
iff path(ρ) visits a vertex v in T . The low-level safety ob-
jective is defined over states of the rooms in R. For each
room R, let BR ⊆ SR be a set of “bad” states. For room R
and direction d ∈ DR, the reach-avoid objective Od

R ∈ S∗R
is {s0, . . . , sn | sn ∈ OR(d) and si /∈ BR for all i ≤ n},
i.e., exit R via d avoiding BR.

High-level control. We define a high-level plan-
ner τ : V∗ → E and a set of low-level policies Π
such that, for each room R ∈ R and a direction d ∈ DR,
Π contains a policy πR,d for the objective Od

R. The
pair π = ⟨τ,Π⟩ is a two-level controller for H, defined

inductively as follows. Consider the initial vertex v0 ∈ V
(Fig. 2(a)). Let d0 = τ(ϵ) ∈ out(v0) (ϵ being the empty
sequence). Control in ℓ(v0) follows πℓ(v0),d1

. Let ρ be a
path in H ending in s ∈ SR, for some room R = ℓ(v). If s
is not an exit state of R, then control follows a policy πR,d

with d = ⟨v, u⟩ and u ∈ N(v). If s is an exit state
in direction d and path(ρ) ends in v, i.e., s ∈ OR(d),
then aexit is taken in s and the next state is an initial state
in R′ = ℓ(u) drawn from IR′(d). The planner chooses a
direction d′ = τ(path(ρ) · u) ∈ out(u) to exit R′. Control
of R′ proceeds with the low-level policy πR′,d′ . Note that π
is a policy in the explicit MDPM.
Problem 1. Given a two-level model H = ⟨G,R, ℓ, v0,
⟨d0, d1⟩⟩, discount factor γ ∈ (0, 1), high-level objective
♢T , and low-level objectives {Od

R | R ∈ R, d ∈ DR},
construct a two-level controller π = ⟨τ,Π⟩ maximizing the
probability of satisfying the objectives.

4 Obtaining Low-Level RL policies
There are fundamental challenges in reasoning about poli-
cies obtained via RL—especially those obtained via DRL,
which are typically represented by large NNs. We develop
a novel, unified approach which outputs a latent model to-
gether with a concise policy. The idea is to learn a tractable
latent model for each room, where the values of the low-
level objectives can be explicitly computed. Each latent
model is accompanied by probably approximately correct
(PAC) guarantees on their abstraction quality. We first focus
on those guarantees. In the next section, we will then focus
on how to synthesize a planner (with guarantees) based on
these learned models and policies. Proofs of our claims are
given in Appendix C.

4.1 Quantifying the quality of the abstraction
Throughout this section, we fix an MDP environmentM =
⟨S,A,P, I⟩. A latent model abstracts a concrete MDP and is
itself an MDPM = ⟨S,A,P, I⟩whose state space is linked
toM via a state-embedding function ϕ : S → S. We focus
on latent MDPs with a finite state space, where values can
be exactly computed.

Let π be a policy in M, called a latent policy. The key
feature is that ϕ allows to controlM using π: for each state
s ∈ S, let π(· | s) inM follow the distribution π(· | ϕ(s))
inM. Abusing notation, we refer to π as a policy inM. We
write V π for the value function ofM operating under π.

GivenM and π, we bound the difference between V π and
V π; the smaller the difference, the more accuratelyM ab-
stractsM. Computing V π is intractable. To overcome this,
in the same spirit as Gelada et al. (2019); Delgrange et al.
(2022), we define a local measure on the transitions of M
andM to bound the difference between the values obtained
under π (cf. Fig. 3). We define the transition loss Lπ

P w.r.t. a
distance metric D on distributions over S. We focus on the
total variation distance (TV)D(P, P ′) = 1/2 ∥P − P ′∥1 for
P, P ′ ∈ ∆

(
S
)
. We compute Lπ

P by taking the expectation
according to the stationary distribution ξπ:

Lπ
P
= Es∼ξπ,a∼π(·|s) D

(
ϕP(· | s, a),P(· | ϕ(s), a)

)
. (1)

s s

a a

s′ s2s1

M Mϕ

π

P P
ϕ

Figure 3: To run π in the origi-
nal environmentM, (i) map s to
ϕ(s) = s, (ii) draw a ∼ π(· | s).
LP measures the gap (in red) be-
tween latent states produced via
s1 = ϕ(s′) with s′ ∼ P(· | s, a)
(shortened as s1 ∼ ϕP(· | s, a))
and those produced directly in
the latent space: s2 ∼ P(· | s, a).

The superscript is omitted when clear from the context. Ef-
ficiently sampling from the stationary distribution can be
done via randomized algorithms, even for unknown proba-
bilities (Lovász and Winkler 1995; Propp and Wilson 1998).

Recall that RL is episodic, terminating when the objective
is satisfied/violated or via a reset. We thus restrictM to an
episodic process, which implies ergodicity of both M and
M under mild conditions (Huang 2020).
Assumption 1 (Episodic process). The environmentM has
a reset state sreset such that (i) sreset is almost surely visited
under any policy, and (ii)M follows the initial distribution
once reset: P(· | sreset, a) = I for any a ∈ A. The latent
modelM is also episodic with reset state ϕ(sreset).
Assumption 2. The abstraction preserves information re-
garding the objectives. Formally, let ⟨T, T ⟩, ⟨B,B⟩ ⊆ S×S
be sets of target and bad states, respectively. Then, for
X ∈ {T,B}, s ∈ X iff ϕ(s) ∈ X .1 We consider the ob-
jective O(T,B) inM and O

(
T ,B

)
inM.

The following lemma establishes a bound on the difference
in values based on LP. Notably, as LP goes to zero, the two
models almost surely have the same values from every state.
Lemma 1 (Delgrange et al. 2022). Let π be a latent
policy and ξπ be the unique stationary measure of M,
then the average value difference is bounded by LP:
Es∼ξπ

∣∣V π(s)− V π(ϕ(s))
∣∣ ≤ γLP

1−γ .

The next theorem provides a more transparent bound ap-
plicable to the initial distribution, removing the need of the
expectation in Lem. 1. The proof follows from plugging the
stationary distribution in sreset into Lem. 1 and observing that
1/ξπ(sreset) is the average episode length (Serfozo 2009).
Theorem 1. The value difference from the initial states is
bounded by LP:

∣∣∣V π
I − V π

I

∣∣∣ ≤ LP

ξπ(sreset)(1−γ) .

4.2 PAC estimates of the abstraction quality
Thm. 1 establishes a bound on the quality of the abstrac-
tion based on LP and ξπ(sreset). Computing these quantities,
however, is not possible in practice since the transition prob-
abilities ofM are unknown, and even if they were known,
the expectation over S deems the computation infeasible.

Instead, we obtain PAC bounds on ξπ(sreset) and LP by
simulatingM. The estimate of ξπ(sreset) is obtained by tak-
ing the portion of visits to sreset in a simulation and Hoeffd-
ing’s inequality. The estimate of LP is obtained as follows.

1By labeling states with atomic propositions, a standard in
model checking (Delgrange et al. 2022).

When the simulation goes from s to s′ following action a,
we add a “reward” of P(ϕ(s′) | ϕ(s), a). Since LP is a loss,
we subtract the average reward from 1.

Lemma 2. Let {⟨st, at, s′t⟩ : 1 ≤ t ≤ T } be a set of
T transitions drawn from ξπ by simulating Mπ . Let
L̂P = 1 − 1/T

∑T
t=1 P(ϕ(s′t) | ϕ(st), at) and ξ̂reset =

1/T
∑T

t=0 1 {st = sreset} . Then, for all ε, δ > 0 and T ≥
⌈− log(ζ)/2ε2⌉, with at least probability 1− δ we have that

(i) if ζ ≤ δ, L̂P + ε > LP,

(ii) if ζ ≤ δ/2, L̂P + ε > LP and ξπ(sreset) > ξ̂reset − ε.

The following theorem has two key implications: (i) it es-
tablishes a lower bound on the minimum number of samples
necessary to calculate the PAC upper bound for the average
value difference; (ii) it suggests an online algorithm with a
termination criterion for the value difference bound obtained
from the initial states.

Theorem 2 (The value bounds are PAC learnable). Let
{⟨st, at, s′t⟩ : 1 ≤ t ≤ T } be T transitions drawn from ξπ
by simulating M under π. Then, for any ε, δ > 0, T ≥⌈
−γ′ log(δ′)/(2ε2(1−γ)2ζ)

⌉
, with at least probability 1− δ,

(i) Es∼ξπ

∣∣V π(s)− V π(ϕ(s))
∣∣ ≤ γL̂P

1−γ + ε with δ′ = δ,
γ′ = γ2, and ζ = 1, and

(ii)
∣∣∣V π

I − V π
I

∣∣∣ ≤ L̂P

ξ̂reset (1−γ)
+ ε with δ′ = δ/2, γ′ = (L̂P +

ξ̂reset(1 + ε(1− γ)))2, and ζ = ξ̂ 4
reset.

Unlike (i), which enables precomputing the required num-
ber of samples to estimate the bound, (ii) allows estimating it
with a probabilistic algorithm, almost surely terminating but
without predetermined endpoint since T relies in that case
on the current approximations of LP and ξπ .

4.3 Obtaining latent policies during training

As highlighted in the last section, our guarantees rely on
learning a policy on the representation induced by a suitable,
latent abstraction. Accordingly, we propose a DRL proce-
dure that trains the policy and the latent model simultane-
ously. Previous approaches used a two-step process: train
a policy π in M and then distill it. In contrast, our one-
step approach alternates between optimizing a latent pol-
icy π via DQN (Mnih et al. 2015) and representation learn-
ing through Wasserstein auto-encoded MDPs (WAE-MDPs,
(Delgrange et al. 2023)). This process avoids the distillation
step by directly learning π and minimizing LP. That way,
the DQN policy is directly optimized on the learned latent
space (cf. Fig. 1(b)). We call this procedure WAE-DQN.

The combination of these techniques is nontrivial and re-
quires addressing stability issues (details in Appendix D).
To summarize, WAE-DQN ensures the following properties:
(i) ϕ groups states with close values, supporting the learning
of π; (ii) π prescribes the same actions for states with close
behaviors, improving robustness and enabling reuse of the
latent space for rooms with similar structure.

5 Obtaining a Planner
Fix Π as a collection of low-level, latent policies. In this
section, we show that synthesizing a planner reduces to con-
structing a policy in a succinct model, where the action space
coincides with the edges of the map G (i.e., the choices of the
planner). In the following, we describe the chain of reduc-
tions leading to this result. An overview is given in Fig. 4.
We further discuss the memory requirements of the planner.
Precisely, we study the following problem:

Problem 2. Given a two-level model H, a collection of la-
tent policies Π, and an objective O, construct a planner τ
such that the controller ⟨τ,Π⟩ is optimal for O inH.

Memory bounds. Observe that planners require memory:
Example 2. Consider again Fig. 2(b). To reach v3 and
avoid Bℓ(u) from u, τ must remember from where the room
ℓ(u) is entered: τ must choose ↑ from v1, and→ from v2.

Next, we establish a memory bound for an optimal plan-
ner. Upon entering a room R ∈ R, the planner selects a
direction d ∈ E, so the policy operating in R is πR,d ∈ Π,
optimizing the objective Od

R to exit R via d. We construct
an MDP planMΠ = ⟨SΠ,AΠ,PΠ, IΠ⟩ to simulate this in-
teraction. A state s∗ = ⟨s, v, u⟩ ∈ SΠ represents H being
at vertex v, the room R = ℓ(v) at state s, and the operating
policy πR,d=⟨v,u⟩. For non-exit states s, the transition func-
tion PΠ(· | s∗) follows PR(· | s, a) with a ∼ πR,d(· | s);
for exit states, the planner chooses direction d′ ∈ DR′ for
the next room R′ = ℓ(u), where PΠ(· | s, d′) follows the
entrance function IR′(· | d) from d = ⟨v, u⟩. Construction
details are in Appendix E.

An optimal stationary policy exists for MΠ (Puterman
1994) and can be implemented by a planner that memorizes
the room’s entry direction. This requires memory of size |V|,
as decisions depend on any of the |V| preceding vertices.

Theorem 3. Given low-level policies Π, there is a |V|-
memory planner τ maximizing O in H iff there is a deter-
ministic stationary policy π⋆ maximizing O inMΠ.

Planner synthesis. As a first step, we construct a succinct
MDP MG

Π that preserves the value of MΠ. States of MG
Π

are pairs ⟨v, u⟩ indicating room R = ℓ(u) is entered via
direction d = ⟨v, u⟩. As inMΠ, a planner selects an exit di-
rection d′ = ⟨u, v′⟩ for R. We use the following trick. Recall
that we consider discounted properties; when R is exited via
direction d′ after j steps, the utility is γj . In MG

Π, we set
the probability of transitioning to v′ upon choosing d′ to the
expected value achieved by policy πR,d′ in R. Precisely, let
MG

Π = ⟨S,A,P, I⟩ with S = E ∪{⊥},A = E, I(d0) = 1,

P(⟨u, t⟩|⟨v, u⟩, d) = Es∼Iℓ(u)(·|⟨v,u⟩)

[
V πℓ(u),d

(
s,Od

ℓ(u)

)]
,

(2)
and P(⊥ | ⟨v, u⟩, d) = 1 − P(⟨u, t⟩ | ⟨v, u⟩, d) for
any ⟨v, u⟩ ∈ E with target direction d = ⟨u, t⟩ ∈ Dℓ(u),
while P(⊥ | ⊥, d) = 1. The sink state ⊥ captures when
low-level policies do not satisfy the objective.

Theorem 4. Let ⟨τ,Π⟩ be a |V|-memory controller for H
and π be an equivalent policy in MΠ, the values obtained

H
τ : V∗ → D

M
Two-level model Explicit MDP

τ : V × V → D

⟨s, v⟩
State space features: state s in room R = ℓ(v);

MΠ

MDP Plan

⟨s, v, u⟩
state s, room R = ℓ(v), target d = ⟨v, u⟩;

τ : V × V → D
MG

Π

Succinct Model

⟨v, u⟩

Theorem 4fix Π⇝ Theorem 3

R = ℓ(u) entered from d = ⟨v, u⟩;
Figure 4: Chain of reductions for synthesizing a planner τ in a two-level model H. H can be formulated as an explicit MDP
M. Once the low-level policies Π are learned (Fig. 1(b)), the synthesis problem reduces to constructing a stationary policy in
an MDP planMΠ where Π is fixed and the state space ofMΠ encodes the directions chosen in each room. From this policy,
one can derive a |V|-memory planner τ for H (Thm. 3). Finally, finding a policy inMΠ is equivalent to finding a policy in a
succinct modelMG

Π where (i) the state space corresponds to the directions from which rooms are entered, (ii) the actions to the
choices of the planner, and (iii) the transition probabilities to the values achieved by the latent policy chosen (Thm. 4).

Figure 5: Uniform distribution
IR (blue) and entrance function IR
(red: ↓, green: ↑). Assume τ
chooses → in R. At training time,
as IR is uniform, each state is in-
cluded in the support of distribution
of visited states ξπR,→ . Yet under a
high-level controller, R is entered
w.r.t. IR(· | d ∈ {↓, ↑}). To exit on
the right, all states need not be vis-
ited under πR,→ so the distribution
over visited states may differ.

IR(· | ↓)

IR(· | ↑)

IR
exit

under π for O inMΠ are equal to those under τ obtained in
MG

Π for the reachability objective to states V × T .
We are ready to describe the algorithm to synthesize a

planner. Note that the values V πR,d in Eq. (2) are either
unknown or computationally intractable. Instead, we lever-
age the latent model to evaluate the latent value of each
low-level objective using standard techniques for discounted
reachability objectives (de Alfaro et al. 2003). We construct
MG

Π similar toMG
Π and obtain the controller ⟨τ,Π⟩ by com-

puting a planner τ optimizing the values ofMG
Π (Puterman

1994). As MG
Π and MG

Π have identical state spaces, plan-

ners forMG
Π are compatible withMG

Π.
Lifting the guarantees.We now lift the guarantees for low-
level policies to a planner operating on the two-level model,
overcoming the following challenge. To learn one latent
model per room R and the set of low-level policies Π, we
run WAE-DQN independently (and possibly in parallel) in
each room R (Fig. 1(b)). Viewing R as an MDP, we obtain
a transition loss LR,d

P for every direction d, associated with
latent policy πR,d ∈ Π.

Independent training introduces complications. Each
room R has its own initial distribution IR, while at synthesis
time, the initial distribution depends on the controller π =
⟨τ,Π⟩ and marginalizes IR(· | d) over directions d chosen
by τ . Recall that LR,d

P is the TV between original and latent
transition functions, averaged over ξπR,d

, i.e., states likely to
be visited under π when using IR as the entrance function.
The latter differs from IR, used at synthesis time. As ξπR,d

may not align with the state distribution visited under the
two-level controller π, LR,d

P (and thus the guarantees from

the latent model) may become obsolete or non-reusable.
Fig. 5 illustrates the distribution shift. A detailed analysis

is given in Appendix G.
Fortunately, as we will show in the following theorem, it

turns out that if the initial distribution IR of each room R is
well designed and provides sufficient coverage of the state
space of R, it is possible to learn a latent entrance func-
tion IR so that the guarantees associated with each room
can be lifted to the two-level controller.
Theorem 5. Let ⟨τ,Π⟩ be a |V|-memory controller for H
and π be an equivalent stationary policy inMΠ.

• (Entrance loss) Define IR : DR → ∆
(
S
)

and
LI = ER,d∼ξπ D

(
ϕIR(· | d), IR(· | d)

)
,

where ξπ is the stationary measure ofMΠ under π;
• (State coverage) Assume the projection of the BSCC of
MΠ under π onto SR is included in the BSCC of R un-
der πR,d for all training rooms R ∈ R and d ∈ DR;

Then, ∃K ≥ 0:
∣∣V MΠ,π

I −V
MG

Π,τ

I

∣∣ ≤ LI+K·ER,d∼ξπ LR,d
P

ξπ(sreset)·(1−γ) .

Essentially, under mild conditions, the guarantees ob-
tained for individually trained rooms can be reused for the
entire two-level environment. By minimizing losses within
each room independently, the true environment’s values in-
creasingly align with those computed in the latent space for
the high-level objective.

This theorem is the building block that enables our tech-
nique, as low-level latent policies are trained individually
and in parallel before performing synthesis.

6 Case Studies
While the focus of this work is primarily of a theoretical na-
ture, we show in the following that our theory is grounded
through a navigation domain involving an agent required to
reach a distant location while avoiding moving adversaries.
We consider two challenging case studies. The first one con-
sists of a large grid world of scalable size with a nontrivial
observation space. The second one is a large ViZDoom en-
vironment (Kempka et al. 2016) with visual inputs.

To the best of our knowledge, our framework is currently
the only one allowing formally verifying the values of the
specification in a learned model, providing PAC bounds on
the abstraction quality of this model, and synthesizing a con-
troller in such large environments with guarantees. Thus,

Figure 6: Evaluation of WAE-DQN (low-level) and DQN
(high-level) policies respectively in each room/direction and
in a 9-room, 20× 20 grid world (avg. over 30 rollouts).

this section aims to show the following: (1) our method suc-
cessfully trains latent policies in non-trivial settings; (2) the
theoretical bounds are a good prediction for the observed
behavior; (3) our low-level policies are reusable and can be
composed into a strong global policy. Extra details about our
setting and results are in Appendix H.

Grid world. The grid world environments consist of N
rooms of m × n cells, each containing at most l pos-
sible items: walls, entries/exits, power-ups, and A adver-
saries. The latter patrol, moving between rooms, with vary-
ing stochastic behaviors (along walls, chase the agent, or
fully random). The rooms need not be identical. Each state
features (i) a bitmap of rank 4 and shape [N, l,m, n] and (ii)
step, power-up, and life-point (LP) counters. Note that the
resulting state space is very large and policies may require,
e.g., convolutional NNs to process the observations. Fig. 6
shows that DRL (here, DQN with SOTA extensions and re-
ward shaping, (Hessel et al. 2018; Ng et al. 1999)) struggles
to learn for 9 rooms/11 adversaries, while applying WAE-
DQN independently in each room successfully allows learn-
ing to satisfy low-level reach-avoid objectives. A video of
a synthesized controller in such an environment is available
at https://youtu.be/crowN8-GaRg.

ViZDoom. We designed a map for the first-person shooter
game Doom consisting of N = 8 distinct rooms. The map
includes A adversaries that actively pursue and attack the
agent, reducing the agent’s health upon successful hits. Ad-
ditional adversaries spawn randomly on the map (every∼60
steps). Similar to the grid world environment, adversaries
can move freely between rooms. The agent has the ability to
shoot; however, missed shots incur a negative reward during
the RL phase, penalizing wasted ammunition. The agent’s
observations consist of (i) a single frame of the game (visual
input), (ii) the velocity of the agent along the x, y axes, (iii)
the agent’s angle w.r.t. the map, and (iv) its current health.
Notice that the resulting state space is inherently colossal
due to the inclusion of these variables. We are not aware
of synthesis techniques that can provide guarantees in such
settings. A demonstration of a synthesized controller can be
viewed at https://youtu.be/BAVLmsWEaQY.

Results. We use WAE-DQN to train low-level latent mod-
els and policies in a 9-room, 20 × 20 grid world as well
as in the ViZDoom environment. At the start of each
episode, the agent is placed in a random room, and the
episode concludes successfully when the agent reaches a
sub-goal. Leveraging the representation learning capabilities

N LP A avg. return (γ = 1) latent value avg. value (original)

G
ri

d
W

or
ld 9 1 11 0.5467± 0.1017 0.1378 0.07506± 0.01664

9 3 11 0.7± 0.09428 0.4343 0.01± 0.00163
25 3 23 0.4933± 0.09832 0.1763 0.007833± 0.002131
25 5 23 0.5667± 0.07817 0.346 0.00832± 0.00288
49 7 47 0.02667± 0.01491 0.004229 5.565e-6± 7e-6

D
o
o
m 8 / 8 0.89333± 0.059628 0.24171 0.23405± 0.014781

8 / 14 0.78± 0.064979 0.16459 0.16733± 0.023117
8 / 20 0.39333± 0.11643 0.086714 0.06898± 0.017788

Table 1: Synthesis for γ = 0.99. Avg. return is the observed,
empirical probability of reaching the high-level goal when
running the synthesized two-level controller in the environ-
ment. This metric serves as a reference for the controller’s
performance. Latent value is the predicted value of the high-
level objective computed in the latent model. Avg. value is
the empirical value of this objective approximated by simu-
lating the environment under the controller.

of WAE-MDPs, the latent
space generalizes over all
rooms: we only train 4 poli-
cies (one for each direction).
PAC bounds for each direc-
tion are reported in Tab. 2
(ε = 0.01, δ = 0.05). The
lower the bounds, the more

d Grid World ViZDoom

→ 0.50412 0.32011
← 0.77787 0.44883
↑ 0.49631 0.37931
↓ 0.48058 0.48108

Table 2: PAC bounds L̂d
P

accurately the latent model is guaranteed to represent the
true underlying dynamics (Thm. 2). From those policies, we
apply our synthesis procedure to construct a two-level con-
troller. The results are in Tab. 1. To emphasize the reusability
of the low-level components, we modify the environments
by significantly increasing both the number of rooms and
adversaries in the grid world (up to 50 each) and the initial
number of adversaries in ViZDoom (from 8 to 20), while
keeping the same latent models and policies unchanged.

In the grid world, the predicted latent values are consis-
tent with the observed ones and comprised between the ap-
proximate return and values in the environment (averaged
over 30 rollouts). In ViZDoom, the PAC bounds (Tab. 2)
are lower, theoretically indicating that the latent model is of
higher quality and greater accuracy. This theoretical insight
is supported by the results, as the latent values are closer to
the empirical, observed ones.

7 Conclusion
Our approach enables synthesis in environments where tra-
ditional formal synthesis does not scale. Given a high-level
map, we integrate RL in the low-level rooms by training la-
tent policies, which ensure PAC bounds on their value func-
tion. Composing with the latent policies allows to construct
a high-level planner in a two-level model, where the guaran-
tees can be lifted. Experiments show the feasibility in sce-
narios that are even challenging for pure DRL.

While we believe the map is a mild requirement, future
work involves its relaxation to “emulate” synthesis with
only the specification as input (end-to-end). In that sense,
integrating skill discovery (Bagaria et al. 2021) or goal-
oriented (Liu et al. 2022) RL are promising directions.

Another aspect is to refine the PAC bounds, being cur-
rently quite conservative, and obtain an estimate efficiently.

Acknowledgments
We thank Sterre Lutz and Willem Röpke for providing valu-
able feedback during the preparation of this manuscript.

This research received support from the Belgian Flem-
ish Government’s AI Research Program and DESCARTES
iBOF project, the Dutch Research Council (NWO) Talent
Programme (VI.Veni.222.119), Independent Research Fund
Denmark (10.46540/3120-00041B), DIREC - Digital Re-
search Centre Denmark (9142-0001B), Villum Investigator
Grant S4OS (37819), and ISF grant (1679/21).

References
Abels, A.; Roijers, D. M.; Lenaerts, T.; Nowé, A.; and Steck-
elmacher, D. 2019. Dynamic Weights in Multi-Objective
Deep Reinforcement Learning. In ICML, volume 97 of
PMRL, 11–20. PMLR.
Achiam, J.; Held, D.; Tamar, A.; and Abbeel, P. 2017. Con-
strained Policy Optimization. In ICML, volume 70, 22–31.
PMLR.
Alamdari, P. A.; Avni, G.; Henzinger, T. A.; and Lukina, A.
2020. Formal Methods with a Touch of Magic. In FMCAD,
138–147. IEEE.
Alegre, L. N.; Bazzan, A. L. C.; Roijers, D. M.; Nowé, A.;
and da Silva, B. C. 2023. Sample-Efficient Multi-Objective
Learning via Generalized Policy Improvement Prioritiza-
tion. In AAMAS, 2003–2012. ACM.
Alshiekh, M.; Bloem, R.; Ehlers, R.; Könighofer, B.;
Niekum, S.; and Topcu, U. 2018. Safe Reinforcement Learn-
ing via Shielding. In AAAI, 2669–2678. AAAI Press.
Alur, R.; Bansal, S.; Bastani, O.; and Jothimurugan, K. 2022.
A Framework for Transforming Specifications in Reinforce-
ment Learning. In Principles of Systems Design - Essays
Dedicated to Thomas A. Henzinger on the Occasion of His
60th Birthday, volume 13660 of LNCS, 604–624. Springer.
Amir, G.; Schapira, M.; and Katz, G. 2021. Towards Scal-
able Verification of Deep Reinforcement Learning. In FM-
CAD, 193–203. IEEE.
Bacci, E.; Giacobbe, M.; and Parker, D. 2021. Verifying Re-
inforcement Learning up to Infinity. In IJCAI, 2154–2160.
ijcai.org.
Badings, T. S.; Romao, L.; Abate, A.; Parker, D.; Poonawala,
H. A.; Stoelinga, M.; and Jansen, N. 2023. Robust Control
for Dynamical Systems with Non-Gaussian Noise via For-
mal Abstractions. J. Artif. Intell. Res., 76: 341–391.
Bagaria, A.; Senthil, J. K.; and Konidaris, G. 2021. Skill
Discovery for Exploration and Planning using Deep Skill
Graphs. In ICML, volume 139 of PMLR, 521–531. PMLR.
Baier, C.; de Alfaro, L.; Forejt, V.; and Kwiatkowska, M.
2018. Model Checking Probabilistic Systems. In Handbook
of Model Checking, 963–999. Springer.
Baier, C.; and Katoen, J. 2008. Principles of model checking.
MIT Press. ISBN 978-0-262-02649-9.
Bastani, O.; Pu, Y.; and Solar-Lezama, A. 2018. Verifiable
Reinforcement Learning via Policy Extraction. In NeurIPS,
2499–2509.

Bellemare, M. G.; Dabney, W.; and Munos, R. 2017. A
Distributional Perspective on Reinforcement Learning. In
ICML, volume 70 of PMLR, 449–458. PMLR.
Carr, S.; Jansen, N.; and Topcu, U. 2021. Task-Aware Veri-
fiable RNN-Based Policies for Partially Observable Markov
Decision Processes. J. Artif. Intell. Res., 72: 819–847.
Chatterjee, K.; Majumdar, R.; and Henzinger, T. A. 2006.
Markov Decision Processes with Multiple Objectives. In
STACS, volume 3884 of LNCS, 325–336. Springer.
Dalrymple, D.; Skalse, J.; Bengio, Y.; Russell, S.; Tegmark,
M.; Seshia, S.; Omohundro, S.; Szegedy, C.; Goldhaber, B.;
Ammann, N.; Abate, A.; Halpern, J.; Barrett, C.; Zhao, D.;
Zhi-Xuan, T.; Wing, J.; and Tenenbaum, J. 2024. Towards
Guaranteed Safe AI: A Framework for Ensuring Robust and
Reliable AI Systems. arXiv:2405.06624.
de Alfaro, L.; Henzinger, T. A.; and Majumdar, R. 2003.
Discounting the Future in Systems Theory. In ICALP, vol-
ume 2719 of LNCS, 1022–1037. Springer.
Delgrange, F.; Katoen, J.; Quatmann, T.; and Randour, M.
2020. Simple Strategies in Multi-Objective MDPs. In
TACAS, volume 12078 of LNCS, 346–364. Springer.
Delgrange, F.; Nowé, A.; and Pérez, G. A. 2022. Distilla-
tion of RL Policies with Formal Guarantees via Variational
Abstraction of Markov Decision Processes. In AAAI, 6497–
6505. AAAI Press.
Delgrange, F.; Nowé, A.; and Pérez, G. A. 2023. Wasserstein
Auto-encoded MDPs: Formal Verification of Efficiently Dis-
tilled RL Policies with Many-sided Guarantees. In ICLR.
OpenReview.net.
Ernst, D.; Geurts, P.; and Wehenkel, L. 2005. Tree-based
batch mode reinforcement learning. JMLR, 6(Apr): 503–
556.
Etessami, K.; Kwiatkowska, M. Z.; Vardi, M. Y.; and Yan-
nakakis, M. 2008. Multi-Objective Model Checking of
Markov Decision Processes. Log. Methods Comput. Sci.,
4(4).
Forejt, V.; Kwiatkowska, M. Z.; and Parker, D. 2012. Pareto
Curves for Probabilistic Model Checking. In ATVA, volume
7561 of LNCS, 317–332. Springer.
Fu, J.; and Topcu, U. 2014. Probably Approximately Cor-
rect MDP Learning and Control With Temporal Logic Con-
straints. In Robotics: Science and Systems X.
Gelada, C.; Kumar, S.; Buckman, J.; Nachum, O.; and Belle-
mare, M. G. 2019. DeepMDP: Learning Continuous Latent
Space Models for Representation Learning. In ICML, vol-
ume 97, 2170–2179. PMLR.
Germain, M.; Gregor, K.; Murray, I.; and Larochelle, H.
2015. MADE: Masked Autoencoder for Distribution Esti-
mation. In ICML, volume 37 of JMLR, 881–889. JMLR.org.
Giacobbe, M.; Hasanbeig, M.; Kroening, D.; and Wijk, H.
2021. Shielding Atari Games with Bounded Prescience. In
AAMAS, 1507–1509. ACM.
Givan, R.; Dean, T. L.; and Greig, M. 2003. Equivalence no-
tions and model minimization in Markov decision processes.
Artif. Intell., 147(1-2): 163–223.

Hansson, H.; and Jonsson, B. 1994. A Logic for Reasoning
about Time and Reliability. Formal Aspects Comput., 6(5):
512–535.
Hartmanns, A.; Junges, S.; Katoen, J.; and Quatmann, T.
2018. Multi-cost Bounded Reachability in MDP. In TACAS,
volume 10806 of LNCS, 320–339. Springer.
Hasanbeig, M.; Abate, A.; and Kroening, D. 2020. Cautious
Reinforcement Learning with Logical Constraints. In AA-
MAS, 483–491.
Hayes, C. F.; Radulescu, R.; Bargiacchi, E.; Källström, J.;
Macfarlane, M.; Reymond, M.; Verstraeten, T.; Zintgraf,
L. M.; Dazeley, R.; Heintz, F.; Howley, E.; Irissappane,
A. A.; Mannion, P.; Nowé, A.; de Oliveira Ramos, G.;
Restelli, M.; Vamplew, P.; and Roijers, D. M. 2022. A prac-
tical guide to multi-objective reinforcement learning and
planning. AAMAS, 36(1): 26.
Hessel, M.; Modayil, J.; van Hasselt, H.; Schaul, T.; Ostro-
vski, G.; Dabney, W.; Horgan, D.; Piot, B.; Azar, M. G.;
and Silver, D. 2018. Rainbow: Combining Improvements in
Deep Reinforcement Learning. In AAAI, 3215–3222. AAAI
Press.
Hinton, G. E.; Vinyals, O.; and Dean, J. 2015. Distilling the
Knowledge in a Neural Network. CoRR, abs/1503.02531.
Huang, B. 2020. Steady State Analysis of Episodic Rein-
forcement Learning. In NeurIPS.
Jothimurugan, K.; Bastani, O.; and Alur, R. 2021. Abstract
Value Iteration for Hierarchical Reinforcement Learning. In
AISTATS, volume 130, 1162–1170. PMLR.
Junges, S.; and Spaan, M. T. J. 2022. Abstraction-
Refinement for Hierarchical Probabilistic Models. In CAV,
volume 13371 of LNCS, 102–123. Springer.
Kempka, M.; Wydmuch, M.; Runc, G.; Toczek, J.; and
Jaskowski, W. 2016. ViZDoom: A Doom-based AI research
platform for visual reinforcement learning. In CIG, 1–8.
IEEE.
Könighofer, B.; Bloem, R.; Ehlers, R.; and Pek, C. 2022.
Correct-by-Construction Runtime Enforcement in AI - A
Survey. In Principles of Systems Design - Essays Dedicated
to Thomas A. Henzinger on the Occasion of His 60th Birth-
day, volume 13660 of LNCS, 650–663. Springer.
Kulkarni, T. D.; Narasimhan, K.; Saeedi, A.; and Tenen-
baum, J. 2016. Hierarchical Deep Reinforcement Learning:
Integrating Temporal Abstraction and Intrinsic Motivation.
In NeurIPS, 3675–3683.
Ladosz, P.; Weng, L.; Kim, M.; and Oh, H. 2022. Explo-
ration in deep reinforcement learning: A survey. Inf. Fusion,
85: 1–22.
Larsen, K. G.; and Skou, A. 1989. Bisimulation Through
Probabilistic Testing. In POPL, 344–352. ACM Press.
LeCun, Y.; Boser, B. E.; Denker, J. S.; Henderson, D.;
Howard, R. E.; Hubbard, W. E.; and Jackel, L. D. 1989.
Backpropagation Applied to Handwritten Zip Code Recog-
nition. Neural Comput., 1(4): 541–551.
Liu, M.; Zhu, M.; and Zhang, W. 2022. Goal-Conditioned
Reinforcement Learning: Problems and Solutions. In IJCAI,
5502–5511. ijcai.org.

Lovász, L.; and Winkler, P. 1995. Exact Mixing in an Un-
known Markov Chain. Electron. J. Comb., 2.
Maddison, C. J.; Mnih, A.; and Teh, Y. W. 2017. The
Concrete Distribution: A Continuous Relaxation of Discrete
Random Variables. In ICLR. OpenReview.net.
Mnih, V.; Kavukcuoglu, K.; Silver, D.; Graves, A.;
Antonoglou, I.; Wierstra, D.; and Riedmiller, M. A. 2013.
Playing Atari with Deep Reinforcement Learning. CoRR,
abs/1312.5602.
Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A. A.; Veness,
J.; Bellemare, M. G.; Graves, A.; Riedmiller, M. A.; Fidje-
land, A.; Ostrovski, G.; Petersen, S.; Beattie, C.; Sadik, A.;
Antonoglou, I.; King, H.; Kumaran, D.; Wierstra, D.; Legg,
S.; and Hassabis, D. 2015. Human-level control through
deep reinforcement learning. Nat., 518(7540): 529–533.
Nayak, S. P.; Egidio, L. N.; Rossa, M. D.; Schmuck, A.; and
Jungers, R. M. 2023. Context-triggered Abstraction-based
Control Design. IEEE Open Journal of Control Systems, 2:
277–296.
Ng, A. Y.; Harada, D.; and Russell, S. 1999. Policy Invari-
ance Under Reward Transformations: Theory and Applica-
tion to Reward Shaping. In ICML, 278–287. Morgan Kauf-
mann.
O’Cinneide, C. A. 1993. Entrywise perturbation theory and
error analysis for Markov chains. Numerische Mathematik,
65(1): 109–120.
Pateria, S.; Subagdja, B.; Tan, A.; and Quek, C. 2022. Hier-
archical Reinforcement Learning: A Comprehensive Survey.
ACM Comput. Surv., 54(5): 109:1–109:35.
Pnueli, A. 1977. The Temporal Logic of Programs. In
FOCS, 46–57. IEEE Computer Society.
Pnueli, A.; and Rosner, R. 1989. On the Synthesis of a Re-
active Module. In POPL, 179–190. ACM Press.
Propp, J. G.; and Wilson, D. B. 1998. How to Get a Per-
fectly Random Sample from a Generic Markov Chain and
Generate a Random Spanning Tree of a Directed Graph. J.
Algorithms, 27(2): 170–217.
Puterman, M. L. 1994. Markov decision processes: Dis-
crete stochastic dynamic programming. Wiley. ISBN 978-
0-47161977-2.
Reymond, M.; Bargiacchi, E.; and Nowé, A. 2022. Pareto
Conditioned Networks. In AAMAS, 1110–1118. (IFAA-
MAS).
Reymond, M.; and Nowé, A. 2019. Pareto-DQN: Approxi-
mating the Pareto front in complex multi-objective decision
problems. In ALA.
Roderick, M.; Grimm, C.; and Tellex, S. 2018. Deep Ab-
stract Q-Networks. In AAMAS, 131–138.
Ryzhyk, L.; Chubb, P.; Kuz, I.; Sueur, E. L.; and Heiser, G.
2009. Automatic device driver synthesis with termite. In
SOSP, 73–86. ACM.
Serfozo, R. 2009. Basics of Applied Stochastic Processes.
Probability and Its Applications. Springer Berlin Heidel-
berg. ISBN 9783540893325.

Sootla, A.; Cowen-Rivers, A. I.; Jafferjee, T.; Wang, Z.;
Mguni, D. H.; Wang, J.; and Ammar, H. 2022. Sauté RL: Al-
most Surely Safe Reinforcement Learning Using State Aug-
mentation. In ICML, volume 162, 20423–20443. PMLR.
Sutton, R. S.; and Barto, A. G. 1998. Reinforcement learning
- an introduction. MIT Press. ISBN 978-0-262-19398-6.
Sutton, R. S.; Precup, D.; and Singh, S. 1999. Between
MDPs and Semi-MDPs: A Framework for Temporal Ab-
straction in Reinforcement Learning. Artif. Intell., 112(1-2):
181–211.
Tsitsiklis, J. N. 1994. Asynchronous Stochastic Approxima-
tion and Q-Learning. Mach. Learn., 16(3): 185–202.
Tsitsiklis, J. N.; and Roy, B. V. 1997. An analysis of
temporal-difference learning with function approximation.
IEEE Trans. Autom. Control., 42(5): 674–690.
van Hasselt, H.; Guez, A.; and Silver, D. 2016. Deep Re-
inforcement Learning with Double Q-Learning. In AAAI,
2094–2100. AAAI Press.
Watanabe, K.; van der Vegt, M.; Hasuo, I.; Rot, J.; and
Junges, S. 2024. Pareto Curves for Compositionally Model
Checking String Diagrams of MDPs. In TACAS, volume
14571 of LNCS, 279–298. Springer.
Wiewiora, E. 2003. Potential-Based Shaping and Q-Value
Initialization are Equivalent. J. Artif. Intell. Res., 19: 205–
208.
Xiong, Z.; Agarwal, I.; and Jagannathan, S. 2022. HiSaRL:
A Hierarchical Framework for Safe Reinforcement Learn-
ing. In SafeAI, volume 3087 of CEUR Workshop Proceed-
ings. CEUR-WS.org.
Yang, C.; Littman, M. L.; and Carbin, M. 2021. Reinforce-
ment Learning for General LTL Objectives Is Intractable.
CoRR, abs/2111.12679.
Yang, W.; Marra, G.; Rens, G.; and Raedt, L. D. 2023. Safe
Reinforcement Learning via Probabilistic Logic Shields. In
IJCAI, 5739–5749. ijcai.org.
Zhang, A.; McAllister, R. T.; Calandra, R.; Gal, Y.; and
Levine, S. 2021. Learning Invariant Representations for
Reinforcement Learning without Reconstruction. In ICLR.
OpenReview.net.
Žikelić, D.; Lechner, M.; Verma, A.; Chatterjee, K.; and
Henzinger, T. A. 2023. Compositional Policy Learning in
Stochastic Control Systems with Formal Guarantees. In
NeurIPS.

Appendix

A Further Related Work

On the importance of reachability specifications. RL — and in particular, DRL — algorithms lack both theoretical and
practical guarantees. Our approach aims to advance towards formal guarantees in partially known environments. In our work,
we consider reach-avoid specifications, which have attracted considerable attention in recent years from the AI community —
particularly within goal-oriented RL (Liu et al. 2022) and reliable safe AI (Dalrymple et al. 2024), both prominent research
areas.

Importantly, reachability properties are building blocks to verify specifications in stochastic systems, e.g., for LTL (Pnueli
1977) or PCTL (Hansson and Jonsson 1994). Specifically, verifying specifications in an MDP typically boils down to checking
the reachability to recurrent regions within a product of the MDP and an (omega-regular) automaton, or a tree decomposition
of the formula, involving repeated reachability to satisfiability regions within the MDP (Baier and Katoen 2008; Baier et al.
2018). Although safety can be reduced to reachability — minimize the value of reaching bad states — we directly included
safety in the specifications for convenience, given its widespread demand in RL. The analysis of such properties is necessary
and the first step to enable reactive synthesis in settings like ours when limited information about the environment’s dynamics
is available.

Multi-objective reasoning. The framework introduced in this paper provides latent models and policies that allow to formally
reason about the behaviors of the agent. Real-world systems are complex and often involve multiple trade-offs between (possibly
conflicting) constraints, costs, rewards, and specifications. In fact, the willingness to achieve sub-goals at the lower level of the
environment while ensuring that a set of safety requirements are met is a typical example of a multi-objective problem. In
essence, then, our problem involves multiple objectives, not just at the same decision level, but in a multi-level classification of
decisions.

Our framework tackles one aspect of multi-objective decision making, which we note is not standard: traditional methods
(Reymond and Nowé 2019; Abels et al. 2019; Reymond et al. 2022; Hayes et al. 2022; Alegre et al. 2023; Chatterjee et al.
2006; Etessami et al. 2008; Forejt et al. 2012; Hartmanns et al. 2018; Delgrange et al. 2020) involve the ability to reason about
the multiple trade-offs by conducting multi-objective analyses (e.g., generating the Pareto curve/set/frontier, embedding all the
compromises). In contrast, we focus on dealing and composing with the different objectives in order to satisfy the high-level
specification.

We note that Watanabe et al. (2024) consider multi-level environments while approximating Pareto curves to deal with
the compromises incurred by the low-level tasks. However, that approach relies on a model and thus exhibits tractability issues
while being inapplicable when the dynamics are not fully known. Furthermore, the formalization of our multi-level environment
is more permissive and allows to encode information from neighboring rooms (e.g., obstacles or adversaries moving between
rooms), which also requires memory for the planner (see Sect. 5 for more information on memory requirements).

B Remark about Episodic Processes and Ergodicity

Assumption 1 implies ergodicity of bothM andM under mild conditions (Huang 2020). In ergodic MDPs, each state is almost
surely visited infinitely often (Baier and Katoen 2008). Thus, for unconstrained reachability goals (B = ∅), while a discount
factor still provides insights into how quickly the objective is achieved, optimizing the values associated with reaching the
target T before the episode concludes (B = {sreset}) is often more appealing. This involves finding a policy π maximizing
V π
I (O(T,B = {sreset})). In essence, this is how an RL agent is trained: learning to fulfill the low-level objective before the

episode concludes.

C Proofs from Sect. 4

Notation. For convenience, in the remaining of this Appendix, we may write s, a ∼ ξπ as shorthand for the distribution
over S ×A obtained by sampling s from ξπ and then sampling a from π(· | s).

Proof of Thm. 1. Note that

∣∣V π(s,O)− V π(ϕ(s),O)
∣∣ ≤ 1

ξπ(s)
Es′∼ξπ

∣∣V π(s′,O)− V π(ϕ(s′),O)
∣∣

for any s ∈ S . Since sreset is almost surely visited episodically, restarting the MDP (i.e., visiting sreset) is a measurable event,

meaning that sreset has a non-zero probability ξπ(sreset) ∈ (0, 1). This gives us:∣∣V π
I (O)− V π

I
(O)
∣∣

=
∣∣Es∼I V

π(s,O)− Es∼I V
π(s,O)

∣∣
=
1

γ

∣∣Es∼I

[
γ · V π(s,O)

]
− Es∼I

[
γ · V π(s,O)

]∣∣
=
1

γ

∣∣V π(sreset,O)− V π(ϕ(sreset),O)
∣∣ (by Assumption 1)

≤ 1

γξπ(sreset)
Es∼ξπ

∣∣V π(s,O)− V π(ϕ(s),O)
∣∣

≤ LP

ξπ(sreset)(1−γ)
. (by Lem. 1)

Proof of Lem. 2. By definition of the total variation distance, we have

LP = Es,a∼ξπ D
(
ϕP(· | s, a),P(· | ϕ(s), a)

)
= Es,a∼ξπ

1
2

∑
s′∈S

∣∣Ps′∼P(·|s,a) [ϕ(s
′) = s′]−P(s′ | s, a)

∣∣
= Es,a∼ξπ

1
2

∑
s′∈S

∣∣Es′∼P(·|s,a) 1 {ϕ(s′) = s′} −P(s′ | s, a)
∣∣ .

Notice that this quantity cannot be approximated from samples distributed according to ξπ alone: intuitively, we need to have
access to the original transition function P to be able to estimate the expectation Es′∼P(·|s,a) 1 {ϕ(s′) = s′} for each single
point drawn from ξπ .

Instead, consider now the following upper bound on LP:

LP ≤ Es,a∼ξπ Es′∼P(·|s,a)D
(
ϕ(· | s′),P(· | s, a)

)
= L↑

P,

where ϕ(s′ | s′) is defined as 1 {ϕ(s′) = s′} for any s′ ∈ S. This bound directly follows from Jensen’s inequality. We know
from (Delgrange et al. 2022) that L̂P + ε ≤ L↑

P with probability at most exp
(
−2T ε2

)
. We recall the proof for the sake of

presentation:

L↑
P

= Es,a,s′∼ξπ D
(
ϕ(· | s′),P(· | ϕ(s), a)

)
= Es,a,s′∼ξπ

[
1

2

∑
s′∈S

∣∣ϕ(s′ | s′)−P(s′ | ϕ(s), a)
∣∣]

= Es,a,s′∼ξπ

1
2
·

(1−P(ϕ(s′) | ϕ(s), a)
)
+

∑
s′∈S\{ϕ(s′)}

∣∣0−P(s′ | ϕ(s), a)
∣∣

(because ϕ(s′ | s′) = 1 if ϕ(s′) = s′ and 0 otherwise)

= Es,a,s′∼ξπ

1
2
·

(1−P(ϕ(s′) | ϕ(s), a)
)
+

∑
s′∈S\{ϕ(s′)}

P(s′ | ϕ(s), a)


= Es,a,s′∼ξπ

[
1

2
· 2 ·

(
1−P(ϕ(s′) | ϕ(s), a)

)]
= Es,a,s′∼ξπ

[
1−P(ϕ(s′) | ϕ(s), a)

]
.

By Hoeffding’s inequality, we obtain that L̂P + ε ≤ L↑
P with probability at most exp

(
−2T ε2

)
. Equivalently, this means that

L̂P + ε > L↑
P with at least probability 1− exp

(
−2T ε2

)
. The fact that L̂P + ε > L↑

P ≥ LP finally yields the bound.

By applying Hoeffding’s inequality again, we obtain that with at most probability exp
(
−2T ε2

)
, we have ξ̂reset − ε ≥

ξπ(sreset). By the union bound, we have

P
(
L̂P + ε ≤ L↑

P or ξ̂reset − ε ≥ ξπ(sreset)
)
≤ exp

(
−2T ε2

)
+ exp

(
−2Tε2

)
.

Finding a T ≥ 0 which yields δ ≥ 2 exp
(
−2T ε2

)
is sufficient to ensure the bound. In that case, we have

δ ≥ 2 exp
(
−2T ε2

)
⇔ δ/2 ≥ exp

(
−2T ε2

)
⇔ log(δ/2) ≥ −2T ε2 ⇔ T ≥ − log(δ/2)

2ε2
. (3)

Then, we have that with at least probability 1− δ, L̂P + ε > LP and ξ̂reset − ε < ξπ(sreset) if T ≥ ⌈− log(δ)/2ε2⌉.

Proof of Thm. 2. Let ζ, δ > 0, then we know by Lem. 1, Thm. 1, and Lem. 2 that

(i) Es∼ξπ

∣∣V π(s)− V π(ϕ(s))
∣∣ ≤ γLP

1−γ ≤
γ(L̂P+ζ)

1−γ , with probability 1− δ. Then, to ensure an error of at most ε > 0, we need
to set ζ such that:

γ
(
L̂P + ζ

)
1− γ

≤ γL̂P

1− γ
+ ε ⇐⇒ γζ

1− γ
≤ ε ⇐⇒ ζ ≤ ε(1− γ)

γ
.

Then, by Lem. 2, we need T ≥
⌈
− log δ
2ζ2

⌉
=
⌈

−γ2 log δ
2ε2(1−γ)2

⌉
samples to provide an error of at most ε with probability 1− δ.

(ii)
∣∣∣V π

I − V π
I

∣∣∣ ≤ LP

ξπ(sreset)(1−γ) ≤
L̂P+ζ

(ξ̂reset−ζ)(1−γ)
with probability at least 1 − δ. Then, to ensure an error of at most ε > 0, we

need to set ζ such that:

L̂P

ξ̂reset · (1− γ)
+ ε ≥ L̂P + ζ(

ξ̂reset − ζ
)
(1− γ)

⇐⇒
(
ξ̂reset − ζ

)(L̂P

ξ̂reset
+ ε(1− γ)

)
≥ L̂P + ζ

⇐⇒ L̂P + ξ̂reset · ε(1− γ)− L̂P · ζ
ξ̂reset

− ε · ζ(1− γ) ≥ L̂P + ζ

⇐⇒ ξ̂reset · ε(1− γ) ≥ ζ +
L̂P · ζ
ξ̂reset

+ ε · ζ(1− γ) = ζ

(
1 +

L̂P

ξ̂reset
+ ε(1− γ)

)

⇐⇒ ξ̂reset · ε(1− γ)

1 +
L̂P

ξ̂reset
+ ε(1− γ)

≥ ζ ⇔ ξ̂2reset · ε(1− γ)

L̂P + ξ̂reset · (1 + ε(1− γ))
≥ ζ.

Notice that this upper bound on ζ > 0 is well defined since

(a) ξ̂2reset · ε(1− γ) > 0, and (b) L̂P + ξ̂reset(1 + ε(1− γ)) > 0.

Then, setting ζ ≤ ξ̂2reset·ε·(1−γ)

L̂P+ξ̂reset(1+ε(1−γ))
means by Lem. 2 that we need

T ≥
⌈
− log(δ/2)

2ζ2

⌉
≥


− log(δ/2)

(
L̂P + ξ̂reset(1 + ε(1− γ))

)2
2ξ̂4reset · ε2(1− γ)

2


samples to provide an error of at most ε with probability at least 1− δ.

D WAE-DQN
In this section, we give additional details on WAE-DQN, which combines representation (WAE-MDP) and policy
(DQN) learning. Before presenting the algorithm, we briefly recall basic RL concepts. Q-Learning.Q-learning is an
RL algorithm whose goal is to learn the optimal solution of the Bellman equation (Puterman 1994): Q∗(s, a) =
Es′∼P(·|s,a) [rew(s, a, s′) + γ ·maxa′∈A Q∗(s′, a′)] for any (s, a) ∈ S ×A, with

Es0∼I

[
max
a∈A

Q∗(s0, a)

]
= max

π
Eρ∼PrMπ

∑
i≥0

γi · ri

 .

To do so, Q-learning relies on learning Q-values iteratively: at each step i ≥ 0, a transition ⟨s, a, r, s′⟩ is drawn in M, and
Qi+1(s, a) = Qi(s, a)+α(r+γmaxa′∈A Qi(s

′, a′)−Qi(s, a)) for a given learning rate α ∈ (0, 1). Under some assumptions,
Qi is guaranteed to converge to Q∗ (Tsitsiklis 1994). Q-learning is implemented by maintaining a table of size |S × A| of the
Q-values. This is intractable for environments with large or continuous state spaces.
Deep Q-networks (DQN, (Mnih et al. 2015)) is an established technique to scale Q-learning (even for continuous state spaces),
at the cost of convergence guarantees, by approximating the Q-values in parameterized NNs. By fixing a network Q(·, θ) and,
for stability (Tsitsiklis and Roy 1997), periodically fixing a parameter assignment θ̂, DQN obtains the target network Q(·, θ̂).
Q-values are then optimized by applying gradient descent on the following loss function:

LDQN(θ) = Es,a,r,s′∼B

(
r + γmax

a′∈A
Q(s′, a′ ; θ̂)−Q(s, a ; θ)

)2

, (4)

where πϵ is an ϵ-greedy exploration strategy, i.e., πϵ(a | s) = (1− ϵ)1 {a = argmaxa′ Q(s, a′)} + ϵ/|A| for some ϵ ∈ (0, 1).
In practice, ξπ is emulated by a replay buffer B where encountered transitions are stored and then sampled later on to minimize
LDQN(θ).

Wasserstein auto-encoded MDP (WAE-MDP, (Delgrange et al. 2023)) is a distillation technique providing PAC guarantees.
Given an MDP M, a policy π and the number of states in M, the transition probabilities and embedding function ϕ (both
modeled by NNs) are learned by minimizing LP via gradient descent. Also, a policy π inM is distilled such thatM exhibits
bisimilarly close (Larsen and Skou 1989; Givan et al. 2003; Delgrange et al. 2022) behaviors toMwhen executing π, providing
PAC guarantees on the difference of the two values from Lem. 1. WAE-MDPs enjoy representation guarantees that any states
clustered to the same latent representation yield close values when LP is minimized (Delgrange et al. 2022): for any latent
policy π and s1, s2 ∈ S, ϕ(s1) = ϕ(s2) implies

∣∣V π(s1)− V π(s2)
∣∣ ≤ γLP

1−γ (
1/ξπ(s1) + 1/ξπ(s2)).

WAE-DQN. Our procedure (Fig. 7) unifies the training and distillation steps (Alg. 1). Intuitively, a WAE-MDP and a (latent)
DQN policy are learned in round-robin fashion: the WAE-MDP produces the input representation (induced by ϕ) that the DQN
agent uses to optimize its policy π. At each step t = 1, . . . , T , the environment is explored via a strategy to collect transitions in
a replay buffer. Each training step consists of two optimization rounds. First, we optimize the parameters of P and ϕ. Second,
we optimize DQN’s parameters to learn the policy as in DQN. DQN may further backpropagate gradients through ϕ. We use a
target embedding function ϕ̂ for stability purposes, similar to (Zhang et al. 2021). This is consistent with DQN’s target-networks
approach: the weights of ϕ̂ are periodically synchronized with those of ϕ. Then, ϕ̂ is paired with the DQN’s target network,
which allows avoiding oscillations and shifts in the representation (a.k.a. moving target issues).

WAE-DQN learns a tractable model of the environment in parallel to the agent’s policy (Algorithm 1). Precisely, the algorithm
alternates between optimizing the quality of the abstraction as well as the representation of the original state space via a WAE-

H,O

WAE-DQN

WAE-MDP on

s̄
ϕ
sa

R

DQN
πR,d

⟨τ,Π⟩
π

∀d ∈ D

S
y
n
th
es
is

MG
Π

MR

Π

O

∀R ∈ R

Figure 7: Given H and O, we run WAE-DQN in each room R ∈ R and direction d ∈ D in parallel, yielding embedding
ϕ, latent MDPs, and policies Π with PAC guarantees. We then synthesize planner τ to maximize O in succinct model MG

Π,
aggregated as per the map ofH, given as graph G.

Algorithm 1: WAE-DQN
Input: steps T , model updates N , batch sizes BWAE, BDQN, and α, ϵ ∈ (0, 1);

Initialize the taget parameters: ⟨ι̂, θ̂DQN⟩ ← copy the parameters ⟨ι, θDQN⟩
Initialize replay buffer B with transitions from random exploration ofM
for t ∈ {1, . . . , T } with s0 ∼ I do

Embed st into the latent space: s← ϕ(st)

Choose action at:
{

w.p. (1−ϵ), define at = argmaxa Q(s, a), and
w.p. ϵ, draw at uniformly from A

Execute at in the environmentM, receive reward rt, and observe st+1

Store the transition in the replay buffer: B ← B ∪ {⟨st, at, rt, st+1⟩}
repeat N times

Sample a batch of size BWAE from B: X ← {⟨s, a, r, s′⟩i}BWAE
i=1 ∼ B

Update ι and θWAE on the batch X by minimizing the WAE-MDP loss (including LP) for the latent policy πϵ

▷ details in (Delgrange et al. 2023)
for i ∈ {1, . . . , BDQN} do

Sample a transition from B: s, a, r, s′ ∼ B
Compute the target: ŷ ← r + γmaxa′∈A Q

(
ϕ(s′; ι̂), a′; θ̂DQN

)
Compute the DQN loss (Eq. 4): Li ← (Q(ϕ(s; ι), a; θDQN)− ŷ)

2

Update ι and θDQN by minimizing 1/BDQN

∑BDQN
i=1 Li

Update the target params.: ι̂← α · ι+ (1− α) · ι̂; θ̂ ← α · θDQN + (1− α) · θ̂
return ϕ,M, and π

MDP, and optimizing a latent policy via DQN. We respectively denote the parameters of the state embedding function ϕ, those
of the latent transition function P, and those of the Deep Q-networks by ι, θWAE, and θDQN.

E Explicit Construction of the MDP Plan
Along this section, fix a two-level modelH = ⟨G, ℓ,R, v0, ⟨d0, d1⟩⟩ with its explicit MDP representationM = ⟨S,A,P, I⟩.

To enable high-level reasoning when the rooms are aggregated into a unified model, we add the following assumption.
Assumption 3. All rooms R ∈ R share the same reset state sreset inH.

Note that Assumption 3 is a technicality that can be trivially met in every two-level model H: it just requires that when a
reset is triggered in a room R ofH, the whole model is globally reset, and not only R, locally.

We define an MDPMΠ, called an MDP plan, such that policies inMΠ correspond to planners. Recall that the actions that a
planner performs consist of choosing a policy once entering a room. Accordingly, we defineMΠ = ⟨SΠ,AΠ,PΠ, IΠ⟩. States
in SΠ keep track of the location in a room as well as the target of the low-level policy that is being executed. Formally,

SΠ = (∪R∈R(SR \ {sreset})× E) ∪ {sreset,⊥} ,
where a pair ⟨s, v, u⟩ ∈ SΠ means that the current room is v, the target of the low-level policy is to exit the room in direction
d = ⟨v, u⟩, and the current state is s ∈ Sℓ(v). Following Assumption 3, the rooms share the reset state sreset, and ⊥ is a
special sink state that we add for technical reasons to disable actions in states. The initial distribution IΠ has for support
{⟨s, v, u⟩ ∈ SΠ | v = v0 and ⟨v, u⟩ = d1} where states s ∈ Sℓ(v0) are distributed according to Iℓ(v0)(· | d0). Actions chosen
correspond to those of the planner — only required when entering a room — so the action space is AΠ = E ∪ {∗}, where
d ∈ E means that the low-level policy that is executed exits via direction d, and ∗ is a special action that is used inside a room,
indicating no change to the low-level policy. Note that once d is chosen, we only allow exiting the room through direction d.
We define the transition function. Let P be the transition function of the explicit MDP M. For a state ⟨s, v, u⟩ ∈ SΠ with
d = ⟨v, u⟩,
(i) if s is not an exit state, i.e., s ̸∈ Oℓ(v)(d), then the action is chosen by the low-level policy πℓ(v),d, and the next state is

chosen according to the transitions of ℓ(v): for every s′ ∈ Sℓ(v) \ {sreset},
PΠ(⟨s′, v, u⟩ | ⟨s, v, u⟩, ∗) = Ea∼πℓ(v),d(·|s)P(⟨s′, v⟩ | ⟨s, v⟩, a); (5)

(ii) if s is an exit state in direction d, i.e., s ∈ Oℓ(v)(d), the next room is entered according to the entrance function from direction
d and the planner needs to choose a new target direction d′: for every s′ ∈ Sℓ(u) \ {sreset} and edge d′ = ⟨u, t⟩ ∈ out(u):

PΠ(⟨s′, u, t⟩ | ⟨s, v, u⟩, d′) = P(⟨s′, u⟩ | ⟨s, v⟩, aexit) = Iℓ(u)(s′ | d) (6)

(iii) the reset state is handled exactly as in the explicit modelM:

PΠ(sreset | ⟨s, v, u⟩, ∗) = Ea∼πℓ(v),d
P(sreset | ⟨s, v⟩, a),

and PΠ(· | sreset, a) = IΠ for any a ∈ AΠ;
(iv) any other undefined distribution transitions deterministically to the sink state ⊥ so that PΠ(⊥ | ⊥, a) = 1 for any a ∈ AΠ.

Proper policies. We say that a policy π for MΠ is proper if the decisions of π ensure to almost surely avoid ⊥, i.e.,
V π(s,O(T = {⊥} , B = ∅)) = 0 for all states s ∈ SΠ \ {⊥}. Note that improper policies strictly consist of those which
prescribe to not follow the low-level policy corresponding to the current objective and do not select a new target direction when
exiting.

In the following proofs, we restrict our attention to proper policies.

Property 1 (High-level objective in the MDP plan). InMΠ, the high-level objective O translates to the reach-avoid objective
O(T,B) where T = {⟨s, v, u⟩ ∈ SΠ | v ∈ T} and B =

{
⟨s, v, u⟩ ∈ SΠ | s ̸∈ Bℓ(v)

}
for the high-level objective ♢T so that

BR is the set to avoid in room R.

F Proofs from Sect. 5
Lemma 3 (Equivalence of policies in the two-level model and plan). There exists an equivalence between planners with
memory of size |V| in the two-level model H and proper deterministic stationary policies in the MDP planMΠ that preserves
the values of their respective objective under equivalent planners and policies.

Proof. Let τ be a planner for H with memory of size |V|. Let us encode τ as a finite Mealy machine whose inputs are graph
vertices V and outputs are directions, i.e., τ = ⟨Q, τa, τu, q0⟩ whereQ is a set of memory states with |Q| = |V|, τa : V×Q → E
is the next action function, τu : V ×Q× E → Q is the memory update function, and q0 is the initial memory state.

Let us consider the two-level controller ⟨τ,Π⟩ as a policy in the explicit MDPM. Since τ is a planner, we require that

1. τa(v0, q0) = d1, and
2. if τa(v, q) = d, then d ∈ out(v) for any v ∈ V, q ∈ Q.

Intuitively, τa chooses the direction to follow in the current room based on the current memory state q, and τu describes how
to update the memory, based on the current room, the current memory state, and the direction chosen. By definition of the
two-level controller ⟨τ,Π⟩ (see Sect. 3), τa is used at each time step in the current room, to know which low-level policy to
execute, and τu is triggered once an exit state is reached, to switch to the next memory state that will determine the direction to
follow in the next room.

Then, PrM⟨τ,Π⟩ is a distribution over the product of the paths of M and the sequence of memory states of τ . Following
the definition of the controller ⟨τ,Π⟩ (cf. Sect. 3), the measure PrM⟨τ,Π⟩ can be obtained inductively as follows. For a state
⟨s, v⟩ ∈ S , PrM⟨τ,Π⟩(s, v, q) = Iℓ(v0)(s | d0) if v0 = v and q = q0, and assigns a zero probability otherwise. The probability of
a path ρ = s0, v0, q0, . . . , st−1, vt−1, qt−1, st, vt, qt is given as follows

(a) if st−1 is not an exit state, the low-level policy is executed in direction d = τa(vt−1, qt−1) and both the current vertex and
memory state must remain unchanged:

PrM⟨τ,Π⟩(s0, v0, q0, . . . , st−1, vt−1, qt−1) · Ea∼πℓ(vt),d
(·|s)P(⟨st, vt⟩ | ⟨st−1, vt−1⟩, a)

if st−1 ̸∈ Oℓ(vt−1)(d) with d = τa(vt−1, qt−1), vt = vt−1, and qt = qt−1;
(b) if st−1 is an exit state in the direction prescribed in qt−1, then this direction should point to vt and the memory state must

be updated to qt:
PrM⟨τ,Π⟩(s0, v0, q0, . . . , st−1, vt−1, qt−1) · Iℓ(vt)(st | d)

if st−1 ∈ Oℓ(vt−1)(d) with d = τa(vt−1, qt−1) = ⟨vt−1, vt⟩, and qt = τu(vt−1, qt−1, d);
(c) if st−1 is the reset state, by Assumptions 1 and 3, the planner must be reset as well:

PrM⟨τ,Π⟩(s0, v0, q0, . . . , st−1, vt−1, qt−1) · Iℓ(v0)(st | d0)

if st−1 = sreset, vt = v0, and qt = q0;
(d) zero otherwise.

Notice that renaming Q to V so that for all q ∈ Q, q is changed to u ∈ V (i.e., q 7→ u) whenever τa(v, q) = ⟨v, u⟩ is harmless,
since the probability measure remains unchanged. From now on, we consider that Q has been renamed to V in this manner.

Now, define the relation ≡ between planners inM and policies inMΠ as2

τ ≡ π if and only if

π(⟨s, v, u⟩) =
{
τa(u, ·) ◦ τu(v, u, d = ·) ◦ τa(v, u) if s ∈ Oℓ(v)(⟨v, u⟩)
∗ otherwise.

By construction of MΠ, modulo the renaming of Q to V , PrM⟨τ,Π⟩ = PrMΠ
π for any τ , π in relation τ ≡ π: condition (i) is

equivalent to (a), condition (ii) is equivalent to (b), and condition (iii) is equivalent to (c). Note that the only policies π which
cannot be in relation with some planner τ are improper policies, i.e., those choosing actions leading to the sink state ⊥ (see
condition (iv)). Such policies are discarded by assumption.

The result follows from the fact that, modulo the renaming of Q to V , planners and policies in relation ≡ lead to the same
probability space.

Theorem 6. For a fixed collection of low-level policies Π, a memory of size |V| is necessary and sufficient for the planner to
maximize the values of O in the two-level modelH.

Proof. The necessity of a memory of size |V| is shown in Example 2. The sufficiency follows from Thm. 3 and the fact that
a deterministic stationary policy is sufficient to maximize constrained, discounted reachability objectives in MDPs (Puterman
1994; Baier and Katoen 2008) (in particular inMΠ).

To see how, let π∗ be a proper optimal deterministic stationary policy inMΠ. Note that one can always find a proper optimal
policy from an improper one: if π∗ is improper, it is necessarily because a prohibited action has been chosen after having
reached the target, which can be replaced by any other action without changing the value of the objective. Consider a planner
τ in the two-level model H which is equivalent to π∗ (Lem. 3). Then, τ is optimal for the high-level objective in H (since the
probability space of the two models is the same), and τ uses a memory of size |V|.

Succinct MDP In the following, we take a closer look at the construction of the succinct MDPMG
Π. We then prove Thm. 4.

The next example illustrates how setting transition probabilities to be expected values maintains the values between the
models.
Example 3. Consider the explicit model of Fig. 2(a), projected on two dimensions in Fig. 8. Each directed arrow corresponds
to a transition with a non-zero probability. A state of the form ⟨s, v⟩ indicates that the agent is in state s of room ℓ(v). Consider
a path ρ that enters ℓ(v0) = R0, exits after i = 3 steps (s0 → s1 → s2

aexit−−→), enters ℓ(u) = R1, exits after j = 3 steps
(s0 → s1 → s2

aexit−−→), and finally reaches the high-level goal. The prefix of ρ in R0 is discounted to γ3 when the agent exits.
Similarly, the suffix of ρ in R1 is discounted to γ3. Once in the goal, the agent gets a “reward” of one (the goal is reached).
The discounted reward obtained along ρ is thus γi+j = γ6. In expectation, this corresponds to multiplying the values in the
individual rooms and, in turn, with the semantics ofMG

Π where probabilities are multiplied along a path.

s2, v0

s0, v0 s1, v0

s3, v0

s2, us1, u

s3, us0, u
aexit

R0 R1

aexit goal

Figure 8: Projection of Fig. 2(a) on two dimensions

Explicitly, the transition function can be re-formalized as follows. Let v, u ∈ V , d ∈ E, and d′ ∈ E ∪ {⊥}, P defined as

P(d′ | ⟨v, u⟩, d) =


Es∼Iℓ(u)(·|⟨v,u⟩) V

πℓ(u),d(s) if d = d′ ∈ out(u),

1−P(d | ⟨v, u⟩, d) if d′ = ⊥ and d ∈ out(u),
1 if d′ = ⊥ and d ̸∈ out(u), and
0 otherwise,

(7)

2Notice the slight asymmetry induced by Mealy machines: while the policy must decide the next direction in exit states, the planner just
need update its memory state (Eq. (b)).

while P(⊥ | ⊥, d) = 1.
For convenience, in the following, we assume that sreset ∈ BR for each room R, which is consistent with the remark made in

Appendix B. The construction ofMG
Π and Theorem 4 can be generalized by additionally wisely handling the reset state in P.

For the sake of clarity, we formally restate Thm. 4:
Theorem 7 (Value equality in the succinct model). Let ⟨τ,Π⟩ be a hierarchical controller forH with a |V|-memory planner τ .
Denote by V π

MΠ
(O) the initial value ofMΠ running under a policy π equivalent3 to τ inMΠ for the reach-avoid objective O

of Property 1. Moreover, denote by V τ
MG

Π

(♢T) the initial value obtained inMG
Π when the agent follows the decisions of τ for

the reachability objective to states of the set V × T , i.e., the reach-avoid objective O(V × T, ∅). Then, assuming v0 ̸∈ T (the
case where v0 ∈ T is trivial),

V π
MΠ

(O) = V τ
MG

Π
(♢T).

Proof. Given any MDPM = ⟨S,A,P, I⟩, we start by recalling the definition of the value function of any reach-avoid objective
of the form O(T,B) with T,B ⊆ S for a discount factor γ ∈ (0, 1) and a policy π:

V π
I (O) = Eρ∼PrMπ

[
sup
i≥0

γi1 {si ∈ T} · 1 {∀j ≤ i, sj ̸∈ B}
]
, (8)

where si denotes the ith state of ρ. Intuitively, this corresponds to the expected value of the discount scaled to the time step of
the first visit of the set T , ensuring that the set of bad states B is not encountered before this first visit.

First, notice that the reach-avoid property can be merely reduced to a simple reachability property by making absorbing the
states of B (Baier and Katoen 2008). Precisely, writeM ⟳B for the MDPM where we make all states from B absorbing, i.e.,
where P is modified so that P(s | s, a) = 1 for any s ∈ B and a ∈ A. Then, one can get rid of the indicator 1 {∀j ≤ i, sj ̸∈ B}
in Eq. (8) by considering infinite paths ofM ⟳B :

V π
I (O) = Eρ∼PrMπ

[
sup
i≥0

γi1 {si ∈ T} · 1 {∀j ≤ i, sj ̸∈ B}
]

= E
ρ∼PrM ⟳B

π

[
sup
i≥0

γi1 {si ∈ T}
]
.

Second, define
Paths fin

♢T = {ρ = s0, s1, . . . , si | si ∈ T and sj ̸∈ T for all j < t}
as the set of finite paths that end up in T , with T being visited for the first time. Then, on can get rid of the supremum of Eq. (8)
follows:

V π
I (O) = E

ρ∼PrM ⟳B
π

[
sup
i≥0

γi1 {si ∈ T}
]

= E
ρ∼PrM ⟳B

π

[∞∑
t=0

γt · 1
{

pref (ρ, t) ∈ Paths fin
♢T

}]
, (9)

where pref (ρ, t) = s0, s1, . . . , st yields the prefix of ρ = s0, s1, . . . which ends up in the tth state st. The attentive reader
may have noticed that the resulting expectation can be seen as the expectation of a discounted cumulative reward signal (or a
discounted return, for short), where a reward of one is incurred when visiting T for the first time. Taking it a step further, define
the reward function

rew(s, a, s′) =

{
1− γ if s ∈ T, and
0 otherwise.

Then, the value function can be re-written as

V π
I (O) = E

ρ∼PrM ⟳B
π

[∞∑
t=0

γt · 1
{

pref (ρ, t) ∈ Paths fin
♢T

}]

= E
ρ∼PrM ⟳T∪B

π

[∞∑
t=0

γt · rt

]
.

For any state s ∈ T , notice that since T is absorbing inM ⟳T∪B ,

V π(s,O) = 1. (10)

3cf. Lemma 3.

It is folklore that the discounted return is the solution of the Bellman equation V π(s,O) =
γEa∼π(·|s)Es′∼P(·|s,a) [rew(s, a, s′) · V π(s′,O)] for any s ∈ S (Puterman 1994). In particular, considering the reach-
avoid objective O, we have by Eq. (10)

V π(s,O) =


γEa∼π(·|s)Es′∼P(·|s,a) [V

π(s′,O)] if s /∈ T ∪B,

1 if s ∈ T \B, and
0 otherwise, when s ∈ B.

Now, let us consider the values of the MDP planMΠ for the reach-avoid objective O(T,B) where T = {⟨s, v, u⟩ | v ∈ T}
and B =

{
⟨s, v, u⟩ | s ̸∈ Bℓ(v)

}
for the high-level objective ♢T and set of low-level objectives

{
Od

R : R ∈ R, d ∈ DR

}
so that

BR is the set of states to avoid in room R. Fix a |V|-memory two-level controller π = ⟨τ,Π⟩ in for two-level model H (which
is compliant withMΠ, see Thm. 3 and the related proof). We take a close look to the value of each state inMΠ by following
the same structure as we used for the definition of MΠ (cf. Sect. 5). For the sake of presentation, given any pair of vertices
v, u ∈ V , we may note ⟨sreset, v, u⟩ to refer to the (unified, cf. Assumption 3) reset state sreset ∈ SΠ. Given a state ⟨s, v, u⟩ ∈ SΠ
with direction d = ⟨v, u⟩,

(i) if s is not an exit state, i.e., if s ̸∈ Oℓ(v)(d), then

V π(⟨s, v, u⟩,O)

=γE⟨s′,v,u⟩∼PΠ(·|⟨s,v,u⟩,∗) [V
π(⟨s′, v, u⟩,O)] (by Eq. (5))

=γ
∑

s′∈Sℓ(v)

PΠ(⟨s′, v, u⟩ | ⟨s, v, u⟩, ∗) · V π(⟨s′, v, u⟩,O)

=γ
∑

s′∈Sℓ(v)

∑
a∈Aℓ(v)

πℓ(v),d(a | s) ·Pℓ(v)(s
′ | s, a) · V π(⟨s′, v, u⟩,O);

(ii) if s is an exit state in the direction d, i.e., s ∈ Oℓ(v)(d), given the direction chosen by the planner d′ = τ(v, u) = ⟨u, t⟩ for
some neihbor t ∈ N(u), we have

V π(⟨s, v, u⟩,O)

=γE⟨s′,u,t⟩∼PΠ(·|⟨s,v,u⟩,d′) [V
π(⟨s′, u, t⟩,O)]

=γEs′∼Iℓ(u)(·|d) [V
π(⟨s′, u, t⟩,O)] (by Eq. (6))

=γ
∑

s′∈Sℓ(u)

Iℓ(u)(s′ | d) · V π(⟨s′, u, t⟩,O); (11)

(iii) if v is the target, i.e., v ∈ T , V π(s,O) = 1; and
(iv) otherwise, when s is a bad state, i.e., s ∈ Bℓ(v), V π(s,O) = 0.

Take R = ℓ(v). By (i) and (ii), when s is not an exit state, i.e., s ̸∈ Oℓ(v)(d), we have

V π(⟨s, v, u⟩,O) =
∑

s0,s1,...,si∈Path fin

Od
R

γiPrRs

πR,d
(s0, s1, . . . , si) · V π(⟨si, v, u⟩,O),

so that

Path fin
Od

R

= Path fin
♢OR(d) \ {ρ = s0, s1, . . . , sn | ∃1 ≤ i ≤ n, si ∈ BR} ,

where we denote by Rs the room R where we change the initial distribution by the Dirac IR(s0) = 1 {s0 = s}, and PrRs

πR,d
is

the distribution over paths of R which start in state s which is induced by the choices of the low-level latent policy πR,d.
Following Eq. (11), notice that V π(⟨sexit, v, u⟩,O) = V π(⟨s′exit, v, u⟩,O) for any sexit, s

′
exit ∈ OR(d = ⟨v, u⟩): the probability

of going to the next room R′ = ℓ(u) from an exit state of the current room R only depends on the entrance function IR′

and is independent from the exact exit state which allowed to leave the current room R. Therefore, we further denote by
V π(⟨·, v, u⟩,O) the value of any exit state of R in direction d, i.e., V π(⟨·, v, u⟩,O) = V π(⟨sexit, v, u⟩,O) for all sexit ∈ OR(d).

Then, we have

V π(⟨s, v, u⟩,O)

=
∑

s0,s1,...,si∈Path fin

OR
d

γiPrRs

πR,d
(s0, s1, . . . , si) · V π(⟨si, v, u⟩,O)

=
∑

s0,s1,...,si∈Path fin

Od
R

γiPrRs

πR,d
(s0, s1, . . . , si) · V π(⟨·, v, u⟩,O)

=V π(⟨·, v, u⟩,O) ·
∑

s0,s1,...,si∈Path fin

Od
R

γiPrRs

πR,d
(s0, s1, . . . , si)

=V π(⟨·, v, u⟩,O) · V πd,R(s, γ), (by Eq. (9))

where V πR,d(s, γ) denotes the value of the reach-avoid objective Od
R = O(OR(d), BR) in the room R from state s ∈ R. Then,

by (ii), assuming v ̸∈ G, we have

1. if u ̸∈ G,

V π(⟨·, v, u⟩,O)

=γ ·
∑

s′∈Sℓ(u)

Iℓ(u)(s′ | d = ⟨v, u⟩) · V π(⟨s′, τ(v, u)⟩,O) (12)

=γ ·
∑

s′∈Sℓ(u)

Iℓ(u)(s′ | d = ⟨v, u⟩) · V πℓ(u),τ(v,u)
(
s,Od

R

)
· V π(⟨·, τ(v · u)⟩,O)

=γ ·P(τ(v, u) | ⟨v, u⟩, τ(v, u)) · V π(⟨·, τ(v · u)⟩,O) (where P is the transition function ofMG
Π, see Eq. (2))

2. if u ∈ G,

V π(⟨·, v, u⟩,O)

=γ ·
∑

s′∈Sℓ(u)

Iℓ(u)(s′ | d = ⟨v, u⟩) · V π(⟨s′, τ(v, u)⟩,O)

=γ ·
∑

s′∈Sℓ(u)

Iℓ(u)(s′ | d = ⟨v, u⟩) · 1 (since τ(v, u) = ⟨u, t⟩ for some t ∈ N(u))

=γ.

Now, respectively denote by V π
MΠ

(·,O) := V π(·,O) and V τ
MG

Π

(·,♢T) the value functions ofMΠ andMG
Π for the objectives

O and ♢T . By 1 and 2, and by construction ofMG
Π, we have for any pair of vertices v, u ∈ V that

V π
MΠ

(⟨·, v, u⟩,O) = γ · V τ
MG

Π
(⟨v, u⟩,♢T),

On the one hand, notice that, by construction of MG
Π, we have for any pair of vertices ⟨v, u⟩ ∈ E that the initial values

V τ
MG

Π

(♢T) are Ed∼I V
τ
MG

Π

(d,♢T) = V τ
MG

Π

(d0,♢T). On the other hand, we have

V π
MΠ

(O) = Es′∼Iℓ(v0)(·|d0) V
π
MΠ

(⟨s′, τ(d0)⟩,O) = 1/γ · V π
MΠ

(·, d0,O). (by Eq. (12))

Then, we finally have:
V π
MΠ

(O) = 1/γ · V π
MΠ

(·, d0,O) = γ/γ · V τ
MG

Π
(d0,♢T) = V τ

MG
Π
(♢T),

which concludes the proof.

G Initial Distribution Shifts: Training vs. Synthesis
Our two-level controller construction occurs in two phases. First, we create a set of low-level policies Π by running Algorithm 1
in each room (Sect. 4.3). Notably, training in each room is independent and can be executed in parallel. However, independent
training introduces a challenge: an initial distribution shift emerges when combining low-level policies using a planner. Our
value bounds for a room R in direction d depend on a loss LR,d

P , computed based on the stationary distribution. This distribution
may significantly change depending on a planner’s choices. In this section, we address this challenge by showing, under mild

assumptions on the initial distribution of each room R, that their transition losses LR,d
P obtained under any latent policy πR,d

for direction d still guarantee to bound the gap between the values of the original and latent two-level models.
In the following, we first give details on this “distribution shift,” and then we prove Theorem 5 through Theorems 8 and 9.

Training rooms. To construct Π, we train low-level policies via Algorithm 1 by simulating each room individually. Precisely,
for room R ∈ R and direction d ∈ DR, we train a WAE-DQN agent by considering R as episodic MDP with some initial
distribution IR, yielding (i) low-level latent policy πR,d, (ii) latent MDP MR, and (iii) state-embedding function ϕR. Since
πR,d must learn to maximize the values of the objective Od

R, which asks to reach the exit state in direction d, we restart the
simulation when the latter is visited. Formally, the related training room is an episodic MDP Rd = ⟨SR,AR,P

d
R, IR⟩, where

sreset ∈ SR, Pd
R(· | s, a) = PR(· | s, a) when s ̸∈ OR(d), and Pd

R(sreset | s, a) = 1 otherwise. We define Pd
R similarly forMR

when the direction d is considered.

Distribution shift. Crucially, by considering rooms individually, a noticeable initial distribution shift occurs when switching
between training and synthesis phases. During training, there is no two-level controller, so the initial distribution of room R
is just IR. During synthesis, room entries and exits are determined by the distributions influenced by the choices made by the
controller in the hierarchical MDP H. This implies that the induced initial distribution of each room depends on the likelihood
of visiting other rooms and is further influenced by the other low-level policies.

We contend that this shift may induce significant consequences: denote by LR,d
P the transition loss of the room Rd operating

under πR,d and by Lτ,Π
P the transition loss of the two-level model H operating under ⟨τ,Π⟩. Then, in the worst case, Lτ,Π

P and
LR,d
P might be completely unrelated whatever the room R and direction d. To see why, recall that transition losses are defined

over stationary distributions of the respective models (Eq. 1). One can see this shift as a perturbation in the transition function
of the rooms. Intuitively, by Assumption 1, each room is almost surely entered infinitely often, meaning that such perturbations
are also repeated infinitely often, possibly leading to completely divergent stationary distributions (O’Cinneide 1993), meaning
that we loose the abstraction quality guarantees possibly obtained for each individual training room.

Entrance loss. Fortunately, we claim that under some assumptions, when the initial distribution of each training room IR is
wisely chosen, we can still link the transition losses LR,d

P minimized in the training rooms to Lτ,Π
P . To provide this guarantee,

the sole remaining missing component to our framework is learning a latent entrance function: we define the entrance loss as

LI = ER,d∼ξπ D
(
ϕIR(· | d), IR(· | d)

)
, (13)

where ϕIR(· | d) = Es∼IR(·|d) 1 {s = ϕR(s)}, IR : DR → ∆
(
S
)

is the latent entrance function, π is the stationary policy
inMΠ corresponding to the two-level controller ⟨τ,Π⟩ where τ has a memory of size |V|, D is total variation, and and ξπ is
the stationary distribution induced by π inMΠ. The measure ξπ can also be seen as a distribution over rooms and directions
chosen under the controller:4

ξπ(R, d) = Es,v,u∼ξπ [1 {s = sreset, R = ℓ(v), d = d0}+ 1 {R = ℓ(v), d = ⟨v, u⟩}] .

Theorem 8 (Reusable RL components). Let ⟨τ,Π⟩ be a two-level controller in H where τ has finite memory of size |V| and
let π be the equivalent stationary policy in the MDP planMΠ. Assume (i) Π only consists of latent policies and (ii) for any
training room R ∈ R and direction d ∈ DR, the projection5of the BSCC ofMΠ under π to SR is included in the BSCC of Rd

under low-level policy πR,d. Let

SR,d = {⟨s, v, u⟩ ∈ SΠ | ℓ(v) = R and ⟨v, u⟩ = d} ,
ξπ(sreset | R, d) = E⟨s,v,u⟩,a∼ξπ [PΠ(sreset | ⟨s, v, u⟩, a) | SR,d] , and

ξmin
continue = 1− max

R∈R,d∈D
(ξπ(sreset | SR,d) + ξπ(OR(d)× {d} | SR,d)).

Then, there is a κ ≥ 0 with Lτ,Π
P ≤ LI + κ

ξmin
continue

ER,d∼ξπ L
R,d
P . Define the expected entrance function in room R as

IπR(s) = Eṡ,⟨u,v⟩∼ξπ

[
IR(s | d = ⟨u, v⟩) | ṡ ∈ Oℓ(u)(⟨u, v⟩) and ℓ(v) = R

]
for any s ∈ SR.

With supp(P) = {x ∈ X | P (x) > 0} the support of distribution P , if supp(IR) = supp(IπR), κ can be set to the maximum
probability ratio of room entry during training and synthesis:

κ = max
R∈R

(
max

s∈supp(IR)
max

{
IπR(s)

IR(s)
,
IR(s)

IπR(s)

})|S|

.

4For simplicity, we consider here the special state ⟨sreset, v, v0⟩ with ⟨v, v0⟩ = d0 as the joint reset state of the model (Assumption 3).
5Formally speaking, this is the projection to SR of the intersection of the BSCC of MΠ operating under π with SR ×DR.

Proof. For simplicity, assume that the reset state in SΠ is a triplet of the form ⟨sreset, v, v0⟩ so that ⟨v, v0⟩ = d0 and
Oℓ(vreset)(d0) = {sreset}. We also may write ϕ(s) for ϕR(s) when it is clear from the context that s ∈ SR. We respec-
tively denote the marginal stationary distribution of states and directions by ξπ(s) = Es′,v,u∼ξπ [1 {s = s′}] and ξπ(d) =
Es,v,u∼ξπ [1 {d = ⟨v, u⟩}]. Furthermore, given a direction d ∈ E, we denote the conditional stationary distribution by

ξπ(s, a | d) = Es′,v,u∼ξπ

[
πℓ(v),d(a | ϕ(s)) · 1 {s = s′} | {⟨s′, v, u⟩ ∈ SΠ | ⟨v, u⟩ = d}

]
= Es′,v,u∼ξπ

[
πℓ(v),d(a | ϕ(s)) · 1 {s = s′} 1 {d = ⟨v, u⟩}

ξπ(v, u)

]
In the following, we also write P(s′ | s, a) as shorthand for P(⟨s′, v⟩ | ⟨s, v⟩, a) (the transition function of the explicit MDP of
H) if and only if s, s′ ∈ Sℓ(v) and s ̸∈ Oℓ(v)(d) for some v ∈ V , d ∈ out(v). Denote by PΠ the latent transition function of the
latent MDP planMΠ, constructed from the collection of low-level policies Π, the latent rooms

{
MR : R ∈ R

}
, and the latent

entrance functions
{
IR : R ∈ R

}
. Then:

Lτ,Π
P

=
1

2
E⟨s,v,u⟩,a∼ξπ

∥∥ϕPΠ(· | ⟨s, v, u⟩, a)−PΠ(· | ⟨ϕ(s), v, u⟩, a)
∥∥
1

=
1

2
Es,v,u∼ξπ

[
1 {s ̸= sreset} 1

{
s ̸∈ Oℓ(v)(⟨v, u⟩)

} ∥∥ϕPΠ(· | ⟨s, v, u⟩, ∗)−PΠ(· | ⟨ϕ(s), v, u⟩, ∗)
∥∥
1

]

+
1

2
E⟨s,v,u⟩,d′∼ξπ

[
1 {s ̸= sreset} 1

{
s ∈ Oℓ(v)(⟨v, u⟩)

}∥∥ϕPΠ(· | ⟨s, v, u⟩, d′)−PΠ(· | ⟨ϕ(s), v, u⟩, d′)
∥∥
1

]

+
1

2
Es,v,u∼ξπ

[
1 {s = sreset}

∥∥ϕPΠ(· | ⟨s, v, u⟩, ∗)−PΠ(· | ⟨ϕ(s), v, u⟩, ∗)
∥∥
1

]
(π is proper)

=
1

2
Es,v,u∼ξπ

[
1 {s ̸= sreset} 1

{
s ̸∈ Oℓ(v)(⟨v, u⟩)

} ∥∥∥∥Ea∼πℓ(v),⟨v,u⟩(·|ϕ(s))

[
ϕP(· | s, a)−P(· | ϕ(s), a)

]∥∥∥∥
1

]
(by definition ofMΠ (i))

+
1

2
E⟨s,v,u⟩,d′∼ξπ

[
1 {s ̸= sreset} 1

{
s ∈ Oℓ(v)(⟨v, u⟩)

}∥∥ϕIℓ(u)(· | ⟨v, u⟩)− Iℓ(u)(· | ⟨v, u⟩)∥∥1
]

(by definition ofMΠ (ii))

+
1

2
Es,v,u∼ξπ

[
1 {s = sreset}

∥∥ϕIℓ(v0)(· | d0)− Iℓ(v0)(· | d0)∥∥1] (by definition ofMΠ (iii))

=
1

2
Es,v,u∼ξπ

[
1 {s ̸= sreset} 1

{
s ̸∈ Oℓ(v)(⟨v, u⟩)

} ∥∥∥∥Ea∼πℓ(v),⟨v,u⟩(·|ϕ(s))

[
ϕP(· | s, a)−P(· | ϕ(s), a)

]∥∥∥∥
1

]
+

1

2
ER,d∼ξπ

∥∥ϕIR(· | d)− IR(· | d)∥∥1
=

1

2
Es,v,u∼ξπ

[
1 {s ̸= sreset} 1

{
s ̸∈ Oℓ(v)(⟨v, u⟩)

} ∥∥∥∥Ea∼πℓ(v),⟨v,u⟩(·|ϕ(s))

[
ϕP(· | s, a)−P(· | ϕ(s), a)

]∥∥∥∥
1

]
+ LI

≤ 1

2
Es,v,u∼ξπ Ea∼πℓ(v),⟨v,u⟩(·|ϕ(s))

[
1 {s ̸= sreset} 1

{
s ̸∈ Oℓ(v)(⟨v, u⟩)

} ∥∥ϕP(· | s, a)−P(· | ϕ(s), a)
∥∥
1

]
+ LI

(Jensen’s inequality)

=
1

2
Ed∼ξπ Es,a∼ξπ(·|d)

[
1 {s ̸= sreset} 1

{
s ̸∈ Oℓ(v)(d)

} ∥∥ϕP(· | s, a)−P(· | ϕ(s), a)
∥∥
1

]
+ LI (⋆)

Now, let d = ⟨v, u⟩ ∈ E be a target direction for the room R = ℓ(v). We consider the room R as an episodic MDP (cf.
Assumption 1) where (i) the initial distribution corresponds to the expected entrance probabilities in R under π: for any s ∈ SR

IπR(s) = Eṡ,⟨u̇,v̇⟩∼ξπ

[
IR(s | dI = ⟨u̇, v̇⟩) | ṡ ∈ Oℓ(u̇)(⟨u̇, v̇⟩) and v̇ = v

]
(where dI is the direction from which R is entered); and (ii) the room is reset when an exit state in direction d is visited: for
any s, s′ ∈ SR, a ∈ AR,

Pd,π
R (s′ | s, a) =


1 if s′ = sreset and s ∈ OR(d),

IπR(s
′) if s = sreset, and

PR(s
′ | s, a) otherwise.

(14)

v

SR

sOd

S \ (SR × {v})

v

sreset

ξπ(· | d)

sOd

ξ
Rd,π
π̄R,d

SR

= ℓ−1(R)

Figure 9: Room R = ℓ(v) in the two-level model (left) and the same room taken individually (right). Both distributions ξπ(· | d)
and ξ

Rd,π

πR,d
correspond to the limiting distributions over SR when πR,d is executed in R. The sole difference remains in the fact

that the reset is considered outside R in the two-level model (Assumption 3) while it is considered to be part of the state space
when R is taken individually (Assumption 1).

We call the resulting MDP the individual room version of R that we denote by Rd,π . The stationary distribution of the room
Rd,π for the low-level policy πR,d is ξRd,π

πR,d
. Observe that ξRd,π

πR,d
is over SR, which includes the reset state sreset, while ξπ(· | d)

is over the exact same state space but without the reset state (since the reset state is a special state outside R, shared by all
the rooms in the two-level model; cf. Assumption 3 and the definition of MΠ). Furthermore, notice that, modulo this reset
state, the two distributions are the same (see Fig. 9): they both consist of the limiting distribution over SR when πR,d is
executed in R. All the transition distributions remain the same, except those of the exit states: in the two-level model H,
every state s ∈ OR(d = ⟨v, u⟩) transitions to u deterministically, while in the individual room Rd,π , they transition to the
reset state deterministically. Still, in both cases, R is entered and exited with the same probability (respectively from and to
(S \ SR × {v}) inH and sreset in the individual room Rd,π). Therefore, we have:

ξπ(s | d) = ξ
Rd,π

πR,d
(s | SR \ {sreset}) =

ξ
Rd,π

πR,d
(s) · 1 {s ̸= sreset}

1− ξ
Rd,π

πR,d
(sreset)

. (15)

Instead of sampling from ξπ(s | d) in Eq. (⋆), we would rather like to sample from the distribution of the individual room
ξ
Rd,π

πR,d
(s | SR \ {sreset}). We have:

Es,a∼ξπ(·|d)
[
1 {s ̸= sreset} 1

{
s ̸∈ Oℓ(v)(d)

}∥∥ϕP(· | s, a)−P(· | ϕ(s), a)
∥∥
1

]
=
∑
s∈S

∑
a∈A

[ξπ(s | d)πR,d(a | ϕ(s)) 1 {s ̸= sreset} 1
{
s ̸∈ Oℓ(v)(d)

} ∥∥ϕP(· | s, a)−P(· | ϕ(s), a)
∥∥
1

]
(16)

=
∑
s∈S

∑
a∈A

[
ξ
Rd,π

πR,d
(s)1 {s ̸= sreset}

1− ξ
Rd,π

πR,d
(sreset)

πR,d(a | ϕ(s)) 1 {s ̸= sreset} 1
{
s ̸∈ Oℓ(v)(d)

} ∥∥ϕPR(· | s, a)−PR(· | ϕ(s), a)
∥∥
1

]
(17)

= E
s,a∼ξ

Rd,π
πR,d

[
1 {s ̸= sreset}

1− ξ
Rd,π

πR,d
(sreset)

1
{
s ̸∈ Oℓ(v)(d)

}∥∥ϕPR(· | s, a)−PR(· | ϕ(s), a)
∥∥
1

]

Notice that we can pass from Eq. (16) to (17) because we only consider states s ̸= sreset and s ̸∈ Oℓ(v)(d). States that do not
satisfy both constraints are the only ones for which P(· | s, a) differs from Pd,π

R (· | s, a) (Eq. 14). Furthermore, in that case,

we have Pd,π
R (· | s, a) = PR(· | s, a). Then we have:

E
s,a∼ξ

Rd,π
πR,d

[
1 {s ̸= sreset}

1− ξ
Rd,π

πR,d
(sreset)

1
{
s ̸∈ Oℓ(v)(d)

}∥∥ϕPR(· | s, a)−PR(· | ϕ(s), a)
∥∥
1

]

= E
s,a∼ξ

Rd,π
πR,d

[
1 {s ̸= sreset}

1− ξ
Rd,π

πR,d
(sreset)

∥∥ϕPd
R(· | s, a)−Pd

R(· | ϕ(s), a)
∥∥
1

]
(by definition of Pd

R and Pd
R)

=
1

1− ξ
Rd,π

πR,d
(sreset)

E
s,a∼ξ

Rd,π
πR,d

[
1 {s ̸= sreset}

∥∥ϕPd
R(· | s, a)−Pd

R(· | ϕ(s), a)
∥∥
1

]
≤ 1

1− ξ
Rd,π

πR,d
(sreset)

E
s,a∼ξ

Rd,π
πR,d

∥∥ϕPd
R(· | s, a)−Pd

R(· | ϕ(s), a)
∥∥
1

Assuming that the projection of the BSCC ofMΠ under π to SR is included in the BSCC of R when it operates under πR,d,

we have that supp
(
ξ
Rd,π

πR,d

)
⊆ supp

(
ξRπR,d

)
, where ξRπR,d

denotes the stationary distribution of the training room Rd under the
latent policy πR,d. Then:

1

1− ξ
Rd,π

πR,d
(sreset)

E
s,a∼ξ

Rd,π
πR,d

∥∥ϕPd
R(· | s, a)−Pd

R(· | ϕ(s), a)
∥∥
1

=
1

1− ξ
Rd,π

πR,d
(sreset)

∑
s∈supp

(
ξ
Rd,π
πR,d

)
∑

a∈AR

[
ξ
Rd,π

πR,d
(s)πR,d(a | ϕ(s))

∥∥ϕPd
R(· | s, a)−Pd

R(· | ϕ(s), a)
∥∥
1

]

=
1

1− ξ
Rd,π

πR,d
(sreset)

∑
s∈supp

(
ξRπR,d

)
∑

a∈AR

[
ξ
Rd,π

πR,d
(s)

ξRπR,d
(s)

ξRπR,d
(s)πR,d(a | ϕ(s))

∥∥ϕPd
R(· | s, a)−Pd

R(· | ϕ(s), a)
∥∥
1

]

=
1

1− ξ
Rd,π

πR,d
(sreset)

Es,a∼ξRπR,d

[
ξ
Rd,π

πR,d
(s)

ξRπR,d
(s)

∥∥ϕPd
R(· | s, a)−Pd

R(· | ϕ(s), a)
∥∥
1

]

≤ 1

1− ξ
Rd,π

πR,d
(sreset)

Es,a∼ξRπR,d

 max
s′∈supp

(
ξRπR,d

)
(
ξ
Rd,π

πR,d
(s′)

ξRπR,d
(s′)

) ∥∥ϕPd
R(· | s, a)−Pd

R(· | ϕ(s), a)
∥∥
1

]

=
1

1− ξ
Rd,π

πR,d
(sreset)

max
s∈supp

(
ξRπR,d

)
(
ξ
Rd,π

πR,d
(s)

ξRπR,d
(s)

)
Es,a∼ξRπR,d

[∥∥ϕPd
R(· | s, a)−Pd

R(· | ϕ(s), a)
∥∥
1

]

= max
s∈supp

(
ξRπR,d

)
(
ξ
Rd,π

πR,d
(s)

ξRπR,d
(s)

)
2LR,d

P

1− ξ
Rd,π

πR,d
(sreset)

If the initial distributions of the individual room Rd,π and the training room Rd have the same support, then the projection and
the BSCCs coincide since the same set of states is eventually visited under π from states of supp(IR) = supp(IπR). Furthermore,
by (O’Cinneide 1993, Thm. 1), we have

max
s∈supp

(
ξRπR,d

)
(
ξ
Rd,π

πR,d
(s)

ξRπR,d
(s)

)
(18)

≤ max
s∈supp

(
ξRπR,d

)max

{
ξ
Rd,π

πR,d
(s)

ξRπR,d
(s)

,
ξRπR,d

(s)

ξ
Rd,π

πR,d
(s)

}

≤
(

max
s∈supp(IR)

max

{
IπR(s)

IR(s)
,
IR(s)

IπR(s)

})|S|

(cf. Eq. (14))

= κR,d; (19)

otherwise, we set κR,d to max
s∈supp

(
ξRπR,d

)
(

ξ
Rd,π
πR,d

(s)

ξRπR,d
(s)

)
. Moreover, let SR,d = {⟨s, v, u⟩ ∈ SΠ | ℓ(v) = R and ⟨v, u⟩ = d} and

define
ξπ(sreset | R, d) = E⟨s,v,u⟩,a∼ξπ [PΠ(sreset | ⟨s, v, u⟩, a) | SR,d] .

Notice that

ξ
Rd,π

πR,d
(sreset) = E⟨s,v,u⟩,a∼ξπ [PΠ(sreset | ⟨s, v, u⟩, a) + 1 {s ∈ OR(d)} | SR,d]

= ξπ(sreset | R, d) + ξπ(OR(d)× {d} | SR,d)

by (i) the stationary property, (ii) definition of Pd,π
R (cf. Eq. (14) and Fig. 9), (iii) the fact that the probability of exiting the room

is equal to the probability of visiting an exit state, and (iv) the fact that resetting the room and visiting an exit state are disjoint
events (when an exit state is visited, it always transitions to the next room, never to the reset state).

By putting all together, we have

Lτ,Π
P

≤ LI +
1

2
Ed∼ξπ Es,a∼ξπ(·|d)

[
1 {s ̸= sreset} 1

{
s ̸∈ Oℓ(v)(d)

} ∥∥ϕP(· | s, a)−P(· | ϕ(s), a)
∥∥
1

]
≤ LI + ER,d∼ξπ

κR,dL
R,d
P

1− ξ
Rd,π

πR,d
(sreset)

= LI + ER,d∼ξπ

κR,dL
R,d
P

1− ξπ(sreset | R, d)− ξπ(OR(d)× {d} | SR,d)

≤ LI + ER,d∼ξπ

max {κR⋆,d⋆ : R⋆ ∈ R, d⋆ ∈ DR⋆} LR,d
P

1−maxR⋆∈R,d⋆∈DR
(ξπ(sreset | R⋆, d⋆) + ξπ(OR⋆(d⋆)× {d⋆} | SR⋆,d⋆))

≤ LI +
κ

ξmin
continue

ER,d∼ξπ L
R,d
P

where κ = max {κR⋆,d⋆ : R⋆ ∈ R, d⋆ ∈ DR⋆} and

ξmin
continue = 1− max

R∈R,d∈DR

(ξπ(sreset | R, d) + ξπ(OR(d)× {d} | SR,d)). (20)

This concludes the proof.

Discussion. Assumption (ii) boils down to design an initial distribution for the simulator of each room that provides a sufficient
coverage of the state space: the latter should include the states likely to be seen when the room is entered under any planner.
Then, if this initial distribution is powerful enough to provide an exact coverage of the entrance states visited under the planner
τ , the multiplier of the transition loss κ can be determined solely based on the ratio of the initial distributions obtained during
training and synthesis. We summarize the results as follows.

Theorem 9 (Value bound inH). Under the assumptions of Thm. 8,∣∣V π
I − V π

I

∣∣ ≤ LI + κ/ξmin
continue ER,d∼ξπ L

R,d
P

ξπ(sreset)(1−γ)
. (21)

H Experiments
In this section, we provide additional details on the experiments we performed.
Setup. Models have been trained on a cluster running under CentOS Linux 7 (Core) composed of a mix of nodes
containing Intel processors with the following CPU microarchitectures: (i) 10-core INTEL E5-2680v2, (ii) 14-core
INTEL E5-2680v4, and (iii) 20-core INTEL Xeon Gold 6148. We used 8 cores and 42 GB of memory for each run
during the hyperparameter search. Learning the low-level policies.We run WAE-DQN to learn the set of low-level policies Π
along with their latent-space models. Recall the representation quality guarantees of our algorithm (cf. Sect. 4.3): the same
latent space can be used for rooms sharing similar features. We leverage this property to learn only four latent policies (one per
direction). In other words, only one pair of latent MDP and policy is learned per direction, which encompasses and generalize
the behavior of the agent in all the training rooms (cf. Appendix G). For instance, in a grid world environment composed of 9
rooms with similar shapes, we only train one latent policy per exit direction {←,→, ↑, ↓} instead of 9 · 4 = 36. For training
in a room R, we let IR uniformly distribute the agent’s possible entry positions. Adversaries’ initial positions are randomly set

agent

adversary

exit

goal

power-up

Figure 10: Two rooms of 20× 20 cells (9 rooms in Fig. 12). Demonstration with 9 rooms: https://youtu.be/crowN8-GaRg.

by IR but may vary according to the function IR in the high-level model (unknown at training time). Objectives Od
R specify

reaching the target exit while avoiding adversaries before the episode ends.
Synthesis. To estimate the latent entrance function, we explore the high-level environment through random execution of
the low-level latent policies. We further consider Masked Autoencoders (MADEs, (Germain et al. 2015)), which allow to learn
complex distributions from a dataset. With the data collected via this exploration, we train a MADE to learn IR for any room R.
To learn those latent entrance functions, consistently with WAE-MDPs, we use the same kind of MADE as the one introduced
by (Delgrange et al. 2023) for estimating the probability of the latent transition function. We finally constructMG

Π (cf. Sect. 5)
and apply the synthesis procedure to obtain a two-level controller π = ⟨τ,Π⟩. Tab. 1 reports the values of π obtained for various
environment sizes.
Hyperparameter search. To train our WAE-DQN agent, we ran 4 environments in parallel per training instance and used a
replay buffer of capacity 7.5 · 105. We performed a grid search to find the best parameters for our WAE-DQN algorithm. Tab. 3
presents the range of hyperparameters used. In particular, we found that prioritized experience replay does not improve the
results in our environments significantly. We used a batch size of 128 for the WAE-MDP.

For the MADE modeling the latent entrance function, we used a dataset of size 25600, and the training was split into 100
epochs (i.e., the model performed 100 passes through the entire dataset) with a learning rate of 10−3. We used a batch size of
32 or 64, and two hidden layers, either with 64 or 128 neurons.

For generating the set of low-level policies Π, we used the hyperparameters that worked the best for each specific direction.
We used the same parameters for the DQN training instances shown in Figure 6.

H.1 Grid World Environment
We provide additional details on the state space of our environment. The agent has LP life points, decrementing upon adversary
contact or timeout. Collecting power-ups (appearing randomly) shortly makes the agent invincible. The state space comprises
two components: (i) A 4-dimensional bitmap M ∈ {0, 1}N×l×m×n, where each layer in k ∈ {1, . . . , l} corresponds to an item
type on the grid; entry MR,k,i,j is 1 iff room R has item k in cell (i, j); (ii) step, power-up, and life-point counters ⟨a, b, c⟩.
Figure 10 shows examples of rooms composed of 20× 20 cells.
DRL components. We use CNNs (LeCun et al. 1989) to process bitmaps M and a sparse reward signal rew(s, a, s′) =
r∗ · 1 {s ∈ T} − r∗ · 1 {s ∈ B}, where r∗ > 0 is an arbitrary reward (or conversely, a penalty) obtained upon reaching the
target T (or an undesirable state in B). To guide the agent, we add a potential-based reward shaping (Ng et al. 1999; Wiewiora
2003) based on the L1 distance to the target. The resulting reward function is rewΦ(s, a, s

′) = γΦ(s′) − Φ(s) + rew(s, a, s′)
where

Φ(s) = 1− min {|x(t1)− x(s)|+ |y(t2)− y(s)| : t1, t2 ∈ T}
N · (m+ n)

, (22)

and x(s), y(s) respectively return the Euclidean coordinates along the horizontal and vertical axes corresponding to state s ∈ S.
Intuitively, |Φ(s)− 1| reflects the normalized distance of state s to the targets T . When the agent gets closer (resp. further) to T
when executing an action, the resulting reward is positive (resp. negative). Our DQN implementation uses state-of-the-art
extensions and improvements from (Hessel et al. 2018). Nevertheless, as demonstrated in Fig. 6, while DQN reduces contact
with adversaries, the two-level nature of the decisions required to reach a target hinders learning the high-level objective.
DQN and WAE-DQN experiments. We provide a more detailed version of Figure 6 in Figure 11, where the WAE-DQN
performance is specified per direction. Precisely, we trained five different instances of the algorithm per policy with different

(a) Goal reached (average over 30 episodes). (b) Failures: adversaries hit (averaged over 30 episodes).

Figure 11: A more detailed version of Figure 6, where the WAE-DQN performance is specified per direction. We train five
different instances of the algorithm per policy with different random seeds, where the solid line corresponds to the mean and
the shaded interval to the standard deviation. To train the DQN agent, we set a time limit five times longer than that used for
training rooms with the WAE-DQN agents. Note that the DQN agent is equipped with 3 life points, while the WAE-DQN agents
are limited to one.

random seeds, where the solid line is the mean and the shaded interval is the standard deviation. To train the DQN agent, we
set a time limit five times longer than that used for training rooms with the WAE-DQN agents. Furthermore, the DQN agent is
equipped with 3 life points, while the WAE-DQN agents are limited to one.

H.2 ViZDoom Environment
A top view of the environment and samples of visual inputs processed by the agent are provided in Fig. 13. Each game frame
consists of an image of size 60× 45. Note that we do not stack frames in the agent’s observation. Indeed, the agent additionally
processes velocities, its angle in the map, and its health, which makes the observation Markovian. We used CNNs to process
the game frames with the same architecture as in (Kempka et al. 2016).

As mentioned in Sect. 6, this environment is very challenging due to the nature of its observation space. In our experiments,
we found that, instead of using the discrete latent states directly, it was beneficial to use the continuous relaxation of discrete
random variables (Maddison et al. 2017) learned by WAE-MDPs (see (Delgrange et al. 2023)) as latent states to explore
the environment. This allowed for a smoother optimization. Continuous relaxations rely on a temperature parameter, which
intuitively controls the continuity of the latent space. When annealed to zero (the “zero-temperature limit”), the latent space is
guaranteed to be discrete. We used the latent space at its zero-temperature limit to verify the values in the latent model learned.
Reward function. Denote by health(s) the health of the agent in state s ∈ S and define hit(s, a, s′) as the function that returns
a constant C > 0 when a ∈ A is the “shoot” action and an enemy is hit in s′, −C if no enemy is hit, and 0 if a is any other
action. The base reward function of the agent is given by rew(s, a, s′) = health(s′)− health(s)+ r∗ ·1 {s ∈ T}+ hit(s, a, s′),
where, as for the grid world environment, r∗ > 0 is an arbitrary reward obtained upon reaching the target set T . A state s is
labeled as “bad” when, whatever the action a played, the probability that health(s′)− health(s) turns negative is non-zero. To
guide the agent, we use exactly the same reward shaping scheme as the one we defined for the grid world environment (Eq. 22).

I Broader Impact
Our work presents primarily theoretical and fundamental results, enhancing the reliability of RL solutions. Our claims are also
illustrated experimentally with an experimental environment (involving an agent moving within a grid world amid moving
adversaries). Specifically, our approach focuses on providing performance (“reach-”) and safety (“avoid”) guarantees with RL
policies. We believe our work may have positive societal impacts in the long-term, including (i) safety-critical applications:
prevent failures (in, e.g., autonomous driving, healthcare, robotics); (ii) trust and wide adoption: builds and improves confidence
in RL solutions; (iii) avoiding harmful behavior: mitigates unintended, risky actions; and (iv) performance compliance: check
whether performance standard are met (e.g., in industry).

Figure 12: Environment for N = 9 rooms of 20 × 20 cells. The agent is depicted in yellow (top left), adversaries in red,
power-ups as cherries, and the goal at the bottom right.

Table 3: Hyperparameter range used for (WAE-)DQN. If “optimization scheme” is set to “round robin”, separate optimizers are
used for the policy, the state embedding function, the WAE-MDP minimizer, and the WAE-MDP maximizer. If “concatenate”
is used, the policy, the state embedding function, and the WAE-MDP minimizer share the same optimizer. In that case, all
those components are optimized at once by concatenating their loss functions. For details about the WAE-MDP parameters,
see (Delgrange et al. 2023).

Parameter Range Grid World ViZDoom

Common to DQN and WAE-DQN

Activation {ReLU,LeakyReLu,ELU, tanh, sigmoid} ,SiLU LeakyReLu sigmoid
Hidden layers per network {1, 2, 3} 3 2
Neurons per layer {128, 256, 512} 128 256
CNN filters 3→ 3→ 3 7→ 4 (strides 2)
CNN kernels 64→ 32→ 16 32→ 32
Optimization scheme {round robin, concatenate} round robin concatenate

DQN

Use Boltzmann exploration {Yes,No} Yes Yes
Boltzmann temperature {0.25, 0.10, 0.5, 0.75, 1, 10, 100} 0.75 0.5
Use ϵ-greedy exploration (decay to ϵ = 0.1) {Yes,No} No No
Target update period {1, 250, 500, 1000} 250 250
Target update scale (α in Algorithm 1)

{
10−4, 5 · 10−4, 10−3, 5 · 10−3, 1

}
1 1

Reward scaling {1, 10, 25, 100} 100 1
Learning rate

{
6.25 · 10−5, 10−4, 2.5 · 10−4, 10−3

}
6.25 · 10−5 6.25 · 10−5

Batch size {32, 64, 128} 64 64
Use double Q-networks (van Hasselt et al. 2016) {Yes,No} Yes Yes
Categorical network (Bellemare et al. 2017) {Yes,No} No Yes

WAE-MDP

Latent state size (power of 2) {12, 13, 14, 15} 13 14
State embedding function temperature {1/3, 1/2, 2/3, 3/4, 0.999} 1/3 0.999
Transition function temperature {1/3, 1/2, 2/3, 3/4, 0.999} 1/3 1/2
Steady-state regularizer scale factor {0.01, 0.1, 1, 10, 25, 50, 75} 50 0.01
Transition regularizer scale factor

{
10−2, 10−1, 1, 10, 25, 50, 75

}
50 0.1

Minimizer learning rate
{
10−4, 5 · 10−4, 10−3

}
10−4 /

Maximizer learning rate
{
10−4, 5 · 10−4, 10−3

}
10−4 10−3

State embedding function learning rate
{
10−4, 5 · 10−4, 10−3

}
10−4 /

critic updates {3, 5, 10, 15} 5 3
State reconstruction function {none, L2, binary cross entropy (for M)} L2 No reconstruction

(a) Top view of the ViZDoom environment (8 rooms). The agent is located at the top
leftmost room (depicted by a green point). Red points depict enemies on the map.
The goal of the agent is to reach the goal position ⋆. Exit positions are depicted by
colored rectangles: in blue, the agent needs to exit to the right, in yellow to the left,
in green below, and in red above. Note that enemies spawn at random positions every
250 “ticks” (4 game ticks correspond to 1 step in the environment).

(b) Samples of frames processed by the agent.

Figure 13: ViZDoom environment. Demonstration of a synthesized controller: https://youtu.be/BAVLmsWEaQY.

