
Exploring Explainable Multi-player MCTS-minimax Hybrids in Board Game
Using Process Mining

Yiyu Qian1 Tim Miller2 Liyuan Zhao3

1yiyqian@student.unimelb.edu.au
2timothy.miller@uq.edu.au

3liyuanz6@uci.edu

Abstract

Monte-Carlo Tree Search (MCTS) is a family of sampling-
based search algorithms widely used for online planning in
sequential decision-making domains and at the heart of many
recent advances in artificial intelligence. Understanding the
behavior of MCTS agents is difficult for developers and users
due to the frequently large and complex search trees that re-
sult from the simulation of many possible futures, their evalu-
ations, and their relationships. This paper presents our ongo-
ing investigation into potential explanations for the decision-
making and behavior of MCTS. A weakness of MCTS is that
it constructs a highly selective tree and, as a result, can miss
crucial moves and fall into tactical traps. Full-width minimax
search constitutes the solution. We integrate shallow minimax
search into the rollout phase of multi-player MCTS and use
process mining technique to explain agents’ strategies in 3v3
checkers.

Introduction
Today’s artificial intelligence systems have widely spread
to applications in our everyday lives. They are powerful
enough to outperform humans’ efficiency on complex tasks,
such as the decision-making process in recruitment orga-
nizations. Many companies rely on automated algorithms
to reduce the effort of human sources in evaluating candi-
dates’ capacity and potential, but it often results in a typ-
ical scenario where candidates are rejected on resume se-
lection without any reasons. These algorithms are usually
called black-box machine learning models predicting a per-
son’s likelihood of being hired (Miller 2019b). The black-
box means that we only know a series of features will be
fed into the model to generate output, but we will not know
how the inner mechanism performs this decision-making
process. In other words, the implementation of the algo-
rithm is not transparent to users and those affected. To
address this issue, researchers have started to explore the
field of explainable artificial intelligence (XAI) since mid-
1980s (Buchanan and Shortliffe 1984). The purpose of ex-
plainable AI is to show details of models’ inner workings
through providing reasons and evidence on how the output is
generated (Miller 2019a). These models include commonly

Copyright © 2025, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

used machine learning models, such as support vector ma-
chine (SVM), deep learning (DL), and reinforcement learn-
ing (RL) (Gunning et al. 2019).

In this paper, we explore the explainable RL, specifi-
cally focusing on explaining decision-making of MCTS-
minimax hybrids in 3v3 checkers game. RL is an area of ma-
chine learning that creates optimal policies through agents
learning from interactions with the environment (Sutton
and Barto 2018). Agents are planners who execute actions
in problems of decision-making. RL makes decisions for
agents in two ways: model-based and model-free. Agents in
model-based RL rely on Markov Decision Process (MDP)
to learn policies from the environment, and agents in model-
free RL can directly learn policies from the environment
(Puterman 1990). In terms of understanding behaviors of
model-based RL agents and model-free RL agents, Wells
points out that there are two major challenges in provid-
ing human-readable explanations (Wells and Bednarz 2021).
One involves dealing with a large number of sequential de-
cisions generated in a short period of time. Another is the
fact that model-free RL agents are trained without train-
ing data. It is difficult to provide valid explanations without
training data linking actions and observations in the envi-
ronment. Recent work in model-free RL focuses on learn-
ing Intrinsically Interpretable policies (Milani et al. 2022).
Topin proposes the argumented MDP method to train agents
to directly learn decision tree policies from the environ-
ment (Topin et al. 2021). In terms of XRL, previous re-
searchers attempted to generate explanations using natu-
ral language and saliency maps. Ehsan and Wang rational-
ize agents’ behaviors by leveraging action-explanation pairs
provided by humans (Ehsan et al. 2018) (Wang et al. 2019).
Greydanus constructs saliency maps to measure changes in
the policy and highlight regions that are critical to agents’
decisions (Greydanus et al. 2018).

In prior research conducted by Baier and Winands,
MCTS-minimax hybrids are developed by incorporating
shallow minimax searches into the MCTS framework (Baier
and Winands 2014). This is the initial step in combining
the strategic strength of MCTS with the tactical strength of
minimax. MCTS is a simulation-based search algorithm that
builds a tree of possible moves and outcomes iteratively and
selects the optimal move based on statistics gathered dur-
ing the search. It is especially useful in games with uncer-



tain outcomes and intricate decision spaces (Browne et al.
2012). Minimax is a deterministic search algorithm that ex-
haustively explores all possible moves and outcomes, as-
suming that the opponent will play optimally. It is highly
effective in games with perfect information and determinis-
tic outcomes, but may be impractical in games with large de-
cision spaces (Strong 2011). In terms of explainable MCTS,
Baier and Kaisers highlight the use of post-hoc models to ex-
plain MCTS decisions (Baier and Kaisers 2020). They iden-
tify three fundamental types of post-hoc questions that oc-
cur naturally in numerous explanation contexts: 1. Why do
you recommend this action? 2. What do you recommend in
these possible futures? 3. Why don’t you recommend this
alternative action? However, they fail to explain three cru-
cial questions of future research on explainable MCTS: 1.
How should feature engineering work be applied on deci-
sion data collected from MCTS model? 2. What are recom-
mended post-hoc models to employ? 3. How to specifically
apply post-hoc model to process data obtained from MCTS
model? These three inquiries are addressed in our research.

To the best of our knowledge, no one has applied post-
hoc interpretability to explain MCTS-minimax hybrids be-
fore. The process mining model is utilised as a post-hoc
model. Process mining is a technique to discover processes
observed in the real world using event logs (Buijs, van Don-
gen, and van der Aalst 2014). We believe studying policy
processes of agents in 3v3 checkers may bring humans ideas
about how MCTS-minimax hybrids execute decisions, so
we propose an approach to explain agents’ behaviors using
process mining techniques. We believe our process mining-
based post-hoc model will provide explanations on three
fundamental types of post-hoc questions.

Preliminaries
This section discusses preliminaries in process models’
quality dimensions, MCTS and Minimax.

Figure 1: Four quality dimensions in process mining (Buijs,
van Dongen, and van der Aalst 2014)

Quality Dimensions Quality dimensions in Figure 1 are
used to measure process models’ performance on describing
behaviors observed (Buijs, van Dongen, and van der Aalst
2014). Replay fitness describes the amount of behaviors in
an event log that can be demonstrated by a process model.
A process model with high replay fitness can replay most
cases and events in the event log. Simplicity describes how
simple the process model is for humans to understand. This

is inferred from Occam’s razor: “one should not increase,
beyond what is necessary, the number of entities required
to explain anything” (van der Aalst 2013). A process model
with low simplicity has high complexity thus is it not ap-
propriate to show behaviors in an event log. The precision
describes the amount of behaviors showing up in the pro-
cess model that are not observed in the event log. Van states
that it is not enough for a good process model to just hold
these qualities. It is possible that a process model replays
all behaviors in an event log but shows significant amount
of unnecessary behaviors that are not observed in the event
log (van der Aalst 2013). Such process model may cause
the underfitting problem that the model over-generates be-
haviors not in the event log (Van der Aalst, Adriansyah, and
van Dongen 2012). To solve this issue, the precision quality
is needed to measure the amount of behaviors in a process
model that are not observed in the event log. Another is-
sue commonly showing up in a process model is overfitting
such that the process model is able to describe behaviors in
the current event log but it may not be able to predict behav-
iors in the next event log under the same system (Van der
Aalst, Adriansyah, and van Dongen 2012). The generaliza-
tion describes the likelihood that a process model is able to
describe behaviors in an unseen event log generated under
the same system.

In Gerlach’s work, replay fitness, precision, and gener-
alization are measured to evaluate the quality of resulting
likelihood graph produced from event logs. To compute the
replay fitness and precision between event logs generated
from NEP (GCs) and ground truth event logs (GTCs), they
apply the normalized Levenshtein Distance to compute dis-
tances between two cases. Here, L stands for an event log, c
stands for a case in the event log L, and d stands for distance
between two cases. They calculate F1-score to have a bet-
ter understanding of model’s comprehensive performance on
precision and replay fitness. To measure the generalization
ability, they first take a set of cases generated from NEP and
remove cases that are present in the GCs. Then they look
for cases that show up in both remaining cases and cases
present in GTCs and divide the size of the set by the number
of generated cases (Gerlach et al. 2022).

In Buijs’ work, replay fitness, precision, simplicity and
generalization are all measured between two process mod-
els, Petri-net and process trees, under each process discov-
ery algorithm (Buijs, van Dongen, and van der Aalst 2014).
For example, considering the event log in Figure 45 and its
Petri-net model and process tree model in Figure 47, Buiji
computes four qualities and results are displayed in Figure
46. The perfect score for each quality dimension’s indica-
tor is 1.000, and simplicity receives the highest score (s =
1.000) because each event only happens once in both process
models. Even though the generalization’s score is relatively
lower compared to other three scores, it is still considered to
be high since it is approximately 0.1 from the limit of perfect
score.

Minimax Minimax search algorithm (Algorithm 1) is a
decision-making strategy used in adversarial search prob-
lems, particularly in two-player, zero-sum games like chess,



tic-tac-toe, and checkers. The algorithm finds the best course
of action by first building a tree of all potential game states
and then assessing the final game states. Under the presump-
tion that their opponent is likewise taking the best possible
judgements, this route depicts the sequence of actions that
will result in the best possible result for the player.

Algorithm 1: Minimax Search Algorithm

1: function MINIMAX(node, depth,
isMaximizingP layer)

2: if terminal state or depth = 0 then
3: return heuristic value of node
4: if isMaximizingP layer then
5: value← −∞
6: for each child c of node do
7: value ←

max(value, MINIMAX(c, depth− 1,False))

8: else
9: value←∞

10: for each child c of node do
11: value← min(value, MINIMAX(c, depth−

1,True))

12: return value

MCTS Monte Carlo Tree Search (MCTS) rests on two
fundamental concepts: that the true value of an action may
be approximated using random simulation; and that these
values may be used efficiently to adjust the policy towards
a best-first strategy. The algorithm progressively builds a
partial game tree, guided by the results of previous explo-
ration of that tree. The tree is used to estimate the values
of moves, with these estimates (particularly those for the
most promising moves) becoming more accurate as the tree
is built (Browne et al. 2012).

The basic algorithm involves iteratively building a search
tree until some predefined computational budget, typically
a time, memory or iteration constraint is reached, at which
point the search is halted and the bestperforming root action
returned. Each node in the search tree represents a state of
the domain, and directed links to child nodes represent ac-
tions leading to subsequent states. Four steps are applied per
search iteration (Chaslot et al. 2008).

Algorithm 2: General MCTS approach

1: function MCTSSEARCH(s0)
2: create root node v0 with state s0
3: while within computational budget do
4: vl ← TREEPOLICY(v0)
5: ∆← DEFAULTPOLICY(s(vl))
6: BACKUP(vl, ∆)
7: return BESTCHILD(v0)

1. Selection: Starting at the root node, a child selection pol-
icy is recursively applied to descend through the tree un-
til the most urgent expandable node is reached. A node

is expandable if it represents a nonterminal state and has
unvisited (i.e. unexpanded) children.

2. Expansion: One (or more) child nodes are added to ex-
pand the tree, according to the available actions.

3. Simulation: A simulation is run from the new node(s) ac-
cording to the default policy to produce an outcome.

4. Backpropagation: The simulation result is “backed up”
(i.e. backpropagated) through the selected nodes to up-
date their statistics.

These steps are summarised in pseudocode in (Algorithm
2). Here v0 is the root node corresponding to state s0, vl is
the last node reached during the tree policy stage and corre-
sponds to state sl, and ∆ is the reward for the terminal state
reached by running the default policy from state sl. The re-
sult of the overall search a (BESTCHILD(v0)) is the action
a that leads to the best child of the root node v0, where the
exact definition of “best” is defined by the implementation.

Figure 2 shows one iteration of the basic MCTS algo-
rithm. Starting at the root node t0, child nodes are recur-
sively selected according to some utility function until a
node tn is reached that either describes a terminal state or
is not fully expanded (note that this is not necessarily a leaf
node of the tree). An unvisited action a from this state s is
selected and a new leaf node tl is added to the tree, which
describes the state s’ reached from applying action a to state
s. This completes the tree policy component for this itera-
tion.

A simulation is then run from the newly expanded leaf
node tl to produce a reward value ∆, which is then back-
propagated up the sequence of nodes selected for this itera-
tion to update the node statistics; each node’s visit count is
incremented and its average reward or Q value updated ac-
cording to ∆. The reward value ∆ may be a discrete (win/-
draw/loss) result or continuous reward value for simpler do-
mains, or a vector of reward values relative to each agent p
for more complex multi-agent domains.

Figure 2: One iteration of the general MCTS approach
(Browne et al. 2012)

Research Question
In this paper, we propose a research question: can process
mining provide both causal-relationship based explanations
and distal explanations for MCTS-minimax hybrids agent’s
decision-making process? In relation to fundamental post-
hoc questions, question 1 (Why do you recommend this ac-
tion?) and question 3 (Why don’t you recommend this al-



ternative action?) belong to causal-relationship based expla-
nations, and question 2 (What do you recommend in these
possible futures?) belong to distal explanations.

To answer this question, we analyze process models that
show behaviors of MCTS-minimax hybrids agent. Specifi-
cally, in a process model, for each player agent, we identify
whether there is a causal relationship between each pair of
states and whether agent’ next action can be identified based
on a series of previous actions and states.

As far as we know, process mining has never been applied
on XRL in previous work. The most recent explainability-
focused research in process mining has studied inner work-
ings of the black-box NEP (Gerlach et al. 2022). They show
that NEP can generate convincing cases and events through
analyzing how events related to each other in the likelihood
graph. Our work is quite similar because we treat model-
free RL agents’ decision making process as a black-box and
analyze how states and actions related to each other.

Methodology
This section provides an overview our proposed methodol-
ogy for the research question.

Hypothesis
Our hypothesis consists of two parts:

1. The process mining technique can provide players with
all decisions considered by the MCTS-minimax hybrids
agent in every turn of the 3v3 checkers game.

2. Based on the process model, both causal-relationship
based explanations and distal explanations can be given
to interpret agent’s actions.

For causal-relationship based explanations, question 1
(Why do you recommend this action?) and question 3 (Why
don’t you recommend this alternative action?) can be an-
swered according to all decisions considered by MCTS-
minimax hybrids agent from one game turn to multiple fu-
ture game turns. For distal explanations, question 2 (What do
you recommend in these possible futures?) can be answered
based on agent’ previous decisions shown in process model.

General Approach
Figure 3 shows the general approach of our methodology.
We aim to find process models that can help us understand
the relationship between decisions made by MCTS-minimax
hybrids agent and predict agent’s consecutive future deci-
sions. Our proposed general approach consists of four parts:

1. Select a domain that has distinct size (state features/num-
ber of actions).

2. Determine the number of episodes that needs to be ex-
ecuted. For every episode, perform feature engineering
work on decisions made by MCTS-minimax hybrids
agent and record all decisions.

3. Establish an event log based on all episodes executed by
the agent. Generate process models based on the event
log using various process mining algorithm and use qual-
ity dimensions to evaluate model’s performance.

4. Apply process models to provide causal-relationship
based explanations on question 1 (Why do you recom-
mend this action?), question 3 (Why don’t you recom-
mend this alternative action?) and distal explanations on
question 2 (What do you recommend in these possible
futures?).

Figure 3: Overview of methodology

In our study, we apply the general approach to discover
the environment of a typical board, checkers. Two players
sit on opposing sides of the board and compete against each
other in the non-cooperative game of checkers (Figure 50).
One player has dark pieces, while the other has bright ones.
Players alternate turns and are not permitted to move an
opponent’s piece. A move consists of moving a piece di-
agonally to a neighboring vacant square; if the square di-
rectly behind it is empty and the subsequent square contains
an opponent’s piece, the opponent’s piece may be captured
(and removed from play) by hopping over it. Only the dark
squares on the board are used for placement of pieces. Only
a diagonal entry is permitted for a piece to enter an empty
square. When leapt, capturing is necessary. A player is de-
clared the loser when all of their pieces are gone or when
they have used up all of their authorised moves. A player’s
piece is said to be “crowned” (or “kinged”) if it advances
into the kings row on the opposite player’s side of the board,



becoming a “king” and obtaining the capacity to move both
forward and backward (Samuel 1959).

1. Use an open-sourced checkers domain on Github repos-
itory committed by Tim Ruscica (https://github.com/
techwithtim/Python-Checkers-AI). This domain has dis-
tinct state features and number of actions. The game
board consists of 8 rows and 8 columns, so there are 64
coordinates. State features are represented by coordinates
on the game board. Number of actions are represented by
each piece’s all possible movements.

2. Execute 100 episodes of games. In each turn of every
episode, the agent makes decisions on selecting which
piece to move. Feature engineering work is applied on
decisions made by the agent. All decisions are recorded.

3. Establish an event log through merging all episodes exe-
cuted by the agent. Use (ProM (https://promtools.org/)),
a widely used framework in process mining research, to
generate three process models based on the event log us-
ing alpha process discovery algorithm, iDHM, and induc-
tive miner algorithm. Evaluate each model’s performance
using conformance checking and performance analysis
provided on (ProM (https://promtools.org/)).

4. Apply process models to provide causal-relationship
based explanations on question 1 (Why does the MCTS-
minimax hybrids agent select this movement?), question
3 (Why not MCTS-minimax hybrids select other move-
ments?) and distal explanations on question 2 (Accord-
ing to the process model, what will be MCTS-minimax
hybrids agent’s next movement in the future? ).

Experiment
This section discusses details of each approach in the
methodology and how the experiment is conducted in our
research. Our experiment aims to evaluate the replay fitness
for each process model generated by alpha discovery algo-
rithm, iDHM, and inductive miner algorithm. We aim to use
a process model to provide both causal-relationship based
explanations and distal explanations on MCTS-minimax hy-
brids agent’s behaviors.

Domain Setup
We develop a MCTS-minimax hybrids agent using Python
object-oriented programming (Wegner 1990). Specifically,
we treat agent as a Python class object (MCTS-
minimax). Steps (selection, expansion, simulation,
backpropagation) and minimax search algorithm are all
treated as a function inside class object.

The game board is a two-dimensional array, as well as an
attribute belonging to Board class object. Each element in
the array is an instantiated Piece class object. Each Piece
has four major attributes:

1. COLOR (data type: tuple)
2. PIECE ID (data type: integer)
3. X COORDINATE (data type: integer)
4. Y COORDINATE (data type: integer)

We use RGB (255, 0, 0) to represent red color and RGB
(255, 255, 255) to represent white color. Our study uses a
simple reward mechanism:

1. Capture an enemy piece: + 7 points
2. Become a crown: + 7 points

The original checkers game has 12 white pieces and 12
red white pieces. We reduce the number of pieces from 12
to 3. Our study is conducted under a 3v3 checkers domain.

Minimax and MCTS Integration
In this study, we perform the strategy of MCTS-MR for
MCTS with Minimax Rollouts through integrating shal-
low minimax search into the rollout (simulation) stage of
multi-player MCTS.

Preliminaries states that the minimax search algorithm
works by constructing a game tree (Figure 49), which con-
sists of nodes representing game states and edges represent-
ing moves. A game tree is very similar to a binary tree (Fig-
ure 48).

Details on how minimax search algorithm is integrated
into MCTS are specified in Appendix A: Integrate Minimax
into MCTS.

Our MCTS-minimax hybrids algorithm model is open-
sourced. It can be freely accessed on https://github.com/
qyy752457002/Explainable-AI/.

Data Collection and Feature Engineering
Each episode is recorded as a CSV file. We generate 100
CSV files for red player (red episode) and 100 CSV files
for white player (white episode). In each episode, when the
current turn belongs to red player, we establish red agent
through instantiating MCTS-minimax class object; when
the current turn belongs to white player, we establish white
agent through instantiating MCTS-minimax class object.
The agent outputs the most optimal action for both red
player and white player. Red player’s actions are stored in
a red episode and white player’s actions are stored in a
white episode. We generate an event log for red player (red
eventlog) through merging all 100 red episodes and an
event log for white player (white eventlog) through merg-
ing all 100 white episodes. Each episode’s id is considered
as a case and each action in that episode is considered as an
event.

Listing 8 shows the function get moves inside our
MCTS-minimax class object. Listing 9 and 10 show our
main function used to run the game. The get moves func-
tion is used to retrieve a list of movements based on the game
state in the current tree node and perform feature engineer-
ing work on the movement data retrieved inside function.

Feature engineering is applied again in the main function
to further process the movement data returned by MCTS-
minimax hybrids agent. Feature engineering is the process
of transforming raw data into a format that fits places and
transitions in process models. It involves selecting, creating,
and transforming features in our movement data in order to
produce high-quality event logs. The goal of feature engi-
neering is to extract relevant information from the data and



present it in a way that is more meaningful and effective for
the specific task at hand.

Our feature engineering work consists of four parts:

1. Convert movements of each piece from exact coordinates
on game board (ex. (2, 4)→ (1, 6)) to abstract represen-
tation (ex. (‘left’, ‘up’)).

2. Select features to construct MCTS-minimax hybrids
agent’s movement data tuple.

3. Create enemy piece id in the last turn and enemy move-
ment in the last turn.

4. Select features to construct event log’s transition data tu-
ple.

Since our study is conducted under 3v3 checkers domain,
we label each red piece from 1 to 3 and each white piece
from 1 to 3.

Trial
We believe that different iterations, simulation depth, and
minimax search depth may affect the quality of process
models. We execute three trials:

1. Trial 1: We keep simulation depth 30 and minimax
search depth 3. We set iteration times 1000, 2000, and
3000.

2. Trial 2: We keep iteration times 3000 and minimax
search depth 3. We set simulation depth 10, 20, and 30.

3. Trial 3: We keep iteration times 3000 and simulation
depth 30. We set minimax search depth 1, 2, and 3.

In each trial, our assumption is that setting fixed param-
eters maximum results in the most ideal action executed by
the MCTS-minimax hybrids agent. For every variable pa-
rameter, we perform a test. For example, since Trial 1 has
three variable parameters on 1000, 2000, and 3000, we run
three tests parallel on a multi-core operating system using
multi-processing technique. We import Python’s multipro-
cessing module and treat every test as a process. For the test
in each process, we use the agent to play 100 episodes of
games. We do not consider the usage of multi-threading due
to the impact of Python’s Global Interpreter Lock (Beazley
2010), where a mutex allows only one thread to hold the
control of the Python interpreter, which means if we treat a
test as a thread, only one test can be in a state of execution
at any point in time. Thus, using multi-threading in Python
cannot achieve tasks’ parallelism.

Process Model Evaluation
In this section, we discuss our methodology of evaluating
process models’ quality. In each trial, we generate process
models for red agent and process models for white agent us-
ing alpha process discovery algorithm, iDHM, and inductive
miner algorithm. For each process model, we also establish
corresponding replay log using conformance analysis plug-
in provided in ProM. According to the study conducted by
Van Der Aalst et al, the conformance analysis compares a
process model to an event log of the same process to show
where the real process deviates from the modeled process

Figure 4: Visual plot shows fitness metrics across Model 5
through Model 16

(Van der Aalst, Adriansyah, and van Dongen 2012). The re-
play log shows all global statistics for a process model, in-
cluding model’s replay fitness property. A model with good
fitness allows for most behavior seen in the event log. A
model has a perfect fitness if all traces in the log can be re-
played by the model from beginning to end. Unfortunately,
ProM does not support conformance analysis on C-net, the
process model generated by iDHM. We only discover replay
logs for Petri-nets generated by alpha process discovery al-
gorithm and inductive miner algorithm. For every trial, pro-
cess models are applied to test our hypothesis. For every test
in each trial, we are interested in three values among global
statistics shown in the replay log of a process model: trace
fitness, move-log fitness, and move-model fitness. A pro-
cess model is considered as a fitting model if all of these
three values are perfect (equal to 1). Such process model can
show most of behavior seen in the event log. Otherwise, if
anyone of those values is less than 1, the process model is
non − fitting. Such process model can show minority of
behavior seen in the event log (Ghawi 2016).

Appendix C: Evaluate Process Models Based on Trial 1,
Trial 2, and Trial 3 states how process models are evaluated
in Trial 1, Trial 2, and Trial 3.

Discovery
In order to test hypothesis and give solution to our research
questions, we have to ensure the process model used is
fitting so that the model can reflect all behaviors seen in
the event log.

Process models generated by inductive miner algorithm
where iteration times = 3000 are chosen here for demon-
stration because both red agent’s Petri-net and white agent’s
Petri-net have perfect fitness. For better illustration, we use
each agent’s Petri-net based on the simplified event log con-
sisting of 10 events.

Analysis of discovery on white agent and red agent can be
referred to Appendix D: Discovery Analysis.

Limitation
Our methodology has several limitations that require im-
provements:

• Lack of evaluations on variable quality dimensions: In
this study, we evaluate process models’ qualities using



last turn id last turn movement piece id move captured reward
-1 () 2 (‘left’, ‘down’) [] 0
1 (‘right’, ‘down’) 3 (‘left’, ‘up’) [] 0
2 (‘right’, ‘down’) 3 (‘left’, ‘down’) [] 0
1 (‘right’, ‘up’) 3 (‘left’, ‘down’) [] 0
3 (‘right’, ‘up’) 3 (‘left’, ‘down’) [2] 14
1 (‘right’, ‘down’) 3 (‘right’, ‘up’) [] 0
1 (‘right’, ‘up’) 3 (‘left’, ‘down’) [] 7
3 (‘right’, ‘down’) 3 (‘right’, ‘down’) [] 0
1 (‘right’, ‘down’) 3 (‘left’, ‘up’) [] 7

Table 1: Partial red episode

task id transition
1 ((-1, ‘()’), (2, “(‘left’, ‘up’)”), 0)
1 ((3, “(‘right’, ‘up’)”), (3, “(‘left’, ‘up’)”), 0)
1 ((3, “(‘right’, ‘down’)”), (2, “(‘left’, ‘down’)”), 0)
1 ((3, “(‘right’, ‘down’)”), (2, “(‘left’, ‘down’)”), 0)
1 ((3, “(‘right’, ‘up’)”), (2, “(‘left’, ‘up’)”), 0)
1 ((1, “(‘right’, ‘up’)”), (3, “(‘left’, ‘up’)”), 7)
2 ((-1, ‘()’), (2, “(‘left’, ‘down’)”), 0)
2 ((1, “(‘right’, ‘down’)”), (3, “(‘left’, ‘up’)”), 0)
2 ((2, “(‘right’, ‘down’)”), (3, “(‘left’, ‘down’)”), 0)
2 ((1, “(‘right’, ‘up’)”), (3, “(‘left’, ‘down’)”), 0)
2 ((3, “(‘right’, ‘up’)”), (3, “(‘left’, ‘down’)”), 14)
2 ((1, “(‘right’, ‘down’)”), (3, “(‘right’, ‘up’)”), 0)
3 ((-1, ‘()’), (2, “(‘left’, ‘down’)”), 0)
3 ((2, “(‘right’, ‘up’)”), (2, “(‘left’, ‘up’)”), 0)
3 ((1, “(‘right’, ‘down’)”), (3, “(‘left’, ‘up’)”), 0)
3 ((2, “(‘right’, ‘down’)”), (1, “(‘left’, ‘up’)”), 0)
3 ((3, “(‘right’, ‘down’)”), (3, “(‘left’, ‘up’)”), 0)
3 ((2, “(‘right’, ‘up’)”), (1, “(‘left’, ‘down’)”), 0)

Table 2: Simplified red event log

replay fitness, where we see how many traces in the event
log can be replayed by the model from beginning to end.
However, there are other three metrics to evaluate a pro-
cess model: 1. precision: describes the amount of be-
haviors showing up in the process model that are not
observed in the event log; 2. simplicity: describes how
simple the process model is for humans to understand;
3. generalization: describes the likelihood that a process
model is able to describe behaviors in an unseen event
log generated under the same system. Unfortunately, due
to limitations of ProM framework, these three metrics
are unable to be computed directly. Except for simplic-
ity metric, precision and generalization are unable to be
merely perceived through observing structures of places
and transitions in process models.

• Difficulty of balancing between simplicity and inter-
pretability: To generate an event log for red player or
white player, we perform feature engineering work on
the corresponding episodes and merge episodes together.
Because the MCTS-minimax hybrids agent plays 100
episodes, the event log has 100 cases. This yields an ex-
tremely complex process model with low simplicity, and
it takes a huge amount of time for ProM to complete con-

formance analysis. A process model with low simplicity
implies the model is difficult for humans to understand
the decision-making process of MCTS-minimax hybrids
agent. Even though we have data to support our hypothe-
ses: 1. process mining technique is able to provide play-
ers with all decisions considered by the MCTS-minimax
hybrids agent in every turn of the 3v3 checkers domain;
2. based on the process model, both causal-relationship
based explanations can be given to interpret agent’s ac-
tions, our findings are only based on a process model that
is created by an event log consisting of 10 events. Such
process model has high simplicity and it is appropriate
for humans to understand structures of places and tran-
sitions, but it may not be representative enough to inter-
pret decision-making strategies of MCTS-minimax hy-
brids agent. In a process model with high simplicity, de-
cisions of MCTS-minimax hybrids agent in every state
of the 3v3 checkers domain cannot be fully covered.

More limitations can be referred to Appendix E: Limita-
tion Extended.

Future Work
While results indicate that under the 3v3 checkers domain,
using process mining can provide players with all possible
decisions considered by the MCTS-minimax hybrids agent,
as well as both causal-relationship based explanations on
question 1 (Why does the MCTS-minimax hybrids agent se-
lect this movement?), question 3 (Why not MCTS-minimax
hybrids select other movements?) and distal explanations on
question 2 (According to the process model, what will be
MCTS-minimax hybrids agent’s next movement in the fu-
ture?), further research is needed to understand the impact
of this technique under a complex domain. Thus, our fu-
ture work involves using a more complex checkers domain,
such as 6v6 checkers or complete real-world 12v12 check-
ers to explore the explainability of MCTS-minimax hybrids
agent’s decision making strategy.

Using a complex checkers domain may result in more
possible choices of actions in every game state. Thus, we
plan to implement proposed pruning operation stated in Ap-
pendix G: MCTS Pruning Operation.

In addition, future work relevant to feature engineering
and human study can be referred to Appendix F: Future
Work on Feature Engineering and Human Study.



Metric R.A-A.D 1000 R.A-I.M 1000 W.A-A.D 1000 W.A-I.M 1000
Calc. Time (ms) 15.74 3243.23 4.33 3738.53
Num. States 981.20 200008.10 1.00 200019.90
Trace Fitness 0.10 1.00 1.00 1.00
Raw Fitness Cost 60.00 0.00 0.00 0.00
Move-Model Fitness 0.77 1.00 1.00 1.00
Pre-process time (ms) 0.40 0.34 0.33 0.59
Move-Log Fitness 0.10 1.00 1.00 1.00
Trace Length 65.90 65.90 65.20 65.20
Approx. mem. used (kb) 105.30 12007.10 62.60 11603.90

Metric R.A-A.D 2000 R.A-I.M 2000 W.A-A.D 2000 W.A-I.M 2000
Calc. Time (ms) 4.34 2365.69 4.50 2988.04
Num. States 1.00 200004.50 1.00 200006.17
Trace Fitness 1.00 1.00 1.00 1.00
Raw Fitness Cost 0.00 0.00 0.00 0.00
Move-Model Fitness 1.00 1.00 1.00 1.00
Pre-process time (ms) 0.51 0.46 0.30 0.37
Move-Log Fitness 1.00 1.00 1.00 1.00
Trace Length 108.33 108.33 108.33 107.83
Approx. mem. used (kb) 68.50 11026.00 11026.00 10127.00

Metric R.A-A.D 3000 R.A-I.M 3000 W.A-A.D 3000 W.A-I.M 3000
Calc. Time (ms) 15.12 2906.28 12.54 3750.52
Num. States 1189.50 200006.70 816.90 200008.30
Trace Fitness 0.15 1.00 0.12 1.00
Raw Fitness Cost 72.80 0.00 75.80 0.00
Move-Model Fitness 0.91 1.00 0.94 1.00
Pre-process time (ms) 0.52 0.48 0.43 0.39
Move-Log Fitness 0.15 1.00 0.11 1.00
Trace Length 85.30 85.30 84.90 84.90
Approx. mem. used (kb) 130.90 11703.60 107.90 12266.50

Table 3: Global statistics: Petri-net generated by various algorithms (W.A white agent, R.A red agent, I.M inductive miner, A.D
alpha discovery) (Fixed Simulation Depth, Fixed Minimax Search Depth, Iteration Times = n)

Reward Actions
10 A, B, C
6 D, E
4 F, G, H
0 I, J, K, L

Table 4: Reward hashtable

Conclusion
Our research shows that compared to process models gen-
erated by alpha process discovery algorithm and iDHM, the
process model Petri-net generated by inductive miner algo-
rithm can provide us with more insights to analyze MCTS-
minimax hybrids agent’s decision-making strategy due to
the fact that Petri-net generated by inductive miner algo-
rithm always shows a distinct starting place and a distinct
ending place. In addition, all transitions always converge to
one point in the Petri-net, which meets our expectations that
the outcome of one game episode is either red agent wins the
game or the white agent wins the game. Current discovery is

only based on Trial 1: Fixed Simulation Depth, Fixed
Minimax Search Depth, V ariable Iteration T imes of
3v3 checkers domain, and three fundamental types of post-
hoc questions proposed in our research can only be ex-
plained in this domain. For future work, further exploration
needs to be applied on Trial 2: Fixed Iteration T imes,
Fixed Minimax Search Depth, V ariable Simulation
Depth and Trial 3: Fixed Simulation Depth, Fixed
Iteration T imes, V ariable Minimax Search Depth,
and further research needs to be conducted on different se-
quential decision-making domains with distinct sizes using
MCTS-minimax hybrids.

Acknowledgments
We thank any anonymous reviewers for their valuable sug-
gestions. We also thank University of Melbourne Associate
Professor Artem Polyvyanyy for supervision in the research
and Hong Kong Polytechnic University Ph.D. student Jia-
tong Li for assistance in the paper revision.



References
Baier, H.; and Kaisers, M. 2020. Towards explainable
MCTS. In 2021 AAAI Workshop on Explainable Agency in
AI.
Baier, H.; and Winands, M. H. 2014. MCTS-minimax hy-
brids. IEEE Transactions on Computational Intelligence
and AI in Games, 7(2): 167–179.
Beazley, D. 2010. Understanding the python gil. In PyCON
Python Conference. Atlanta, Georgia.
Browne, C. B.; Powley, E.; Whitehouse, D.; Lucas, S. M.;
Cowling, P. I.; Rohlfshagen, P.; Tavener, S.; Perez, D.;
Samothrakis, S.; and Colton, S. 2012. A survey of monte
carlo tree search methods. IEEE Transactions on Computa-
tional Intelligence and AI in games, 4(1): 1–43.
Buchanan, B. G.; and Shortliffe, E. H. 1984. Rule-based
expert systems: the MYCIN experiments of the Stanford
Heuristic Programming Project.
Buijs, J. C.; van Dongen, B. F.; and van der Aalst, W. M.
2014. Quality dimensions in process discovery: The im-
portance of fitness, precision, generalization and simplicity.
International Journal of Cooperative Information Systems,
23(01): 1440001.
Chaslot, G.; Bakkes, S.; Szita, I.; and Spronck, P. 2008.
Monte-carlo tree search: A new framework for game ai.
In Proceedings of the AAAI Conference on Artificial Intel-
ligence and Interactive Digital Entertainment, volume 4,
216–217.
Ehsan, U.; Harrison, B.; Chan, L.; and Riedl, M. O. 2018.
Rationalization: A neural machine translation approach to
generating natural language explanations. In Proceedings of
the 2018 AAAI/ACM Conference on AI, Ethics, and Society,
81–87.
Gerlach, Y.; Seeliger, A.; Nolle, T.; and Mühlhäuser, M.
2022. Inferring a Multi-perspective Likelihood Graph from
Black-Box Next Event Predictors. In International Confer-
ence on Advanced Information Systems Engineering, 19–35.
Springer.
Ghawi, R. 2016. Process discovery using inductive miner
and decomposition. arXiv preprint arXiv:1610.07989.
Greydanus, S.; Koul, A.; Dodge, J.; and Fern, A. 2018. Vi-
sualizing and understanding atari agents. In International
conference on machine learning, 1792–1801. PMLR.
Gunning, D.; Stefik, M.; Choi, J.; Miller, T.; Stumpf, S.; and
Yang, G.-Z. 2019. XAI—Explainable artificial intelligence.
Science robotics, 4(37): eaay7120.
Kural, M. 2005. Tree traversal and word order. Linguistic
Inquiry, 36(3): 367–387.
Milani, S.; Topin, N.; Veloso, M.; and Fang, F. 2022. A Sur-
vey of Explainable Reinforcement Learning. arXiv preprint
arXiv:2202.08434.
Miller, T. 2019a. ” But why?” Understanding explainable ar-
tificial intelligence. XRDS: Crossroads, The ACM Magazine
for Students, 25(3): 20–25.
Miller, T. 2019b. Explanation in artificial intelligence: In-
sights from the social sciences. Artificial intelligence, 267:
1–38.

Puterman, M. L. 1990. Markov decision processes. Hand-
books in operations research and management science, 2:
331–434.
Samuel, A. L. 1959. Some studies in machine learning using
the game of checkers. IBM Journal of research and devel-
opment, 3(3): 210–229.
Strong, G. 2011. The minimax algorithm. Trinity College
Dublin.
Sutton, R. S.; and Barto, A. G. 2018. Reinforcement learn-
ing: An introduction. MIT press.
Topin, N.; Milani, S.; Fang, F.; and Veloso, M. 2021. Iter-
ative Bounding MDPs: Learning Interpretable Policies via
Non-Interpretable Methods. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 35, 9923–
9931.
Van der Aalst, W.; Adriansyah, A.; and van Dongen, B.
2012. Replaying history on process models for confor-
mance checking and performance analysis. Wiley Interdis-
ciplinary Reviews: Data Mining and Knowledge Discovery,
2(2): 182–192.
van der Aalst, W. M. 2013. Mediating between modeled
and observed behavior: The quest for the “right” process:
keynote. In IEEE 7th International Conference on Research
Challenges in Information Science (RCIS), 1–12. IEEE.
Wang, X.; Yuan, S.; Zhang, H.; Lewis, M.; and Sycara, K.
2019. Verbal explanations for deep reinforcement learning
neural networks with attention on extracted features. In 2019
28th IEEE International Conference on Robot and Human
Interactive Communication (RO-MAN), 1–7. IEEE.
Wegner, P. 1990. Concepts and paradigms of object-oriented
programming. ACM Sigplan Oops Messenger, 1(1): 7–87.
Wells, L.; and Bednarz, T. 2021. Explainable ai and re-
inforcement learning—a systematic review of current ap-
proaches and trends. Frontiers in artificial intelligence, 4:
550030.



Appendix A: Integrate Minimax into MCTS
According to Kural’s study (Kural 2005), there are three
ways to explore a binary tree using depth-first search algo-
rithm:
1. Preorder traversal: We explore root node first, and then

we explore left subtree, and then we explore right sub-
tree.

2. Inorder traversal: We explore left subtree first, and then
we explore root node, and then we explore the right sub-
tree.

3. Postorder traversal: We explore left subtree first, and then
we explore right subtree, and then we explore root node.

For every node in a binary tree, we can also find corre-
sponding spots for preorder traversal, inorder traversal, and
post traversal. In our opinion, three questions need to be con-
sidered when traversing a binary tree:
1. In the spot of preorder traversal, what actions need to be

taken before reaching a node?
2. In the spot of inorder traversal, what actions need to be

taken after completely traversing the left subtree and be-
fore starting to traverse the right subtree?

3. In the spot of postorder traversal, what actions need to be
taken before leaving a node?

Listing 1, Listing 2, and Listing 3 show how preorder
traversal, inorder traversal, and postorder traversal are im-
plemented in a binary tree both iteratively and recursively.
The recursion way to execute these three traversal algorithm
is bit easy to understand. The recursion stops if the current
node is None (either the root node is None or one level be-
low the leaf node has been reached). For preorder traver-
sal, current node’s value is pushed to the ans array at pre-
order position. For inorder traversal, current node’s value is
pushed to the ans array at inorder position. For postorder
traversal, current node’s value is pushed to the ans array at
postorder position. The iteration way to execute these three
algorithm requires a stack, a last-in-first-out data structure,
to store nodes in the binary tree.

Since a game state may come with multiple moves, a node
in a game tree may have multiple edges. Thus, a game tree
can be a N-ary tree, where the root node may have multiple
subtrees. There are only two ways to explore the N-ary tree:
1. Preorder traversal: We explore the root node first, and

then we explore every subtree from left to right.
2. Postorder traversal: We explore every subtree from left to

right, and then we explore the root node.
Inorder traversal is unable to be executed in a N-ary tree

due to the fact that in a binary tree, each node will only
switch the left subtree to the right subtree once, but a node in
a N-ary tree may have many children and it needs to switch
the subtree several times to traverse. Thus, there does not
exist the spot of inorder traversal in a N-ary tree, and only
question 1 and question 3 are considered when traversing a
N-ary game tree.

The minimax search algorithm (Listing 6) is written as a
function inside MCTS-minimax class object. The func-
tion has four arguments:

1. Self: It points to the instance object of MCTS-
minimax (Listing 5) class object.

2. Node: It is an instantiated TreeNode (Listing 4) class
object.

3. Depth: It is an integer that represents the maximum depth
of the game tree.

4. Max player: It is a boolean value where True stands
for maximizing player and False stands for minimizing
player.

The minimax search algorithm is implemented in depth-
first manner recursively. The algorithm returns two vari-
ables: evaluation score and best movement, where the
evaluation score is calculated based the number of red
pieces and white pieces remaining on the two-dimensional
game board belonging to Board class object, and best
movement is a tuple consisting of instantiated Board
class object, reward earned in the current movement, next
turn (either red (255, 0, 0) or white (255, 255, 255)),
terminate (True means current node is ending game state,
and False means current node is not ending game state), and
movement info. The recursion stops when we reach the
maximum depth of the game tree or a winner has come out
in the current game board, and then evaluation score and
instantiated Board class object in the current tree node are
returned. The time complexity of running minimax search
algorithm is O(n) where n stands for the number of nodes
traversed in a game tree, and each node is visited once. Each
recursive call adds the function of minimax search algorithm
to the stack memory, and stack memory keeps it until the call
is completed. Since the number of recursive call is equiva-
lent to the maximum depth of the game tree h, the space
complexity of running minimax search algorithm is O(h).

Considering the case that max player is True and it is
our player’s turn, in the spot of preorder traversal (what ac-
tions need to be taken before reaching a node?), we initial-
ize evaluation score as−∞ and bestmovement as None.
We iterate over all possible movements. For each movement,
we take out instantiated Board class object, next turn, and
terminate; we create a new node for the next game state
through passing these three variables and current tree node
to the constructor of TreeNode class object; we recursively
call the function of minimax search algorithm to receive the
evaluation score for each movement; we find the maxi-
mum evaluation score and the best movement. In the spot
of postorder traversal (what actions need to be taken before
leaving a node?), we return maximum evaluation score
and the best movement to one level up the game tree.

Considering the case that max player is False and it is
enemy player’s turn, in the spot of preorder traversal (what
actions need to be taken before reaching a node?), we ini-
tialize both evaluation score as +∞ and best movement
as None. We iterate over all possible movements. For each
movement, we take out instantiated Board class object,
next turn, and terminate; we create a new node for the
next game state through passing these three variables and
current tree node to the constructor of TreeNode class ob-
ject; we recursively call the function of minimax search al-
gorithm to receive the evaluation score for each move-



ment; we find the minimum evaluation score and the best
movement. In the spot of postorder traversal (what actions
need to be taken before leaving a node?), we return min-
imum evaluation score and the best movement to one
level up the game tree.

In the simulation stage of traditional MCTS algorithm,
the action is chosen randomly. Through embedding minimax
search algorithm in the simulation stage of MCTS, the ran-
domness is eliminated and the most optimal action is guaran-
teed. Listing 7 shows how the simulation actually functions
in our MCTS-minimax class object. Since it is 2-player
MCTS, the reward is an array of length 2, where the first
element stands for reward for white player and the second
element stands for reward for red player. Due to the “Out
of memory” (OOM) problem in real-life programs, we set
the simulation depth to a specific number. A while loop is
utilized to execute the simulation. In every round of simula-
tion, the function of minimax search algorithm is called to
reterive the most optimal action.

Appendix B: White Episode and White Event
Log

last turn id last turn movement piece id move captured reward
2 (‘left’, ‘down’) 1 (‘right’, ‘down’) [] 0
3 (‘left’, ‘up’) 2 (‘right’, ‘down’) [] 0
3 (‘left’, ‘down’) 1 (‘right’, ‘up’) [] 0
3 (‘left’, ‘down’) 3 (‘right’, ‘up’) [] 0
3 (‘left’, ‘down’) 1 (‘right’, ‘down’) [] 0
3 (‘right’, ‘up’) 1 (‘right’, ‘up’) [2] 7
3 (‘left’, ‘down’) 3 (‘right’, ‘down’) [] 0
3 (‘right’, ‘down’) 1 (‘right’, ‘down’) [] 0
3 (‘left’, ‘up’) 3 (‘right’, ‘down’) [] 0

Table 5: Partial white episode

task id transition
1 ((2, “(‘left’, ‘up’)”), (3, “(‘right’, ‘up’)”), 0)
1 ((3, “(‘left’, ‘up’)”), (3, “(‘right’, ‘down’)”), 0)
1 ((2, “(‘left’, ‘down’)”), (3, “(‘right’, ‘up’)”), 0)
1 ((2, “(‘left’, ‘up’)”), (1, “(‘right’, ‘up’)”), 0)
1 ((3, “(‘left’, ‘up’)”), (1, “(‘right’, ‘down’)”), 0)
1 ((1, “(‘left’, ‘up’)”), (2, “(‘right’, ‘up’)”), 0)
2 ((2, “(‘left’, ‘down’)”), (1, “(‘right’, ‘down’)”), 0)
2 ((3, “(‘left’, ‘up’)”), (2, “(‘right’, ‘down’)”), 0)
2 ((3, “(‘left’, ‘down’)”), (1, “(‘right’, ‘up’)”), 0)
2 ((3, “(‘left’, ‘down’)”), (3, “(‘right’, ‘up’)”), 0)
2 ((3, “(‘left’, ‘down’)”), (1, “(‘right’, ‘down’)”), 0)
2 ((3, “(‘right’, ‘up’)”), (1, “(‘right’, ‘up’)”), 7)
3 ((2, “(‘left’, ‘down’)”), (2, “(‘right’, ‘up’)”), 0)
3 ((2, “(‘left’, ‘up’)”), (1, “(‘right’, ‘down’)”), 0)
3 ((3, “(‘left’, ‘up’)”), (2, “(‘right’, ‘down’)”), 0)
3 ((1, “(‘left’, ‘up’)”), (3, “(‘right’, ‘down’)”), 0)
3 ((3, “(‘left’, ‘up’)”), (2, “(‘right’, ‘up’)”), 0)
3 ((1, “(‘left’, ‘down’)”), (2, “(‘right’, ‘up’)”), 0)

Table 6: Simplified white event log



Appendix C: Evaluate Process Models Based
on Trial 1, Trial 2, Trial 3

Trial 1: Fixed Simulation Depth, Fixed Minimax Search
Depth, Variable Iteration Times
• Iteration Times = 1000:

– Red agent: Figure 9 shows C-Net generated by iDHM.
Figure 10 shows Petri-net generated by inductive
miner algorithm.
Model 5 and Model 6 show the global statistics of red
agent’s process models generated by alpha discovery
algorithm and inductive miner algorithm.
For the Petri-net generated by alpha discovery algo-
rithm, its trace fitness is 0.10, its move-model fitness
is 0.77, and its move-log fitness is 0.10. Thus, it is
non − fitting model because all three fitness values
are below 1.
For the Petri-net generated by inductive miner algo-
rithm, its trace fitness, move-model fitness, and move-
log fitness are all equal to 1. Thus, it is a fitting model
because all three fitness values are perfect.

– White agent: Figure 11 shows C-Net generated by
iDHM. Figure 12 shows Petri-net generated by induc-
tive miner algorithm.
Model 7 and Model 8 show the global statistics of
white agent’s process models generated by alpha dis-
covery algorithm and inductive miner algorithm.
For the Petri-net generated by alpha discovery algo-
rithm, its trace fitness, move-model fitness, and move-
log fitness are all equal to 1. Thus, it is a fitting model
because all three fitness values are perfect.
For the Petri-net generated by inductive miner algo-
rithm, its trace fitness, move-model fitness, and move-
log fitness are all equal to 1. Thus, it is a fitting model
because all three fitness values are perfect.

• Iteration Times = 2000:

– Red agent: Figure 13 shows C-Net generated by
iDHM. Figure 14 shows Petri-net generated by induc-
tive miner algorithm.
Model 9 and Model 10 show the global statistics of red
agent’s process models generated by alpha discovery
algorithm and inductive miner algorithm.
For the Petri-net generated by alpha discovery algo-
rithm, its trace fitness, move-model fitness, and move-
log fitness are all equal to 1. Thus, it is a fitting model
because all three fitness values are perfect.
For the Petri-net generated by inductive miner algo-
rithm, its trace fitness, move-model fitness, and move-
log fitness are all equal to 1. Thus, it is a fitting model
because all three fitness values are perfect.

– White agent: Figure 11 shows C-Net generated by
iDHM. Figure 12 shows Petri-net generated by induc-
tive miner algorithm.
Model 11 and Model 12 show the global statistics of
white agent’s process models generated by the alpha
discovery algorithm and inductive miner algorithm.

For the Petri-net generated by alpha discovery algo-
rithm, its trace fitness, move-model fitness, and move-
log fitness are all equal to 1. Thus, it is a fitting model
because all three fitness values are perfect.
For the Petri-net generated by inductive miner algo-
rithm, its trace fitness, move-model fitness, and move-
log fitness are all equal to 1. Thus, it is a fitting model
because all three fitness values are perfect.

• Iteration Times = 3000:

– Red agent: Figure 17 shows C-Net generated by
iDHM. Figure 18 shows Petri-net generated by induc-
tive miner algorithm.
Model 13 and Model 14 show the global statistics of
red agent’s process models generated by alpha discov-
ery algorithm and inductive miner algorithm.
For the Petri-net generated by alpha discovery algo-
rithm, its trace fitness, move-model fitness, and move-
log fitness are all equal to 1. Thus, it is a fitting model
because all three fitness values are perfect
For the Petri-net generated by inductive miner algo-
rithm, its trace fitness, move-model fitness, and move-
log fitness are all equal to 1. Thus, it is a fitting model
because all three fitness values are perfect.

– White agent: Figure 19 shows C-Net generated by
iDHM. Figure 20 shows Petri-net generated by induc-
tive miner algorithm.
Model 15 and Model 16 show the global statistics of
white agent’s process models generated by alpha dis-
covery algorithm and inductive miner algorithm.
For the Petri-net generated by alpha discovery algo-
rithm, its trace fitness is 0.12, its move-model fitness
is 0.94, and its move-log fitness is 0.11. Thus, it is
non − fitting model because all three fitness values
are below 1.
For the Petri-net generated by inductive miner algo-
rithm, its trace fitness, move-model fitness, and move-
log fitness are all equal to 1. Thus, it is a fitting model
because all three fitness values are perfect.

Figure 4 shows compared fitness metrics (Trace Fit-
ness, Move-Model Fitness, and Move-Log Fitness) across
Model 5 through Model 16.

Model exhibiting perfect fitness are Model 6-12, Model
14, and Model 16.

These models show that process models deliver a per-
fect fit, as evidenced by the maximum fitness values (1.0)
for all three evaluation criteria: Trace Fitness, Move-Model
Fitness, and Move-Log Fitness. This suggests that the gen-
erated model is capable of capturing the process from the
trace perspective, which involves the sequence of activities,
and move perspective entailing individual transitions, ade-
quately.

Models with non-perfect fitness include Model 5, Model
13, and Model 15.

Model 5 shows the lowest fitness values across all metrics
(Trace Fitness: 0.10, Move-Model Fitness: 0.77, Move-Log



Model Calculation Time
(ms)

Trace
Fitness

Move-
Model
Fitness

Move-
Log
Fitness

Num. States Approx.
memory
used (kb)

Trace
Length

Model 5 15.74 0.10 0.77 0.10 981.20 105.30 65.90
Model 6 3243.23 1.00 1.00 1.00 200008.10 12007.10 65.90
Model 7 4.33 1.00 1.00 1.00 1.00 62.60 65.20
Model 8 3738.53 1.00 1.00 1.00 200010.90 11603.90 65.20
Model 9 4.34 1.00 1.00 1.00 1.00 68.50 108.33
Model 10 2365.69 1.00 1.00 1.00 200004.50 11026.00 108.33
Model 11 4.50 1.00 1.00 1.00 1.00 11026.00 108.33
Model 12 2988.04 1.00 1.00 1.00 200006.17 10127.00 107.83
Model 13 15.12 0.15 0.91 0.15 1189.50 130.90 85.30
Model 14 2906.28 1.00 1.00 1.00 200006.70 11703.60 85.30
Model 15 12.54 0.12 0.94 0.11 816.90 107.90 84.90
Model 16 3750.52 1.00 1.00 1.00 200008.30 12266.50 84.90

Table 7: Global statistics: Model 5 to Model 16

Fitness: 0.10). This suggests significant deviation from the
actual process in both activity sequences and individual tran-
sitions. Model 13 demonstrates moderate fitness (Trace Fit-
ness: 0.15, Move-Model Fitness: 0.91, Move-Log Fitness:
0.15). The higher Move-Model Fitness indicates that indi-
vidual transitions are well-represented, but the lower Trace
Fitness and Move-Log Fitness suggest issues with over-
all sequence representation. Model 15 exhibits high Move-
Model Fitness (0.94) but lower Trace Fitness (0.12) and
Move-Log Fitness (0.11). This suggests that while individ-
ual transitions are well-modeled, the overall sequence of ac-
tivities and log replay don’t align as closely with the actual
process.

Trial 2: Fixed Iteration Times, Fixed Minimax Search
Depth, Variable Simulation Depth
• Simulation Depth = 10:

– Red agent: Figure 21 shows C-Net generated by
iDHM. Figure 22 shows Petri-net generated by induc-
tive miner algorithm.
Model 17 and Model 18 show the global statistics of
red agent’s process models generated by alpha discov-
ery algorithm and inductive miner algorithm.
For the Petri-net generated by alpha discovery algo-
rithm, its trace fitness, move-model fitness, and move-
log fitness are all equal to 1. Thus, it is a fitting model
because all three fitness values are perfect.
For the Petri-net generated by inductive miner algo-
rithm, its trace fitness, move-model fitness, and move-
log fitness are all equal to 1. Thus, it is a fitting model
because all three fitness values are perfect.

– White agent: Figure 23 shows C-Net generated by
iDHM. Figure 24 shows Petri-net generated by induc-
tive miner algorithm.
Model 19 and Model 20 show the global statistics of
white agent’s process models generated by alpha dis-
covery algorithm and inductive miner algorithm.
For the Petri-net generated by alpha discovery algo-
rithm, its trace fitness, move-model fitness, and move-

log fitness are all equal to 1. Thus, it is a fitting model
because all three fitness values are perfect.
For the Petri-net generated by inductive miner algo-
rithm, its trace fitness, move-model fitness, and move-
log fitness are all equal to 1. Thus, it is a fitting model
because all three fitness values are perfect.

• Simulation Depth = 20:

– Red agent: Figure 25 shows C-Net generated by
iDHM. Figure 26 shows Petri-net generated by induc-
tive miner algorithm.
Model 21 and Model 22 show the global statistics of
red agent’s process models generated by alpha discov-
ery algorithm and inductive miner algorithm.
For the Petri-net generated by alpha discovery algo-
rithm, its trace fitness, move-model fitness, and move-
log fitness are all equal to 1. Thus, it is a fitting model
because all three fitness values are perfect.”
For the Petri-net generated by inductive miner algo-
rithm, its trace fitness, move-model fitness, and move-
log fitness are all equal to 1. Thus, it is a fitting model
because all three fitness values are perfect.

– White agent: Figure 27 shows C-Net generated by
iDHM. Figure 28 shows Petri-net generated by induc-
tive miner algorithm.
Model 23 and Model 24 show the global statistics of
white agent’s process models generated by alpha dis-
covery algorithm and inductive miner algorithm.
For the Petri-net generated by alpha discovery algo-
rithm, its trace fitness is 0.14, its move-model fitness
is 1.0, and its move-log fitness is 0.12. Thus, it is
non− fitting model because trace fitness values and
move-log values are both below 1.
For the Petri-net generated by inductive miner algo-
rithm, its trace fitness, move-model fitness, and move-
log fitness are all equal to 1. Thus, it is a fitting model
because all three fitness values are perfect.

• Simulation Depth = 30:



– Red agent: Figure 29 shows C-Net generated by
iDHM. Figure 30 shows Petri-net generated by induc-
tive miner algorithm.
Model 25 and Model 26 show the global statistics of
red agent’s process models generated by alpha discov-
ery algorithm and inductive miner algorithm.
For the Petri-net generated by alpha discovery algo-
rithm, its trace fitness is 0.12, its move-model fitness
is 0.82, and its move-log fitness is 0.12. Thus, it is
non − fitting model because all three fitness values
are below 1.
For the Petri-net generated by inductive miner algo-
rithm, its trace fitness, move-model fitness, and move-
log fitness are all equal to 1. Thus, it is a fitting model
because all three fitness values are perfect.

– White agent: Figure 31 shows C-Net generated by
iDHM. Figure 32 shows Petri-net generated by induc-
tive miner algorithm.
Model 27 and Model 28 show the global statistics of
white agent’s process models generated by alpha dis-
covery algorithm and inductive miner algorithm.
For the Petri-net generated by alpha discovery algo-
rithm, its trace fitness, move-model fitness, and move-
log fitness are all equal to 1. Thus, it is a fitting model
because all three fitness values are perfect.
For the Petri-net generated by inductive miner algo-
rithm, its trace fitness, move-model fitness, and move-
log fitness are all equal to 1. Thus, it is a fitting model
because all three fitness values are perfect.

Figure 5: Visual plot shows fitness metrics across Model 17
through Model 28

Figure 5 shows compared fitness metrics (Trace Fit-
ness, Move-Model Fitness and Move-Log Fitness) across
Model 17 through Model 28.

Consistent High Fitness:
The majority of the models, including Models 17, 18, 20,

21, 22, 24, 26, 27, and 28, demonstrate perfect Trace Fit-
ness, Move-Model Fitness, and Move-Log Fitness with a
high value of 1.00. This consistency indicates a strong align-
ment between the model and the actual moves and logs data
for these datasets, suggesting that the model accurately rep-
resents the processes in these instances.

Outliers in Fitness Metrics:

In contrast, a few models exhibit lower fitness values, de-
viating significantly from the majority. Models 19 and 23
show a substantial decline in Move-Log Fitness, dropping
to 0.12 and 0.13 respectively, while maintaining a perfect
Move-Model Fitness of 1.00. This suggests that while the
model structure remains consistent, there are discrepancies
between the model and the actual log data for these spe-
cific models. Model 25 presents a unique case where the
Move-Model Fitness decreases to 0.82, while the Move-
Log Fitness drops to 0.12, indicating potential issues in both
model representation and log alignment for this dataset. In-
terestingly, Trace Fitness remains consistently high at 1.00
across all models, suggesting that the tracing aspect of the
model performs well regardless of other fluctuations. These
variations highlight the importance of considering multiple
fitness metrics to gain a comprehensive understanding of
model performance across different datasets.

Trial 3: Fixed Simulation Depth, Fixed Iteration Times,
Variable Minimax Search Depth
• Minimax Search Depth = 1:

– Red agent: Figure 33 shows C-Net generated by
iDHM. Figure 34 shows Petri-net generated by induc-
tive miner algorithm.
Model 29 and Model 30 show the global statistics of
red agent’s process models generated by alpha discov-
ery algorithm and inductive miner algorithm.
For the Petri-net generated by alpha discovery algo-
rithm, its trace fitness is 0.94, its move-model fitness
is 0.09, and its move-log fitness is 0.09. Thus, it is
non − fitting model because all three fitness values
are below 1.
For the Petri-net generated by inductive miner algo-
rithm, its trace fitness, move-model fitness, and move-
log fitness are all equal to 1. Thus, it is a fitting model
because all three fitness values are perfect.

– White agent: Figure 35 shows C-Net generated by
iDHM. Figure 36 shows Petri-net generated by induc-
tive miner algorithm.
Model 31 and Model 32 show the global statistics of
white agent’s process models generated by alpha dis-
covery algorithm and inductive miner algorithm.
For the Petri-net generated by alpha discovery algo-
rithm, its trace fitness, move-model fitness, and move-
log fitness are all equal to 1. Thus, it is a fitting model
because all three fitness values are perfect.
For the Petri-net generated by inductive miner algo-
rithm, its trace fitness, move-model fitness, and move-
log fitness are all equal to 1. Thus, it is a fitting model
because all three fitness values are perfect.

• Minimax Search Depth = 2:

– Red agent: Figure 37 shows C-Net generated by
iDHM. Figure 38 shows Petri-net generated by induc-
tive miner algorithm.
Model 33 and Model 34 show the global statistics of
red agent’s process models generated by alpha discov-
ery algorithm and inductive miner algorithm.



Model Calculation Time
(ms)

Trace
Fitness

Move-
Model
Fitness

Move-
Log
Fitness

Num. States Approx.
memory
used (kb)

Trace Length

Model 17 4.07 1.00 1.00 1.00 1.00 77.40 88.90
Model 18 3315.54 1.00 1.00 1.00 200006.10 12607.70 88.90
Model 19 15.38 0.14 1.00 0.12 742.70 105.30 88.60
Model 20 4072.42 1.00 1.00 1.00 200010.60 11789.60 88.60
Model 21 4.07 1.00 1.00 1.00 1.00 77.40 88.90
Model 22 3315.54 1.00 1.00 1.00 200006.10 12607.70 88.90
Model 23 15.38 0.14 1.00 0.13 742.70 105.30 88.60
Model 24 4072.41 1.00 1.00 1.00 200010.60 11789.60 88.60
Model 25 20.07 0.12 0.82 0.12 1333.40 161.20 100.30
Model 26 3430.38 1.00 1.00 1.00 200008.50 12564.30 100.30
Model 27 5.74 1.00 1.00 1.00 1.00 94.50 99.90
Model 28 3548.60 1.00 1.00 1.00 200007.30 12381.70 99.90

Table 8: Global statistics: Model 17 to Model 28

Metric R.A-A.D 10 R.A-I.M 10 W.A-A.D 10 W.A-I.M 10
Calc. Time (ms) 4.07 3315.54 15.38 4072.42
Num. States 1.00 200006.10 742.70 200010.60
Trace Fitness 1.00 1.00 0.14 1.00
Raw Fitness Cost 0.00 0.00 77.10 0.00
Move-Model Fitness 1.00 1.00 1.00 1.00
Pre-process time (ms) 0.69 0.38 0.30 0.52
Move-Log Fitness 1.00 1.00 0.12 1.00
Trace Length 88.90 88.90 88.60 88.60
Approx. mem. used (kb) 77.40 12607.70 105.30 11789.60

Metric R.A-A.D 20 R.A-I.M 20 W.A-A.D 20 W.A-I.M 20
Calc. Time (ms) 4.07 3315.54 15.38 4072.41
Num. States 1.00 200006.10 742.70 200010.60
Trace Fitness 1.00 1.00 0.14 1.00
Raw Fitness Cost 0.00 0.00 77.10 0.00
Move-Model Fitness 1.00 1.00 1.00 1.00
Pre-process time (ms) 0.69 0.38 0.30 0.52
Move-Log Fitness 1.00 1.00 0.13 1.00
Trace Length 88.90 88.90 88.60 88.60
Approx. mem. used (kb) 77.40 12607.70 105.30 11789.60

Metric R.A-A.D 30 R.A-I.M 30 W.A-A.D 30 W.A-I.M 30
Calc. Time (ms) 20.07 3430.38 5.74 3548.60
Num. States 1333.40 200008.50 1.00 200007.30
Trace Fitness 0.12 1.00 1.00 1.00
Raw Fitness Cost 88.30 0.00 0.00 0.00
Move-Model Fitness 0.82 1.00 1.00 1.00
Pre-process time (ms) 0.29 0.48 0.32 0.57
Move-Log Fitness 0.12 1.00 1.00 1.00
Trace Length 100.30 100.30 99.90 99.90
Approx. mem. used (kb) 161.20 12564.30 94.50 12381.70

Table 9: Global statistics: Petri-net generated by various algorithms (W.A white agent, R.A red agent, I.M inductive miner, A.D
alpha discovery) (Fixed Iteration Times, Fixed Minimax Search Depth, Simulation Depth = n)

For the Petri-net generated by alpha discovery algo-
rithm, its perfect trace fitness, move-model fitness, and

move-log fitness are all equal to 1. Thus, it is a fitting
model because all three fitness values are perfect.



For the Petri-net generated by inductive miner algo-
rithm, its perfect trace fitness, move-model fitness, and
move-log fitness are all equal to 1. Thus, it is a fitting
model because all three fitness values are perfect.

– White agent: Figure 39 shows C-Net generated by
iDHM. Figure 40 shows Petri-net generated by induc-
tive miner algorithm.
Model 35 and Model 36 show the global statistics of
white agent’s process models generated by alpha dis-
covery algorithm and inductive miner algorithm.
For the Petri-net generated by alpha discovery algo-
rithm, its trace fitness is 0.15, its move-model fitness
is 0.98, and its move-log fitness is 0.13. Thus, it is
non − fitting model because all three fitness values
are below 1.
For the Petri-net generated by inductive miner algo-
rithm, its perfect trace fitness, move-model fitness, and
move-log fitness are all equal to 1. Thus, it is a fitting
model because all three fitness values are perfect.

• Minimax Search Depth = 3:

– Red agent: Figure 41 shows C-Net generated by
iDHM. Figure 42 shows Petri-net generated by induc-
tive miner algorithm.
Model 37 and Model 38 show the global statistics of
red agent’s process models generated by alpha discov-
ery algorithm and inductive miner algorithm.
For the Petri-net generated by alpha discovery algo-
rithm, its perfect trace fitness, move-model fitness, and
move-log fitness are all equal to 1. Thus, it is a fitting
model because all three fitness values are perfect.
For the Petri-net generated by inductive miner algo-
rithm, its perfect trace fitness, move-model fitness, and
move-log fitness are all equal to 1. Thus, it is a fitting
model because all three fitness values are perfect.

– White agent: Figure 43 shows C-Net generated by
iDHM. Figure 44 shows Petri-net generated by induc-
tive miner algorithm.
Model 39 and Model 40 show the global statistics of
white agent’s process models generated by alpha dis-
covery algorithm and inductive miner algorithm.
For the Petri-net generated by alpha discovery algo-
rithm, its trace fitness is 0.21, its move-model fitness
is 0.99, and its move-log fitness is 0.19. Thus, it is
non − fitting model because all three fitness values
are below 1.
For the Petri-net generated by inductive miner algo-
rithm, its perfect trace fitness, move-model fitness, and
move-log fitness are all equal to 1. Thus, it is a fitting
model because all three fitness values are perfect.

Figure 6 shows compared fitness metrics (Trace Fit-
ness, Move-Model Fitness and Move-Log Fitness) across
Model 29 through Model 40.

Perfect Model Fitness:
Most datasets, including Models 29, 30, 32, 33, 34, 36, 37,
38, and 40, exhibit a high fitness value of 1.00 in the metrics
Trace Fitness, Move-Model Fitness, and Move-Log Fitness,

Figure 6: Visual plot shows fitness metrics across Model 29
through Model 40

indicating consistently high fitness and that the model per-
forms excellently for these datasets. The model is also capa-
ble of tracking the real data accurately, and the sequence is
consistent with the moves of the model as well as log moves
of these datasets.

Non-fitting Models:
On the other hand, datasets containing low fitness degrees
include Model 31, which shows a significant drop in Trace
Fitness and Move-Log Fitness to 0.09. This points to the
model’s low accuracy in mapping real data and in matching
the logs; hence, it shows a number of problems with how it
captures the process in this dataset. Moreover, from Model
35, it is seen that Trace Fitness goes down to 0.15 while
Move-Log Fitness comes down to 0.13, showing a critical
misalignment between the model and actual data, as well as
poor log tracing. Similar to previous outliers, Model 39 has
a low Trace Fitness of 0.21 and Move-Log Fitness of 0.19,
but a high Move-Model Fitness of 0.99, suggesting that the
model’s logic is reasonable, but the actual data diverges from
the standard expectations. Drops in Trace Fitness and Move-
Log Fitness for Models 31, 35, and 39 show consistent prob-
lems with the model.

Appendix D : Discovery Analysis
For red agent in Figure 7 , we can see transitions in the first
layer are

• ((−1, “0”), (2, (“left”, “down”)), 0)
• ((−1, “0”), (2, (“left”, “up”)), 0)
• ((−1, “0”), (3, (“left”, “down”)), 0)

and transitions in the second layer are

• ((3, (“right”, “up”)), (1, (“left”, “up”)), 7)

• ((1, (“left”, “down”)), (2, (“left”, “up”)), 7)

• ((3, (“right”, “down”)), (2, (“left”, “down”)), 0)

• ((1, (“right”, “down”)), (3, (“right”, “up”)), 0)

and transitions in the third layer are

• ((2, (“left”, “down”)), (1, (“left”, “up”)), 7)

• ((1, (“left”, “up”)), (1, (“left”, “down”)), 0)



Model Calculation
Time (ms)

Trace
Fitness

Move-
Model
Fitness

Move-
Log
Fitness

Num. States Approx. memory
used (kb)

Trace Length

Model 29 3.44 1.00 1.00 1.00 1.00 54.80 64.80
Model 30 3330.23 1.00 1.00 1.00 200011.00 11414.50 64.80
Model 31 7.48 0.09 0.91 0.09 432.30 71.80 64.20
Model 32 3974.60 1.00 1.00 1.00 200007.40 11856.50 64.20
Model 33 2.82 1.00 1.00 1.00 1.00 51.90 72.10
Model 34 3566.72 1.00 1.00 1.00 200008.40 12427.20 72.10
Model 35 14.55 0.15 0.98 0.13 844.75 128.05 67.85
Model 36 5050.51 1.00 1.00 1.00 200006.85 12389.15 67.85
Model 37 2.79 1.00 1.00 1.00 1.00 74.20 101.00
Model 38 3159.70 1.00 1.00 1.00 200006.00 11796.30 101.00
Model 39 27.44 0.21 0.99 0.19 1296.27 214.67 78.87
Model 40 6170.17 1.00 1.00 1.00 200005.33 12930.40 78.87

Table 10: Global statistics: Model 29 to Model 40

Metric R.A-A.D 1 R.A-I.M 1 W.A-A.D 1 W.A-I.M 1
Calc. Time (ms) 3.44 3330.23 7.48 3974.60
Num. States 1.00 200011.00 432.30 200007.40
Trace Fitness 1.00 1.00 0.09 1.00
Raw Fitness Cost 0.00 0.00 59.40 0.00
Move-Model Fitness 1.00 1.00 0.91 1.00
Pre-process time (ms) 0.67 0.53 0.25 0.31
Move-Log Fitness 1.00 1.00 0.09 1.00
Trace Length 64.80 64.80 64.20 64.20
Approx. mem. used (kb) 54.80 11414.50 71.80 11856.50

Metric R.A-A.D 2 R.A-I.M 2 W.A-A.D 2 W.A-I.M 2
Calc. Time (ms) 2.82 3566.72 14.55 5050.51
Num. States 1.00 200008.40 844.75 200006.85
Trace Fitness 1.00 1.00 0.15 1.00
Raw Fitness Cost 0.00 0.00 59.30 0.00
Move-Model Fitness 1.00 1.00 0.98 1.00
Pre-process time (ms) 0.37 0.22 0.10 0.23
Move-Log Fitness 1.00 1.00 0.13 1.00
Trace Length 72.10 72.10 67.85 67.85
Approx. mem. used (kb) 51.90 12427.20 128.05 12389.15

Metric R.A-A.D 3 R.A-I.M 3 W.A-A.D 3 W.A-I.M 3
Calc. Time (ms) 2.79 3159.70 27.44 6170.17
Num. States 1.00 200006.00 1296.27 200005.33
Trace Fitness 1.00 1.00 0.21 1.00
Raw Fitness Cost 0.00 0.00 63.33 0.00
Move-Model Fitness 1.00 1.00 0.99 1.00
Pre-process time (ms) 0.09 0.14 0.42 0.17
Move-Log Fitness 1.00 1.00 0.19 1.00
Trace Length 101.00 101.00 78.87 78.87
Approx. mem. used (kb) 74.20 11796.30 214.67 12930.40

Table 11: Global statistics: Petri-net generated by various algorithms (W.A white agent, R.A red agent, I.M inductive miner,
A.D alpha discovery) (Fixed Simulation Depth, Fixed Iteration Times, Minimax Search Depth = n)

We can treat these three transitions in the first layer as all
possible actions computed by red agent in the starting turn.

Since the enemy piece id in the last turn is -1, red agent
is the first player. We can treat four transitions and other



more transitions not shown in the Figure 7 but in the sec-
ond layer as all actions computed by red agent in the second
turn. Thus, we can say, the red agent Petri-net generated by
the inductive miner algorithm can provide players with all
decisions considered by the MCTS-minimax hybrids agent
in every turn of the 3v3 checkers game. We can see moving
the white piece ID = 2 left and up or moving the white piece
ID = 1 left and up can result in 7 reward points. Thus, we can
say, when the white piece 3 moves right and up in the last
turn, we recommend selecting piece 1 and moving it left and
up; when the white piece 1 moves left and down in the last
turn, we recommend selecting piece 2 and moving it left and
up (Why do you recommend this action?) because both ac-
tions will cause either an enemy piece to be captured or the
current piece to be crowned. We do not recommend alter-
native actions (2, (”left”, ”down”)), (3, (”right”, ”up”))
(Why don’t you recommend this alternative action?) because
they won’t earn any reward points for us. One of three ac-
tions in the first layer can be chosen by the red agent. If in
the next turn, white piece 3 is selected to move right and up
or white piece 1 is selected to move left and down, we rec-
ommend a human player holding red piece to either select
piece ID = 2 and movement (left, up) or select piece ID =
1 and movement (left, up) as a provident future action be-
cause the action results in earning 7 reward points (What do
you recommend in these possible futures?). If in the next
turn, white piece 3 is selected to move right and down, even
though selecting piece 2 and moving it left and down re-
sults in 0 reward points, we still recommend human player
to choose this action. Referring to the third layer’s transi-
tion ((2, (“left”, “down”)), (1, (“left”, “up”)), 7) that re-
sults in 7 reward points, selecting red piece 2 and moving
it left and down can result in this transition, which brings
future reward points to red.

For white agent in Figure 8, we can see the transition in
the first layer is

• ((2, (“left”, “down”)), (2, (“right”, “up”)), 0)

and transitions in the second layer are

• ((2, (“left”, “up”)), (3, (“right”, “down”)), 0)

• ((2, (“right”, “up”)), (3, (“left”, “down”)), 0)

• ((3, (“left”, “down”)), (1, (“right”, “up”)), 0)

• ((3, (“left”, “down”)), (2, (“right”, “up”)), 7)

We can treat these four transitions and other more tran-
sitions not shown in the Figure 8 but in the second layer
as all actions computed by white agent in the second turn.
Thus, we can say, the white agent Petri-net generated by the
inductive miner algorithm can provide players with all de-
cisions considered by the MCTS-minimax hybrids agent in
every turn of the 3v3 checkers game. We can see moving
the white piece ID = 2 right and up can result in 7 reward
points. Thus, we can say, when the red piece 3 moves left
and down in the last turn, we recommend selecting piece
2 and moving it right and up (Why do you recommend
this action?) because it will cause either an enemy piece
to be captured or the current piece to be crowned. We do
not recommend alternative actions (3, (“right”, “down”)),
(3, (“left”, “down”)), (1, (“right”, “up”)), 0) (Why don’t

you recommend this alternative action?) because they won’t
earn any reward points for us. Considering the transition
((2, (“left”, “down”)), (2, (“right”, “up”)), 0) in the first
layer, it is not hard to see that in the last turn, red piece 2
is selected to move left and down, and in the current turn,
white piece 2 is selected to move right and up. If in the next
turn, red piece 3 is selected to move left and down, we rec-
ommend a human player holding white piece to select piece
ID = 2 and movement (left, up) as a provident future action
because this action results in earning 7 reward points (What
do you recommend in these possible futures?). If in the next
turn, red piece 2 is selected to move left and up or to move
right and up, we recommend a human player holding white
piece to either select piece ID = 3, movement (right, down)
or piece ID = 3, movement (left, down) as possible future
actions. To ensure which action is the optimal, players need
to refer to all transitions in the third layer, fourth layer, or
further future layers to check which of these two actions can
result in early reward points in future turns.

Appendix E: Limitation Extended
• Lack of means to test win percentage: In this study, we

use process models to provide both causal-relationship
based explanations on question 1 (Why do you recom-
mend this action?) and question 3 (Why don’t you rec-
ommend this alternative action?) through observing dif-
ferent rewards earned by each action. We recommend
a specific action due to resulting in the highest reward
compared to other actions. However, such interpreta-
tion is only based on the local perspective because we
are unable to gain a measurable insight on the game’s
win-rate through selecting a specific action. The causal-
relationship based explanations need to be globally inter-
preted based on how much percentage the win-rate will
increase for each action selected by the agent player.

• Deficiency of minimax search algorithm’s explainability:
The MCTS and minimax are treated as a hybrid algo-
rithm in our research. However, we only study the case
when the simulation depth of MCTS is fixed with the
number of iterations, how variable minimax search depth
affects the quality of process models. We fail to explore
the explainablility of minimax search algorithm embeded
in the simulation stage of MCTS. We believe research
in the decision-making strategy of minimax search algo-
rithm needs to be conducted as well to better under how
the minimax selects the most optimal action in each sim-
ulaton round of MCTS.

• Adjustments on feature engineering work: To evaluate a
process model’s quality, we perform conformance anal-
ysis on each process model to interpret model’s replay
fitness. In this study, we use the Petri-net model gen-
erated by inductive miner algorithm to prove our hy-
pothesis. We successfully prove that a process model
can provide players with all possible decisions consid-
ered by the MCTS-minimax hybrids agent, as well as
both causal-relationship based explanations on question
1 (Why does the MCTS-minimax hybrids agent select
this movement?), question 3 (Why not MCTS-minimax



hybrids select other movements?) and distal explanations
on question 2 (According to the process model, what
will be MCTS-minimax hybrids agent’s next movement
in the future?). However, we fail to use Petri-net and C-
net generated by alpha process discovery algorithm and
iDHM to answer our research question due to the fact
that both models are too complex to be interpreted by
humans. We believe more optimized feature engineering
work is required to enhance the transformation on the
decision-making data of MCTS-minimax hybrids algo-
rithm model. Specifically, the content of transition data
tuple in the event log needs to be transformed using ad-
vanced feature engineering technique, such as deep neu-
ral network.

• Lack of generalization on sequential decision-making
domains other than checkers: Our current discovery is
only based on 3v3 checkers domain. We attempt to pro-
vide explanations on three fundamental types of post-
hoc questions (1. Why do you recommend this action?
2. What do you recommend in these possible futures? 3.
Why don’t you recommend this alternative action?) by
observing behaviors of MCTS-minimax hybrids agents
reflected in the process model. However, current dis-
covery is unable to be generalized to other sequential
decision-making domains with different sizes (state fea-
tures/number of actions), such as Go or Connect Four.

Appendix F : Future Work on Feature
Engineering and Human Study

In terms of feature engineering work, in addition to using
deep neural networks for feature extraction, an alternative
plan is to use the change of shortest distance between all red
pieces and white pieces in each piece’s movement to replace
the abstract movement representation. Specifically, we can
treat all red pieces as an entity Red and all white pieces as
another entity White, where we store all red pieces’ coordi-
nates on the game board in an array Red Array and store all
white pieces’ coordinates in another array White Array. A
modified breadth-first search algorithm is applied here twice
to search the shortest distance between red pieces in the Red
Array and white pieces in the White Array before piece’s
movement and after pieces’ movement. The change of dis-
tance ∆d is treated as way to represent a piece’s movement
on the game board. If ∆d is negative, the shortest distance
between red pieces and white pieces shrink, which may im-
ply that the selected piece is approaching enemy pieces on
purpose. If ∆d is positive, then the shortest distance between
red pieces and white pieces increases, which may imply ei-
ther an enemy piece has been captured in the movement or
the selected piece moves away from enemy pieces. One ad-
vantage of this plan is that compared to the dimension size
of abstract representation, it has smaller dimension and may
increase the simplicity of the process model through possi-
bly minimizing the amount of events (transition tuple data)
in an even log. However, using breadth-first search algorithm
may reduce the overall performance of the MCTS algorithm
model since it requires up to O(n) (n stands for the size
of game board) complexity to find the shortest distance be-

tween all red pieces in Red Array and all white pieces in
White Array. In addition, treating the change of distance
∆d as a piece’s movement on the game board may miss the
detection of a piece’s moving direction that is originally rep-
resented in abstract representation. Listing 11 shows how
the breadth-first search algorithm is implemented to find the
shortest distance between all red pieces in Red Array and
all white pieces in White Array. All white pieces’ coordi-
nates are push into a queue. Then, a while loop is utilized
here to check whether the queue is empty. Inside the while
loop, we retrieve the size of the current queue due to the fact
that we only want to search all neighbor positions of every
white piece in current queue. A queue follows the rule of
first-in-first-out, and we pop out the position of the white
piece which is firstly added to the queue. If there is a red
piece on the current position, we successfully find the short-
est distance between all white pieces and red pieces. Oth-
erwise, we iterate over every possible neighbor of current
position. We check whether the neighbor position is a valid
position and whether the neighbor position has been visited
before. If the neighbor is a valid position and it has never
been visited, we push the neighbor’s position in the end of
the queue and record the neighbor’s position in our visited
set.

Human studies are required to test whether these mod-
els are interpretable and useful. By getting them to follow a
model, we can test whether they understand it. Specifically,
we want human players to hold red and MCTS-minimax
hybrids agent to hold white. Human players will follow
decision-strategies shown in the red players’s process model
to play against MCTS-minimax hybrids agent. The result
of each episode will be recorded and the win percentage
of both human players and MCTS-minimax hybrids agent
in 100 episodes will be separately computed. To provide
interpretability on how the minimax search algorithm se-
lects the most optimal action in each simulaton round of
MCTS, process mining technqiue should be conducted on
minimax search algorithm. For instance, if in each turn of
one episode of MCTS, 20 simulations are conducted for
every iteration, then for every simulation, an event log re-
garding the decision-making strategy of minimax search al-
gorithm needs to be established to generate process on the
purpose of helping researchers understand how the minimax
chooses the most optimal action for MCTS.

Appendix G: MCTS Pruning Operation
In MCTS, a game state is stored in each node and an action is
treated as a branching factor. This implies that a large num-
ber of branching factors need to be considered in MCTS’ ex-
pansion stage. Pruning operations need to be applied to cut
off unnecessary branching factors of each node in MCTS.
Otherwise, given limited amount of time, a finite number of
iterations may not be able to fully expand a selected node.
If a node has not been fully expanded, before time runs out,
UCT algorithm is unable to be applied to select the most op-
timal branch factor for this node. Therefore, a solution must
be proposed to prune branching factors. We believe using a
hashtable, a commonly used linear data structure, can pro-
vide an appropriate solution. For instance, in one iteration



of MCTS, the algorithm completes selecting a node that has
not been fully expanded. Assuming 12 actions (A, B, C, D,
E, F , G, H , I , J , K, L) are retrieved as selected node’s
branching factors as this stage, we use an additional reward
mechanism to score every action. This reward mechanism
renders that actions A, B, C are reward 10 points, actions
D, E are rewarded 6 points, action F , G, H are rewarded
4 points, and actions I , J , K, L are rewarded 0 points. We
treat reward point as a key and a list of actions as a value
in the hashtable. Figure 51 and Table 4 show our proposed
methodology of this pruning operation. We prune branching
factors through returning a list of actions with the highest re-
ward points in the hashtable. One advantage of hashtable is
that it supports fast insertion, fast search, and fast deletion.
Since both time cost and space cost of insertion, search, and
deletion is constant O(1), using hashtable to prune branch-
ing factors does not affect the overall performance of MCTS
algorithm model.

Appendix H: Process Models Figures

Figure 7: Simplified red agent Petri-net (10 episodes) gener-
ated by inductive miner algorithm (Fixed Simulation Depth,
Fixed Minimax Search Depth, Iteration Times = 3000)

Figure 8: Simplified white agent Petri-net (10 episodes)
generated by inductive miner algorithm (Fixed Simulation
Depth, Fixed Minimax Search Depth, Iteration Times =
3000)

Figure 9: Red agent C-net generated by iDHM (Fixed Simu-
lation Depth, Fixed Minimax Search Depth, Iteration Times
= 1000)



Figure 10: Red agent Petri-net generated by inductive miner
algorithm (Fixed Simulation Depth, Fixed Minimax Search
Depth, Iteration Times = 1000)

Figure 11: White agent C-net generated by iDHM (Fixed
Simulation Depth, Fixed Minimax Search Depth, Iteration
Times = 1000)

Figure 12: White agent Petri-net generated by inductive
miner algorithm (Fixed Simulation Depth, Fixed Minimax
Search Depth, Iteration Times = 1000)

Figure 13: Red agent C-net generated by iDHM (Fixed
Simulation Depth, Fixed Minimax Search Depth, Iteration
Times = 2000)



Figure 14: Red agent Petri-net generated by inductive miner
algorithm (Fixed Simulation Depth, Fixed Minimax Search
Depth, Iteration Times = 2000)

Figure 15: White agent C-net generated by iDHM (Fixed
Simulation Depth, Fixed Minimax Search Depth, Iteration
Times = 2000)

Figure 16: White agent Petri-net generated by inductive
miner algorithm (Fixed Simulation Depth, Fixed Minimax
Search Depth, Iteration Times = 2000)

Figure 17: Red agent C-net generated by iDHM (Fixed
Simulation Depth, Fixed Minimax Search Depth, Iteration
Times = 3000)



Figure 18: Red agent Petri-net generated by inductive miner
algorithm (Fixed Simulation Depth, Fixed Minimax Search
Depth, Iteration Times = 3000)

Figure 19: White Agent C-net generated by iDHM (Fixed
Simulation Depth, Fixed Minimax Search Depth, Iteration
Times = 3000)

Figure 20: White Agent Petri-net generated by inductive
miner algorithm (Fixed Simulation Depth, Fixed Minimax
Search Depth, Iteration Times = 3000)

Figure 21: Red Agent C-net generated by iDHM (Fixed It-
eration Times, Fixed Minimax Search Depth, Simulation
Depth = 10)



Figure 22: Red Agent Petri-net generated by inductive miner
algorithm (Fixed Iteration Times, Fixed Minimax Search
Depth, Simulation Depth = 10)

Figure 23: White Agent C-net generated by iDHM (Fixed
Iteration Times, Fixed Minimax Search Depth, Simulation
Depth = 10)

Figure 24: White Agent Petri-net generated by inductive
miner algorithm (Fixed Iteration Times, Fixed Minimax
Search Depth, Simulation Depth = 10)

Figure 25: Red Agent C-net generated by iDHM (Fixed It-
eration Times, Fixed Minimax Search Depth, Simulation
Depth = 20)



Figure 26: Red Agent Petri-net generated by inductive miner
algorithm (Fixed Iteration Times, Fixed Minimax Search
Depth, Simulation Depth = 20)

Figure 27: White Agent C-net generated by iDHM (Fixed
Iteration Times, Fixed Minimax Search Depth, Simulation
Depth = 20)

Figure 28: White Agent Petri-net generated by inductive
miner algorithm (Fixed Iteration Times, Fixed Minimax
Search Depth, Simulation Depth = 20)

Figure 29: Red agent C-net generated by iDHM (Fixed Itera-
tion Times, Fixed Minimax Search Depth, Simulation Depth
= 30)

Figure 30: Red agent Petri-net generated by inductive miner
algorithm (Fixed Iteration Times, Fixed Minimax Search
Depth, Simulation Depth = 30)

Figure 31: White agent C-net generated by iDHM (Fixed
Iteration Times, Fixed Minimax Search Depth, Simulation
Depth = 30)



Figure 32: White agent Petri-net generated by inductive
miner algorithm (Fixed Iteration Times, Fixed Minimax
Search Depth, Simulation Depth = 30)

Figure 33: Red agent C-net generated by iDHM (Fixed
Simulation Depth, Fixed Iteration Times, Minimax Search
Depth = 1)

Figure 34: Red agent Petri-net generated by inductive miner
algorithm (Fixed Simulation Depth, Fixed Iteration Times,
Minimax Search Depth = 1)

Figure 35: White agent C-net generated by iDHM (Fixed
Simulation Depth, Fixed Iteration Times, Minimax Search
Depth = 1)



Figure 36: White agent Petri-net generated by inductive
miner algorithm (Fixed Simulation Depth, Fixed Iteration
Times, Minimax Search Depth = 1)

Figure 37: Red agent C-net generated by iDHM (Fixed
Simulation Depth, Fixed Iteration Times, Minimax Search
Depth = 2)

Figure 38: Red agent Petri-net generated by inductive miner
algorithm (Fixed Simulation Depth, Fixed Iteration Times,
Minimax Search Depth = 2)

Figure 39: White agent C-net generated by iDHM (Fixed
Simulation Depth, Fixed Iteration Times, Minimax Search
Depth = 2)

Figure 40: White agent Petri-net generated by inductive
miner algorithm (Fixed Simulation Depth, Fixed Iteration
Times, Minimax Search Depth = 2)



Figure 41: Red agent C-net generated by iDHM (Fixed
Simulation Depth, Fixed Iteration Times, Minimax Search
Depth = 3)

Figure 42: Red agent Petri-net generated by inductive miner
algorithm (Fixed Simulation Depth, Fixed Iteration Times,
Minimax Search Depth = 3)

Figure 43: White agent C-net generated by iDHM (Fixed
Simulation Depth, Fixed Iteration Times, Minimax Search
Depth = 3)

Figure 44: White agent Petri-net generated by inductive
miner algorithm (Fixed Simulation Depth, Fixed Iteration
Times, Minimax Search Depth = 3)



Appendix I: Other Figures

Figure 45: Sample event log II (Buijs, van Dongen, and
van der Aalst 2014)

Figure 46: Sample event log II’s quality dimensions (Buijs,
van Dongen, and van der Aalst 2014)

Figure 47: Petri-net and Process Tree of sample event log
II (Buijs, van Dongen, and van der Aalst 2014)

Figure 48: Binary tree

Figure 49: Game tree

Figure 50: A typical mid-game checkers position (Samuel
1959)



Figure 51: Pruning operation

Appendix J: Python Code



Listing 1: Preorder traversal in a binary tree
1 class TreeNode(object):
2 def __init__(self, val=0, left=None, right=None):
3 self.val = val
4 self.left = left
5 self.right = right
6
7 class Preorder(object):
8 def __init__(self):
9 self.ans = []

10
11 def iteration(self, root):
12
13 stack = [root]
14
15 while stack:
16
17 node = stack.pop()
18 if node:
19 self.ans.append(node.val)
20 stack.append(node.right)
21 stack.append(node.left)
22
23 def recursion(self, root):
24
25 if not root:
26 return
27
28 self.ans.append(root.val)
29 self.recursion(root.left)
30 self.recursion(root.right)

Listing 2: Inorder traversal in a binary tree
1 class TreeNode(object):
2 def __init__(self, val=0, left=None, right=None):
3 self.val = val
4 self.left = left
5 self.right = right
6
7 class Inorder(object):
8 def __init__(self):
9 self.ans = []

10
11 def iteration(self, root):
12 stack = []
13 node = root
14
15 while stack or node:
16 while node:
17 stack.append(node)
18 node = node.left
19 node = stack.pop()
20 self.ans.append(node.val)
21 node = node.right
22
23 def recursion(self, root):
24 if not root:
25 return
26
27 self.recursion(root.left)
28 self.ans.append(root.val)
29 self.recursion(root.right)



Listing 3: Postorder traversal in a binary tree
1 class TreeNode(object):
2 def __init__(self, val=0, left=None, right=None):
3 self.val = val
4 self.left = left
5 self.right = right
6
7 class Postorder(object):
8 def __init__(self):
9 self.ans = []

10
11 def iteration(self, root):
12
13 stack = [root]
14
15 node = root
16
17 while stack:
18 node = stack.pop()
19 self.ans.append(node.val)
20 stack.append(node.left)
21 stack.append(node.right)
22
23 self.ans = self.ans[::-1]
24
25 def recursion(self, root):
26
27 if not root:
28 return
29
30 self.recursion(root.left)
31 self.recursion(root.right)
32 self.ans.append(root.val)

Listing 4: Tree node
1 class TreeNode(object):
2 def __init__(self, board, turn, terminate, parent):
3 self.board = board
4 self.turn = turn
5 self.terminate = terminate
6 self.parent = parent
7 self.children = {}
8 self.visits = 0
9 self.reward = [0, 0]

10 self.isFullyExpanded = False

Listing 5: MCTS minimax agent
1 class MCTS_Minimax_agent(object):
2 def __init__(self, board, agent_color, iterations, simulation_depth,

minimax_depth):
3 self.board = board
4 self.agent_color = agent_color
5 self.iterations = iterations
6 self.simulation_depth = simulation_depth
7 self.minimax_depth = minimax_depth
8 self.exploration_constant = 1/sqrt(2)
9 self.discounted_factor = 0.8



Listing 6: Minimax
1 def Minimax(self, node, depth, max_player):
2
3 board = node.board
4
5 if depth == 0 or node.board.winner() != None:
6 return board.evaluate(), board
7
8 if max_player:
9 maxEval = float(’-inf’)

10 best_move = None
11 for move in self.get_moves(node):
12 board, reward, next_turn, terminate, movement_info = move
13 node = TreeNode(board, next_turn, terminate, node)
14 evaluation = self.Minimax(node, depth - 1, False)[0]
15 maxEval = max(maxEval, evaluation)
16 if maxEval == evaluation:
17 best_move = move
18
19 return maxEval, best_move
20
21 else:
22 minEval = float(’inf’)
23 best_move = None
24 for move in self.get_moves(node):
25 board, reward, next_turn, terminate, movement_info = move
26 node = TreeNode(board, next_turn, terminate, node)
27 evaluation = self.Minimax(node, depth - 1, True)[0]
28 minEval = min(minEval, evaluation)
29 if minEval == evaluation:
30 best_move = move
31
32 return minEval, best_move

Listing 7: Simulation
1 def simulation(self, node):
2
3 reward = [0, 0]
4 depth = 0
5
6 while not node.terminate:
7 maxEval, best_move = self.Minimax(node, self.minimax_depth, True)
8 if maxEval == float(’-inf’):
9 break

10
11 board, r, next_turn, terminate, movement_info = best_move
12
13 if node.turn == WHITE:
14 reward[0] += r
15 else:
16 reward[1] += r
17
18 node = TreeNode(board, next_turn, terminate, node)
19
20 depth += 1
21 if depth == 20:
22 break
23
24 return reward



Listing 8: Get moves
1 def get_moves(self, node):
2
3 moves = []
4
5 # iterate over every single piece in the game board
6 for piece in node.board.get_all_pieces(node.turn):
7 # get all possible moves based on current piece
8 valid_moves = node.board.get_valid_moves(piece)
9

10 for move_, skip in valid_moves.items():
11
12 temp_board = deepcopy(node.board)
13 temp_piece = temp_board.get_piece(piece.row, piece.col)
14 reward = temp_board.move(temp_piece, move_[0], move_[1])
15
16 if skip:
17 temp_board.remove(skip)
18 reward += len(skip) * 5
19
20 removed_piece_id = [p.id for p in skip]
21
22 cur_x, cur_y = piece.row, piece.col
23 target_x, target_y = move_[0], move_[1]
24
25 dx = target_x - cur_x
26 dy = target_y - cur_y
27
28 move = None
29
30 if dx > 0 and dy == 0:
31 move = ("right")
32 elif dx < 0 and dy == 0:
33 move = ("left")
34 elif dx == 0 and dy > 0:
35 move = ("up")
36 elif dx == 0 and dy < 0:
37 move = ("down")
38 elif dx > 0 and dy > 0:
39 move = ("right", "up")
40 elif dx < 0 and dy > 0:
41 move = ("left", "up")
42 elif dx < 0 and dy < 0:
43 move = ("left", "down")
44 elif dx > 0 and dy < 0:
45 move = ("right", "down")
46
47 movement_info = (temp_piece.id, move, removed_piece_id)
48
49 if node.turn == RED:
50 next_turn = WHITE
51 else:
52 next_turn = RED
53
54 if temp_board.winner():
55 terminate = True
56 else:
57 terminate = False
58
59 moves.append((temp_board, reward, next_turn, terminate, movement_info)

)
60
61 return moves



Listing 9: Main part 1
1 def main(simulation_depth, minimax_depth, iterations, file_path):
2
3 for i in range(1, 101):
4 white_traces = { ’last_turn_enemy_piece_id’: [], ’last_turn_enemy_movement

’: [], ’piece id’: [], ’move’: [], "skip": [], ’reward’: [] }
5 red_traces = { ’last_turn_enemy_piece_id’: [], ’last_turn_enemy_movement’:

[], ’piece id’: [], ’move’: [], "skip": [], ’reward’: [] }
6
7 run = True
8
9 game = Game(None)

10 winner = None
11
12 last_turn_enemy_piece_id = -1
13 last_turn_enemy_movement = tuple()
14
15 while run:
16 if game.turn == WHITE:
17 white_agent = MCTS_agent(game.get_board(), WHITE, iterations,

simulation_depth, minimax_depth)
18 action = white_agent.get_action()
19
20 if action == None:
21 winner = RED
22 run = False
23 continue
24
25 new_board, reward, next_turn, terminate, movement_info = action
26
27 white_traces[’last_turn_enemy_piece_id’].append(

last_turn_enemy_piece_id)
28 white_traces[’last_turn_enemy_movement’].append(

last_turn_enemy_movement)
29 white_traces[’piece id’].append(movement_info[0])
30 white_traces[’move’].append(movement_info[1])
31 white_traces[’skip’].append(movement_info[2])
32 white_traces[’reward’].append(reward)
33
34 last_turn_enemy_piece_id = movement_info[0]
35 last_turn_enemy_movement = movement_info[1]
36
37 else:
38 red_agent = MCTS_agent(game.get_board(), RED, iterations,

simulation_depth, minimax_depth)
39 action = red_agent.get_action()
40
41 if action == None:
42 winner = WHITE
43 run = False
44 continue
45
46 new_board, reward, next_turn, terminate, movement_info = action
47
48 red_traces[’last_turn_enemy_piece_id’].append(

last_turn_enemy_piece_id)
49 red_traces[’last_turn_enemy_movement’].append(

last_turn_enemy_movement)
50 red_traces[’piece id’].append(movement_info[0])
51 red_traces[’move’].append(movement_info[1])
52 red_traces[’skip’].append(movement_info[2])
53 red_traces[’reward’].append(reward)
54
55 last_turn_enemy_piece_id = movement_info[0]
56 last_turn_enemy_movement = movement_info[1]
57
58 game.ai_move(new_board)
59 winner = game.winner()
60
61 if winner:
62 run = False



Listing 10: Main part 2
1
2 print(f"episode{i} completed")
3 print(f"{winner} won")
4
5 white_path = file_path + f"white_episode{i}.csv"
6 red_path = file_path + f"red_episode{i}.csv"
7
8 df = pd.DataFrame(white_traces)
9 df.to_csv(white_path, index = False)

10
11 df = pd.DataFrame(red_traces)
12 df.to_csv(red_path, index = False)



Listing 11: Breadth-first search in checkers
1 from collections import deque
2
3 def BFS(board, white_pieces, red_pices):
4
5 row = len(board)
6 col = len(board[0])
7
8 def check(x, y):
9 return 0 <= x < row and 0 <= y < col

10
11 # BFS expansion direction
12 directions = [[0, 1], [0, -1], [1, 0], [-1, 0]]
13
14 # record visited coordinates
15 visited = set()
16
17 # record the shortest distance
18 step = 0
19
20 # initilize a queue
21 queue = deque()
22
23 # push all white pieces’ positions into the queue
24 for position in white_pieces:
25 queue.append(position)
26
27 while queue:
28 length = len(queue)
29 # search four directions for current pieces in the queue
30 for _ in range(length):
31 # get current piece’s position
32 x, y = queue.popleft()
33 # the nearest red piece found!
34 if (x, y) in red_pices:
35 return step
36 # iterate over all possible neighbor positions
37 for dx, dy in directions:
38 new_x, new_y = x + dx, y + dy
39 # check whether the new position is valid
40 if check(new_x, new_y) and (new_x, new_y) not in visited:
41 # push the new position into the queue
42 queue.append((new_x, new_y))
43 # new position will be visited
44 visited.add((new_x, new_y))
45 # update step
46 step += 1
47
48 # cannot find the nearest red piece
49 return float(’inf’)


