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Abstract

Discrete-continuous action combinations are prevalent in ev-
eryday activities and play a crucial role in robotic control.
Hierarchical decision-making, a vital element of both rein-
forcement learning and daily life, has been explored through
recent studies that investigate these actions within a hierar-
chical framework and propose various on-policy learning al-
gorithms. However, there remains a notable gap in the liter-
ature: no task has yet been designed that integrates hierar-
chical decision-making with discrete-continuous action com-
binations. Additionally, the scarcity of data in this domain
hinders the development of offline reinforcement learning al-
gorithms.
In this work we introduce a novel task that serves as a
comprehensive platform for investigating planning and ac-
tion controls within a Hierarchical Parameterized Action
Markov Decision Process (HPAMDP). This task incorporates
elements of spatial planning, fine action control, discrete-
continuous action integration, hierarchical planning, and ro-
bust reinforcement learning under noisy conditions, creating
a rich environment conducive to research across these disci-
plines. We also provide valuable human data to support this
initiative and encourage the community to contribute further,
facilitating the advancement of off-policy algorithms. This
contribution aims to bridge critical gaps and catalyze future
research in this interdisciplinary field.

code and dataset —
https://github.com/DaraYang/Boatdock v1

Introduction
Recent advancements in reinforcement learning (RL) have
transformed the field, enabling the resolution of complex
decision-making tasks and demonstrating remarkable per-
formance across various domains such as Atari games (Mnih
et al. 2015), robotic control (Schulman et al. 2018; Lilli-
crap et al. 2019), and autonomous navigation (Kiran et al.
2021). Traditional benchmarks and tasks in RL develop-
ment have typically focused on either purely discrete ac-
tion spaces, as seen in Atari games, or continuous action
spaces, such as those used in MuJoCo environments. How-
ever, many real-world tasks often require planning over a
long horizon such as the maze (Botvinick, Niv, and Barto
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2009), and intricate control of hybrid discrete and contin-
uous actions, such as robot soccer (Masson, Ranchod, and
Konidaris 2016) and MOBA games (Xiong et al. 2018). To
address the challenge of hybrid actions over a long horizon,
several paradigms have been explored, including Hierarchi-
cal Reward Machine (HRM), Task and Motion Planning
(TAMP), Hierarchical Reinforcement Learning (HRL) and
Parameterized Action Markov Decision Problems (PAMDP)
(Parr and Russell 1997; Guo et al. 2023; Masson, Ranchod,
and Konidaris 2016).
TAMP and HRM both have hierarchical structures like HRL
that decompose tasks into subgoals or hierarchy of con-
trols to maximize cumulative rewards over extended peri-
ods. TAMP is widely used in robotic control that focuses
on learning planning-execution pairs while satisfying both
physical and designed constraints (Guo et al. 2023; Lagrif-
foul et al. 2018). HRM decomposes tasks into subtasks with
separate reward functions and encode objectives as hierar-
chical finite state machines. It is particularly useful in hy-
brid action scenarios where discrete and continuous actions
operate at different hierarchies and is widely used in appli-
cations such as pathfinding in a pre-defined map with finite
states (Cong, Liu, and Liu 2023; Furelos-Blanco et al. 2023).
Additionally, HRM can be used as an extension to RL algo-
rithms to increase the sample efficiency (Icarte et al. 2022),
though classical HRM often requires pre-defind and labeled
options (Parr and Russell 1997; Furelos-Blanco et al. 2021).
To achieve an end-to-end algorithm in TAMP or HRM, hi-
erarchies of planning, subgoal identification, and hierarchi-
cal control for hybrid action spaces are often required (Lo,
Zhang, and Stone 2018). Both paradigms also face chal-
lenges in online planning and learning tasks with infinite
possible states. In this paper, we focus on PAMDP as a ro-
bust and scalable approach to solving hybrid action space in
an online learning framework without the need of manually
defined options. Among many existing benchmark tasks for
hierarchical reinforcement learning, most of them involve
planning consisting of multiple steps, such as the maze, tow-
ers of Hanoi, the kitchen, or a sequence of subtasks, for
example, delivering a piece and mail and also picking up
a cup of coffee in an office map. However, to the best of
our knowledge, there is no hierarchical task that requires
the agent to choose the preferred media to perform a task.
For example, suppose you have two ways of transportation:



Figure 1: The boat task presents the participant with start
and end placement, and asks the participant to choose one
controller out of the two. The direction each controller can
go and the corresponding key mappings (r, m, i refer to the
right-hand ring, middle, and index finger on the m, h, and v
keys on the keyboard respectively) are shown here for clar-
ity, but are hidden for participants. Participants or agents
need to sail the boat with the chosen controller from the start
to the goal with limited gas, without exceeding the circle
boundary.

driving or taking the bus. Depending on your skill of driv-
ing, bus route and schedule, parking availability, time, and
fuel resource cost, you may choose different vehicles when
needed to move from one place to another. In order to max-
imize long-term returns, choosing the right tool to solve the
problem under different circumstances is another important
aspect of the hierarchy an agent should learn.
When designing RL agents, they are often characterized as
model-based (Heess et al. 2015; Clavera et al. 2018) or
model-free (Mnih et al. 2015; Fujimoto, Hoof, and Meger
2018) depending on what function they are approximat-
ing. While the dichotomy between model-based and model-
free algorithms has provided a foundational framework for
research in human behavior, neuroscience, and reinforce-
ment learning models, the possibility of frameworks extend-
ing beyond simple dichotomy has been widely discussed
in the community (Collins and Cockburn 2020; O’Doherty
et al. 2021). These discussions are particularly relevant as
tasks grow more complex, involving hierarchical structures
and a mixture of model-based and model-free paradigms
(Botvinick, Niv, and Barto 2009; Lepora and Pezzulo 2015).
In order to further the development of agents that are able
to solve more and more complicated problems and achieve
long-term learning, we are introducing a new benchmark
that: (1) demands effective spatial and temporal planning
with hybrid discrete and continuous actions from algo-
rithms; (2) incorporates options for hierarchical decision-
making to optimize long-horizon returns; (3) includes two
sets of controllers to test models’ generalizability and (4)
provides a dataset from human players to foster the develop-
ment of offline PAMDP algorithmic solutions.

Background and Related Work
A Markov Decision Process (MDP) is a mathematical
framework for modeling decision-making in environments
with stochastic outcomes (Sutton 1990). Formally, an MDP
is defined as a tuple ⟨S,A, P,R, γ⟩, where S represents
the set of states, A is the set of actions, P (s′|s, a) is the
transition probability from state s ∈ S to state s′ ∈ S when
action a ∈ A is taken, R(s, a) is the reward function that
specifies the immediate reward for taking action a in state
s, and γ ∈ [0, 1) is the discount factor that controls the
importance of future rewards. The goal in an MDP is to find
a policy π(a|s), which specifies the probability of taking
action a in state s, to maximize the expected cumulative
reward over time.
A Parameterized Action Markov Decision Process
(PAMDP) extends the traditional MDP framework by
incorporating parameterized actions, which combine
discrete actions with associated continuous parameters.
Formally, a PAMDP is defined as a tuple ⟨S,A,X , P,R, γ⟩.
Here, S represents the set of states, A is a finite set of
discrete actions, and for each discrete action a, there is a
continuous parameter xa ⊆ Rma . Then the action space
can be written as

⋃
a∈Ad

{(a, x) | x ∈ Xa}. Parameterized
actions enable tasks with more fine-grained control to
maximize expected cumulative reward over time.
To tackle challenges in hybrid action spaces, several
algorithmic approaches have been developed. A common
strategy involves converting the heterogeneous action space
into a homogeneous one, either by discretizing the continu-
ous actions or by using softmax or argmax to select discrete
actions (Bester, James, and Konidaris 2019a; Baumann et al.
2018). Although discretization allows for the handling of
continuous actions, it suffers from scalability issues due to
the exponential increase in the number of discrete actions.
Conversely, representing all discrete actions as continuous
can complicate the mapping of actions and reduce policy
learning efficiency. An alternative approach treats PAMDPs
as a hierarchical problem, selecting a discrete action first
and subsequently choosing a continuous action using
another model (Masson, Ranchod, and Konidaris 2016;
Xiong et al. 2018; Fan et al. 2019; Wei, Wicke, and Luke
2018). Some research has explored simultaneous handling
of discrete and continuous actions by learning conditional
latent embeddings (Li et al. 2022) or learning a joint distri-
bution (Neunert et al. 2020). Another recent work first used
a model-based technique to solve PADMPs (Zhang et al.
2024). Despite these advances, a significant gap remains in
benchmarks including hierarchical learning and spatial and
temporal planning over a long horizon (Bacon, Harb, and
Precup 2017; Zhang and Whiteson 2019). Existing plat-
forms such as the 1D action space environment (Masson,
Ranchod, and Konidaris 2016; Bester, James, and Konidaris
2019b) lack 2D spatial planning capabilities. Environments
like the Goal (Masson, Ranchod, and Konidaris 2016) and
HardMove (Li et al. 2022) require spatial planning to move
objects to target areas, however, they do not incorporate
time or resource constraints, limiting the need for optimized
action control in the parameterized action space.



Figure 2: Comparison of algorithms on the Boat environment. The x-axis denotes the number of steps. The first row shows the
average test reward over 100 episodes and the second row shows the average test success rate over 100 episodes. The curve and
shade denote the mean and one standard deviation over 3 random seeds.

The Boat Task and Dataset
In this work we implemented a human-subject task designed
in our previous work (Dundon et al. 2023) in the frame of hi-
erarchical PAMDP, in the OpenAI Gym environment. This
task includes a hybrid discrete and continuous action ex-
tended from the discrete grid-sail task (Fermin et al. 2016).
As shown in Figure1, at the beginning of each episode,
the initial state of this episode is presented and the partic-
ipants must choose between 2 controllers with different un-
derlying directions. There is always one controller whose
key mappings are intuitive (congruent boat) and the other
with counter-intuitive key mappings (incongruent boat). For
example, in Figure1, the green boat is congruent and the
blue boat is incongruent. The directions a controller can go
are not explicitly shown to participants. They need to learn
through trial and error. No indications of total gas tank ca-
pacity, or gas usage are available to participants during an
episode. At the end of the episode, the participant is pre-
sented with an outcome page showing one of the following
outcomes: Out of gas, reward = 0, Out of boundary, reward
= 0, Approached the target too fast: reward = 0, Success!
reward = percentage of remaining gas * 100. Each session
contains 6 blocks of 80 episodes. The monetary reward par-
ticipants receive at the end of the experiment is positively
correlated with their overall performance. Therefore, partic-
ipants are incentivized to improve their fine action control
as well as to choose a strategy to optimize their return in the
long horizon. A full tank is at most 6 seconds of accelera-
tion time. Given the nature of human control in the presence
of delay and noise, on average a human can press buttons
5.45± 3.57 times in an episode.

The Gym Environment
We implemented the corresponding task within the OpenAI
Gym environment, incorporating flexible design features to
allow for hierarchical decision-making. When the hierarchi-
cal option is enabled, an agent must choose between two

controllers after observing the initial state of each episode.
Conversely, when the hierarchical option is disabled, the
algorithm can be configured to use only a congruent boat,
only an incongruent boat, or a randomly selected boat. Once
a controller is chosen, the agent must navigate the boat to
the goal using the corresponding buttons.
In our environment, only one button can be pressed at a
time. If multiple buttons are pressed simultaneously, the
action is ignored. In human-subject experiments, the action
executed first is taken into account. Consistent with the
human task, an acceleration coefficient is implemented such
that the boat accelerates non-linearly as the duration of a
button press increases. This design requires both agents
and human participants to learn the temporal dynamics
and integrate them with spatial cues. Different from the
HardMove task introduced by (Li et al. 2022), which
required agents to choose among n actuators to toggle on
or off and directly decide displacement for each actuator,
our task requires agents to learn the underlying mapping
between continuous parameters and movement outcomes.
Additionally, our task imposes stricter spatial and temporal
constraints. Spatial constraints include limited directional
options and boundaries that must not be crossed, while
temporal constraints arise from the limited fuel supply
and acceleration sensitivity. These constraints aim to push
agents toward learning optimal behavior under challenging
conditions.
Due to the inherent difficulty of the task, reward signals
are very sparse. Initial experiments provided rewards only
at the end of each episode, with no intermediate feedback
to best align with the human subject experiments. Under
these conditions, all algorithms failed to learn the task.
To mitigate this issue, we introduced a modified reward
structure. Agents now receive a small reward proportional
to their spatial proximity to the target, multiplied by a
scaling factor. A large reward (scaled between 0 and 5) is
provided for a successful outcome, and an award of -1 is



provided for failures. This adjustment stabilized training
by scaling the original reward range from [0, 100] to [-1,
5]. Each observation in the environment consists of: start
and goal (x,y) position, the boundary position represented
by the center of the circle and the radius, the current boat
choice(0 being incongruent and 1 congruent), the current
(x,y) position of the boat, current velocity of the boat,
current fuel level(percentage), and current proximity to the
goal(percentage).

Data Collection and Processing
A total of 53 right-handed human participants were recruited
to participate in this single-session ”boatdock” task via both
word-of-mouth and the online participant recruitment portal
at the University of California, Santa Barbara (UCSB).
There were 34 reported female and 19 reported male par-
ticipants with an average age of 21.9± 3.05. Experiments
are performed under the relevant guidelines and regulations
required and approved by The Institutional Review Board at
UCSB (Human Subject Committee protocol:36-21-0405).
All procedures were performed in accordance with the
Declaration of Helsinki and written consents were obtained
from all participants before participation (Dundon et al.
2023).

Experiments
All of the experiments were performed on a single NVIDIA
GeForce RTX 4060 Ti GPU. Experiments ranged from 4
hours to 58 hours, depending on the algorithm and imple-
mentation. All of the results shown are averaged across 3
random seeds.
In this work, we tested five representative algorithms,
summarized below, each embodying a distinct approach to
PAMDP. Because there have not been any algorithms that
handle hierarchical PAMDP problems, we turned off the
boat-selection and trained separate agents for the congruent
and incongruent boats.

• QPAMDP (Masson, Ranchod, and Konidaris 2016) alter-
nately learns a value function for discrete actions and a
policy function for continuous actions.

• PDQN (Xiong et al. 2018) extends on DQN (Mnih et al.
2015) and DDPG (Lillicrap et al. 2016) to first train the
deterministic function that maps states and discrete ac-
tions to the continuous parameters and then a value func-
tion is fitted to predict the expected reward given the tu-
ple of state and action pairs.

• HPPO (Fan et al. 2019) extends the PPO (Schulman et al.
2017) structure. Two actors with a shared feature extrac-
tor of the state space are built to learn the discrete and
continuous part of action space separately, and then one
critic learns the value function of the current state.

• HyAR (Li et al. 2022) keeps the discrete action in the
embedding table, and uses a variational autoencoder
(Kingma 2013) conditioned on state s and discrete ac-
tion ad to generate the continuous parameter xa, and then

TD3 (Fujimoto, Hoof, and Meger 2018) is used to learn
the policy network. This approach takes the discrete ac-
tion into consideration when generating continuous pa-
rameters.

• DLPA (Zhang et al. 2024) is the first model that uses a
model-based approach, with inspiration from model pre-
dictive control (Garcia, Prett, and Morari 1989). It trains
the transition model with H-step loss and designs two re-
ward predictors for return prediction and termination pre-
diction respectively.

As shown in Table1 and Figure2, humans overall have the
best performance compared to the algorithms. Among the al-
gorithms, DLPA achieves significantly higher performance
in both average reward and success rate. For model-free al-
gorithms, HPPO was able to learn to navigate the congruent
boat, while HyAR and PDQN demonstrated only sporadic
success. Almost all of the algorithms failed the task when us-
ing the incongruent boat. Although DLPA achieved a higher
success rate with the incongruent boat compared to other
methods, its performance remained substantially lower than
with the congruent boat. This finding is particularly intrigu-
ing, as it suggested that incongruent key mapping typically
thought to increase cost and learning curve for humans, may
also influence reinforcement learning agents. Does this im-
ply that the neural network commonly used in these algo-
rithms possesses an inherent bias toward certain default ac-
tion mappings? Exploring this hypothesis further is planned
in our future research.

congruent incongruent
human 3.0163 ±0.87 2.9318 ±0.94
DLPA 0.2441 ±0.64 0.1484 ±0.29
HyAR 0.005 ±0.0005 -1.3623 ±0.223
HPPO 0.6720 ±0.16 0.1448 ±0.58
PDQN 0.0073 ±0.003 -1.73 ±0.0002

QPAMDP -1.6758 ±0.0002 -1.7410 ±0.0001

Table 1: Comparison of average episodic reward on human
dataset and algorithms. Mean and standard deviation of eval-
uation of 1000 episodes after training are reported for algo-
rithms, and human performance is averaged across all stages
of learning.

Conclusion and Future Work
This work introduces a novel task for hierarchical PAMDP
problems, integrating spatial and temporal planning with
hierarchical decision-making. Through evaluations using
state-of-the-art algorithms for PAMDP problems, we
observed that PAMDP algorithms are not yet capable of
achieving human-level performance, even when considering
only the action control aspect. Additionally, we identified
that challenges related to dexterity, which are difficult
for humans, also pose significant obstacles for machine
learning agents. We look forward to receiving feedback
from the community and aim to expand the dataset to
facilitate further research.
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