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Abstract

Deep reinforcement learning agents often face challenges to
effectively coordinate perception and decision-making com-
ponents, particularly in environments with high-dimensional
sensory inputs where feature relevance varies. This work
introduces SPRIG (Stackelberg Perception-Reinforcement
learning with Internal Game dynamics), a framework that
models the internal perception-policy interaction within a sin-
gle agent as a cooperative Stackelberg game. In SPRIG, the
perception module acts as a leader, strategically processing
raw sensory states, while the policy module follows, making
decisions based on extracted features. SPRIG provides theo-
retical guarantees through a modified Bellman operator while
preserving the benefits of modern policy optimization. Exper-
imental results on the Atari BeamRider environment demon-
strate SPRIG’s effectiveness, achieving around 30% higher
returns than standard PPO through its game-theoretical bal-
ance of feature extraction and decision-making.

Introduction
Deep Reinforcement Learning (RL) has successfully solved
complex tasks across various domains, from game playing to
robotic control (Mnih et al. 2015; Berner et al. 2019; Ibarz
et al. 2021). However, a fundamental challenge persists:
the effective coordination between perception and decision-
making components, particularly in environments with high-
dimensional sensory inputs where the relevance of features
varies across tasks or time (Mao et al. 2024).

While traditional approaches treat perception and
decision-making as a unified process, this integration over-
looks fundamental insights from cognitive science, par-
ticularly the two-stream hypothesis of visual processing
(Goodale and Milner 1992). In biological systems, visual in-
formation flows through distinct pathways: a “what” stream
for object recognition and a “how” stream for action guid-
ance. This natural division suggests an inherent hierarchy
where perceptual processing precedes and informs action se-
lection as separate subsystems. Despite this biological inspi-
ration, current RL approaches lack the fundamentals of this
natural cooperative design.

We address these challenges by introducing SPRIG
(Stackelberg Perception-Reinforcement learning with In-
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Figure 1: SPRIG architecture overview

ternal Game dynamics), a framework that models the
perception-policy interaction as a cooperative Stackelberg
game. Our perception module, implemented as a hierarchi-
cal spatio-temporal attention mechanism, acts as a leader
that strategically processes raw sensory inputs, while the
policy module follows by making decisions based on the ex-
tracted features. Our game-theoretical formulation provides:
(1) a principled mathematical framework for perception-
policy interaction through a modified Bellman operator,
(2) thorough theoretical analysis with provable convergence
properties while maintaining the advantages of modern pol-
icy optimization, and (3) the creation of a natural balance be-
tween feature extraction and policy optimization through our
cooperative formulation. Our approach extends the Proxi-
mal Policy Optimization algorithm (PPO; (Schulman et al.
2017)) to incorporate this game-theoretical dynamic, intro-
ducing a two-stage optimization process with advantage nor-
malization. Through our formulation of perception cost and
utility functions, we ensure that our method converges to a
unique fixed point, providing both theoretical soundness and
practical applicability.

We demonstrate the effectiveness of SPRIG on the Atari
BeamRider environment, where the perception module must
identify and track relevant visual features for successful
policy learning. Our empirical results show that SPRIG
achieves higher than standard PPO, with returns reaching
approximately 850 versus 650 for the baseline.



Related Work
Integrating perception and decision-making in RL has be-
come an interesting subdomain, especially in environments
with high-dimensional sensory inputs. The Perception and
Decision-making Interleaving Transformer (PDiT; (Mao
et al. 2024)) uses separate transformers for perception and
decision-making, leading to enhanced performance in com-
plex tasks. Incorporating game-theoretic principles, (Zheng
et al. 2022) proposed the Stackelberg Actor-Critic frame-
work, modeling the actor-critic interaction as a Stackelberg
game to improve learning stability. Extending this approach,
(Huang et al. 2022) addressed robustness in uncertain envi-
ronments by formulating robust RL as a Stackelberg game,
demonstrating the adaptability of leader-follower structures
in RL. Attention mechanisms have also been explored for
adaptive feature extraction in RL. For instance, (Manchin,
Abbasnejad, and Van Den Hengel 2019) introduced a self-
supervised attention model that significantly improved per-
formance in the Arcade Learning Environment, highlighting
the potential of attention mechanisms in RL.

Our work advances these approaches by introducing a
framework with theoretical guarantees through a modified
Bellman operator that explicitly accounts for perception-
policy interaction, while maintaining the advantages of mod-
ern policy optimization. Our cooperative game formulation
creates a natural balance between feature extraction and
decision-making, complementing previous approaches by
adding provable convergence properties for the entire sys-
tem and demonstrating empirical improvements.

Background and Preliminaries
Markov Decision Processes and Reinforcement
Learning
A Markov Decision Process (MDP) provides the fundamen-
tal model for sequential decision-making under uncertainty
(Sutton and Barto 2018). Formally, an MDP is defined as
a tuple M = (S,A, P,R, γ), where S represents the state
space, A the action space, P : S × A × S → [0, 1] the
transition probability function, R : S × A → R the reward
function, and γ ∈ [0, 1) the discount factor.

Here an agent interacts with the environment by selecting
actions according to a policy π : S → ∆(A), where ∆(A)
denotes the probability simplex over actions. The objective
is to find an optimal policy π∗ that maximizes the expected
discounted return:

V π(s) = Eπ

[ ∞∑
t=0

γtR(st, at) | s0 = s

]
. (1)

The optimal policy π∗ satisfies the Bellman optimality
equation:

V ∗(s) = max
a∈A

[
R(s, a) + γEs′∼P (·|s,a)[V

∗(s′)]
]
. (2)

Stackelberg and Cooperative Games
Stackelberg games model sequential decision-making sce-
narios through a hierarchical structure. Let G =
(N,Θ,Φ, uL, uF ) be a two-player game where N = {L,F}

denotes the leader and follower, with strategy spaces Θ and
Φ respectively. The utility functions uL : Θ × Φ → R and
uF : Θ× Φ→ R define the payoffs for each player, though
their usage differs due to the sequential nature of the game.

In this interplay, the leader commits to a strategy θ ∈ Θ,
after which the follower observes this commitment and re-
sponds with ϕ ∈ Φ. This creates a subgame perfect equilib-
rium where the follower’s best response function is:

BRF (θ) = {ϕ ∈ Φ : uF (θ, ϕ) ≥ uF (θ, ϕ
′) for all ϕ′ ∈ Φ}.

(3)
The leader, anticipating this response, solves:

θ∗ = argmax
θ∈Θ

uL(θ,BRF (θ)). (4)

While Stackelberg games capture hierarchical interaction,
cooperative game theory provides tools for analyzing sce-
narios where players coordinate for mutual benefit. A co-
operative game is defined by (N, v), where N is the player
set and v : 2N → R is the characteristic function assigning
values to coalitions.

In our two-player setting, the cooperative value emerges
through a weighted combination of individual utilities:

v({L,F}) = αuL(θ, ϕ) + (1− α)uF (θ, ϕ), (5)

where α ∈ [0, 1] represents the cooperation weight. The
solution concept focuses on finding allocations that maxi-
mize this joint value while ensuring individual rationality:
v({i}) ≤ ui for i ∈ {L,F}.

Perception-Policy Learning: Motivation and Need
Current approaches to perception-policy learning typically
fall into two categories. The first approach treats perception
and policy as a single end-to-end system, while the second
attempts to optimize these components independently. Nev-
ertheless, recent work has shown that perception and deci-
sion models separately can lead to reduce robustness since
mismatched state extraction and control decision-making
become asynchronous (Zhu et al. 2022). Standard RL mod-
els often treat these processes as a unified pipeline, optimiz-
ing perception and policy jointly in an end-to-end fashion.
While this approach simplifies implementation, it struggles
to generalize in high-dimensional environments where ir-
relevant features dominate or feature relevance varies over
time, as evidenced in complex visual navigation tasks (Zhu
et al. 2017). Such limitations derives from the inability to
effectively balance the demands of feature extraction with
those of action selection.

Inspired by the two-stream hypothesis of visual process-
ing (Goodale and Milner 1992), we argue for a principled
separation of perception and policy into distinct, hierarchi-
cally organized modules, aligning with approaches in hierar-
chical RL that decompose complex tasks (Diuk et al. 2013).
This biological insight suggests that perception should focus
on extracting meaningful, task-relevant features while policy
concentrates on optimal action selection based on these fea-
tures. This separation enables better modularity and adapt-
ability in complex environments, akin to how biological sys-
tems achieve robust and efficient decision-making.



However, decoupling perception from policy introduces
coordination challenges. Misalignment between the ex-
tracted features and the policy’s decision-making objectives
can degrade performance, necessitating a structured design
to guide this interaction. Game theory, particularly Stack-
elberg games, provides a natural solution. By modeling the
perception module as a leader and the policy module as a
follower, we establish a hierarchical interaction where the
perception module optimizes its feature extraction strategy
while anticipating the policy module’s response.

Through this hierarchical formulation, we address the
shortcomings of traditional RL methods, introducing a mod-
ular, biologically inspired framework capable of robust gen-
eralization in complex tasks. This structured interaction also
facilitates theoretical analysis and practical improvements,
setting the foundation for the novel game-theoretical ap-
proach introduced in this paper.

Our Approach
We propose SPRIG (Stackelberg Perception-Reinforcement
Learning with Internal Game Dynamics), a cooperative
Stackelberg game framework for perception-policy learning
in RL. Our approach builds upon PPO, extending it to in-
corporate game-theoretical dynamics between modules. As
shown in Figure. 1, the SPRIG architecture comprises two
key components: the perception module, which acts as the
leader, and the policy module, which serves as the follower.

Perception-Policy Game Formulation
In our SPRIG agent, the perception module θ implements a
hierarchical spatio-temporal attention mechanism consisting
of three convolutional layers combined with self-attention,
mapping raw states S to features F . This way, the agent can
process raw visual inputs by progressively refining spatial
relationships while maintaining temporal consistency across
frames. On the other hand, the policy module ϕ consists of
a Multi-Layer Perception that takes the feature representa-
tion coming from the perception module and outputs action
probabilities. The policy module is optimized iteratively us-
ing PPO, alternating between policy updates and value func-
tion updates.

The interaction between these modules is formulated as a
cooperative Stackelberg game where:

θ∗ = argmax
θ∈Θ

uL(θ, ϕ
∗(θ)), (6)

ϕ∗(θ) = argmax
ϕ∈Φ

Eπϕ
[R(s, a)]. (7)

The leader’s utility function uL balances both the policy’s
performance and the perception computational efficiency:

uL(θ, ϕ) = αcoopEπϕ
[R(s, a)]− (1− αcoop)Cθ(s). (8)

where αcoop is the cooperation weight and Cθ(s) represents
the perception cost. The cost function penalizes excessive
attention across all layers:

Cθ(s) = λc

K∑
k=1

Es∼D[∥Ak(s)∥1], (9)

where Ak(s) represents the attention weights at layer k, λ is
the cost weight, D is the distribution of states encountered
during training, and K is the total number of layers.

Stackelberg Equilibrium Computation
The Stackelberg equilibrium is computed through a two-
stage optimization process. In the first stage, the perception
module optimizes its utility while anticipating the policy
module’s response (Eq. (8)):

Lθ = −uL(θ, ϕ). (10)

This optimization uses Generalized Advantage Estimation
(GAE; (Schulman et al. 2015)) to compute advantages,
which are normalized for training stability. The perception
cost directly influences this stage by penalizing excessive
attention allocation.

In the second stage, the policy module optimizes its objec-
tive given the features provided by the perception module:

Lϕ = −Eπϕ
[R(s, a)] + βH(πϕ), (11)

where H(πϕ) is the policy entropy and β is the entropy co-
efficient. The policy optimization includes both value func-
tion and policy updates, with the perception cost indirectly
affecting this stage through the quality of extracted features,
as outlined in Algorithm 1.

The perception cost influences both optimization stages:
directly in the leader’s utility computation and indirectly
in the follower’s optimization through feature quality. This
dual influence creates a balanced cooperation between mod-
ules, where the perception module must provide useful fea-
tures while maintaining computational efficiency, and the
policy module must effectively utilize these features for
decision-making.

Theoretical Formulation and Convergence
Properties
Stackelberg-MDP Formulation We extend the tradi-
tional MDP framework to incorporate the perception-
policy interaction through a cooperative Stackelberg
game. Our augmented MDP is defined as MS =
(S,A, P,R, γ,Θ,Φ, C), where Θ is the perception parame-
ter space, Φ is the policy parameter space, and C : S×Θ→
[0, 1] is the perception cost function implemented through
attention mechanisms.

Bellman Operator and Properties For our Stackelberg-
MDP, we first define the standard Bellman operator T for
MDPs:

(T f)(s, a) = R(s, a)+γEs′∼P (·|s,a)[max
a′

f(s′, a′)]. (12)

Building upon this, we define our Stackelberg-Bellman
operator TS that incorporates the perception-policy interac-
tion:

(TSf)(s, a) =max
θ∈Θ

min
ϕ∈Φ

[
R(s, a)− λCθ(s)

+ γEs′∼P (·|s,a)
[
f(s′, a′;ϕ

]]
,

(13)

where Cθ(s) =
∑K

k=1 ∥Ak(s)∥1 represents our imple-
mented attention-based perception cost (Equation (9)).



Algorithm 1: SPRIG Agent: Cooperative Stackelberg Game
Training for Perception-Policy Learning

Require: Initial parameters θ for perception, ϕ for policy
module.

Require: Cooperation weight α, discount factor γ, GAE
parameter λ

1: for each iteration do
2: Collect trajectories D using current policy
3: Compute returns and normalize GAE values Ât

4: for each PPO epoch do
5: for each mini-batch B do
6: // Leader (Perception) Stage
7: fθ ← perception features for states in B
8: Cθ ▷ Attention cost, Equation (9)
9: πϕ ← policy distribution from fθ

10: upolicy ← (log πϕ(a) · Ât)mean
11: uL ← αcoop(−Cθ) + (1− αcoop)upolicy
12: Update θ by maximizing uL with gradient

clipping
13: // Follower (Policy) Stage
14: Compute PPO ratio rt(ϕ)

15: LCLIP ← min(rt(ϕ)Ât, clip(rt(ϕ), 1±ϵ)Ât)
16: LV ← (Vϕ(st)−Rt)

2

17: Lϕ ← −LCLIP + 0.5LV − 0.01H(πϕ) +Cθ

18: Update ϕ by minimizing Lϕ with gradient
clipping

19: end for
20: end for
21: end for

Contraction Properties The Stackelberg-Bellman opera-
tor TS maintains the contraction property under the follow-
ing conditions: 1) bounded rewards: |R(s, a)| ≤ Rmax; 2)
bounded perception cost: 0 ≤ Cθ(s) ≤ 1 (guaranteed by our
L1-norm attention cost); and 3) discount factor: γ ∈ [0, 1).
For any two value functions f1 and f2:

∥TSf1 − TSf2∥∞ ≤ γ∥f1 − f2∥∞. (14)

The contraction property of TS ensures the existence of a
unique fixed point f∗ satisfying f∗ = TSf∗, guarantees con-
vergence of value iteration: ∥T n

S f−f∗∥∞ ≤ γn∥f−f∗∥∞,
and that the optimal policy derived from f∗ represents
the Stackelberg equilibrium between perception and policy
modules.

Numerical Experiments
We evaluate our SPRIG agent on the BeamRider Atari envi-
ronment, conducting experiments across five different ran-
dom seeds over 10 million environment interactions. We
considered BeamRider as an interesting challenge for our
agent since temporal element and visual focus are impor-
tant in this game. We utilize identical hyperparameters with
both the baseline (PPO) and SPRIG except for the percep-
tion module configuration. The detailed perception module
architecture specifications are provided in Appendix, Fig. 3.
SPRIG achieves superior performance compared to the

Figure 2: Return curves for SPRIG and baseline PPO on
BeamRider. Results averaged across 5 seeds with shaded re-
gions showing standard deviation.

baseline PPO implementation as presented in Fig. 2, reach-
ing approximately 850 points compared to PPO’s 650, show-
ing a clear advantage in the final performance. The learn-
ing process exhibits interesting dynamics: SPRIG demon-
strates faster initial learning in the first 2 million steps, fol-
lowed by a period of exploration and adjustment between
4-6 million steps, before stabilizing at a higher performance
level. While the learning trajectory shows higher variance
during the middle phase (as indicated by the purple-shaded
region), this exploration appears beneficial for discovering
better policies, ultimately leading to more robust perfor-
mance. The baseline PPO, in contrast, shows more stable but
conservative learning, with a steady but slower improvement
curve and lower final performance. These results suggest
that our game-theoretical framework effectively balances the
exploration-exploitation trade-off while maintaining learn-
ing stability.

Conclusions
In this paper, we presented SPRIG, a novel framework that
formalizes perception-policy interaction in reinforcement
learning through cooperative Stackelberg games. Our ap-
proach provides theoretical guarantees through a modified
Bellman operator while demonstrating practical improve-
ments in learning efficiency and stability. The preliminary
results suggest that explicitly modeling module interaction
through game theory could be a promising direction for im-
proving single-agent reinforcement learning systems.
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Appendix

Rollout Length 2048
Batch Size 64
Discount Factor (γ) 0.99
GAE Parameter (λ) 0.95
Learning Rate 1e-4
PPO Epochs 4
PPO Clip Range (ϵ) 0.2
Value Coefficient 0.5
Entropy Coefficient 0.01
Max Grad Norm (gradient clipping) 0.5
Perception Cost Weight (λc) 1e-4
Cooperation Weight (αcoop) 0.7
Total Timesteps 1e7
Max Episode Length 10000

Table 1: Hyperparameters for SPRIG & PPO

Input Tensor

Conv 3
→ LayerNorm 3 

→ Spatio-Temporal Attention 3

Output
Flatten

Conv 1 
→ LayerNorm 1 

→ Spatio-Temporal Attention 1 

Conv 2 
→ LayerNorm 2 

→ Spatio-Temporal Attention 2 

Figure 3: Perception Module (θ)

Input Tensor: (B, C, H, W)

[Query]
1x1 Conv.

C → C/8

[Key]
1x1 Conv.

C → C/8

[Value]
1x1 Conv.

C → C

Reshape
(B, C/8, HW)

Reshape
(B, C/8, HW)

Reshape
(B, C, HW)

Matrix Multiplication

Scale by temperature 
( C/8) 

Softmax

Matrix Multiplication

Output Tensor
Reshape back (B, C, H, W)

Figure 4: Spatio-Temporal Attention Block


