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Abstract
Automated decision-making is a fundamental topic that spans
multiple sub-disciplines in AI: reinforcement learning (RL),
AI planning (AP), foundation models, and operations re-
search, among others. Despite recent efforts to “bridge the
gaps” between these communities, there remain many in-
sights that have not yet transcended the boundaries. Our
goal in this paper is to provide a brief and non-exhaustive
primer on ideas well-known in AP, but less so in other sub-
disciplines. We do so by introducing the classical AP prob-
lem and representation, and extensions that handle uncer-
tainty and time through the Markov Decision Process for-
malism. Next, we survey state-of-the-art techniques and ideas
for solving AP problems, focusing on their ability to exploit
problem structure. Lastly, we cover subfields within AP for
learning structure from unstructured inputs and learning to
generalise to unseen scenarios and situations.

1 Introduction
Reinforcement Learning (RL) and AI Planning (AP) are two
subfields of AI that cover autonomous decision-making: the
act of mapping situations to actions in order to satisfy a spec-
ified objective such as maximising a reward signal and/or
achieving a goal condition. RL involves interacting with un-
known environments guided by rewards to discover the best
actions to take (Sutton and Barto 1998), while conversely,
AP reasons over structured models represented in formal
and compact languages to solve long horizon problems with
sparse rewards (Geffner and Bonet 2013).

A core insight from AP lies in leveraging structure in
world models for allowing agents to make decisions more
efficiently and effectively than if we were to treat the world
as a black box. AP problems are represented by compact
and symbolic models which yield a plethora of theoretical
tools and powerful, domain-independent algorithms. Tra-
ditional AP approaches involve manually designing world
models with declarative languages that capture structures
inherent to a domain, with examples including the early
STRIPS formalism (Fikes and Nilsson 1971) to the more
recent PDDL (McDermott et al. 1998; Haslum et al. 2019)
and RDDL (Sanner 2010) formalisms. In this paradigm, it is
the engineer who recognises the structure in the world, and
then the planner that effectively leverages that structure.

Another line of work exploits learning to automatically
abstract and discover structure in problems from raw inputs

for making decisions computationally feasible (Konidaris
2019). On top of using learning to make planning feasible
the discovery of structured models, we can also learn to
make planning fast. By making use of structural priors in
AP formalisms, learning approaches also exhibit powerful
generalisation capabilities by scaling to or encoding com-
pact solutions of unseen problems of arbitrary size.

To organise the various AP topics we aim to cover, we
structure this survey paper as follows.
• In Sec. 2, we formalise the common RL problem setup

as an MDP problem from which we introduce common
assumptions and formalisms of the AP problem.

This involves classifying different levels of access an agent
has to an MDP. On the RL-side of the spectrum, agents have
little to no information of the MDP and have no ability to
undo their moves. On the AP-side of the spectrum, agents
have complete access to the MDP which is represented with
compact and structured models.
• In Sec. 3, we provide a primer into the AP problem and

survey state-of-the-art methodologies in the field which
exploit the AP assumptions.

We formalise structured AP problems using first-order logic
and the closed world assumption for compactly encoding
combinatorially large world models. We also cover ex-
pressive extensions for handling uncertainty, time, and en-
vironmental processes. Then we highlight key ideas and
themes for exploiting such structure, while also drawing
some analogies to common RL topics. We conclude with
pointers to resources for getting started in AP.
• In Sec. 4, we cover subfields of AP involving learning.

This involves both learning structure for performing AP,
as well as learning from structure for improving AP.

More specifically, we cover AP techniques which can ex-
hibit generalisation capabilities. This involves the ability to
handle more than one problem at a time, which we now
classify in terms of an algorithm’s level of access to sets
of MDPs. The fields we cover include Generalised Plan-
ning (GP), which entails compactly representing solutions
to infinite sets of problems, Learning for Planning (L4P),
which involves learning to plan quickly from training data
and structure, and Learning Planning Models (LPM), which
involves mapping arbitrary, unstructured MDPs to AP mod-
els for more efficient planning.



2 MDPs: Access and Structure
We begin with a very general problem formulation. Consider
a Markov Decision Process (MDP) M = ⟨S,A, T ,R,G⟩
where S is a set of states, A is a set of actions, T : S ×
A × S → [0, 1] is a transition function, where T (s, a, ·) is
a probability distribution, R : S × A × S → R is a reward
function, and G ⊆ S is a set of terminal states.1 MDPs can
be extended to include partial observability; we assume full
observability for the sake of a focused discussion. A solution
to an MDP is a deterministic policy π : S → A. The value
function V π : S → R for a policy π gives the expected
cumulative reward for executing the policy starting from a
state. This function can be defined with a Bellman equation:

V π(s) =

{
0 if s ∈ G, and otherwise,∑

s′∈S T (s, π(s), s′) (R(s, π(s), s′) + V π(s′)) .

A policy π∗ is optimal if V π∗
(s) = maxπ V

π(s) for all
s ∈ S . A policy is proper if it is guaranteed (with probabil-
ity 1) to reach a terminal state. It is sometimes difficult to
guarantee optimality or properness, in which case we prefer
policies that obtain high expected cumulative rewards with
respect to an initial state distribution.

What level of access does an agent have to its MDP?
This is an important question on which prior works differ.
Sutton and Barto (1998) provides a binary classification by
describing MDPs as either distribution models, also known
as model-based RL, where R and T are known, or sample
models, also known as model-free RL, where R and T must
be sampled from. We further refine the hierarchy of access:

1. Continuing: The agent has no access to T or R and it
“only lives once.” The agent exists at some state s, exe-
cutes an action a, and observes the next state s′ and re-
ward r, repeating this process until s ∈ G (e.g., death).

2. Episodic: The agent still has no access to T or R, but
when a sink state is reached, the world resets to a state
sampled from an initial state distribution. This level of
access is very common in reinforcement learning (e.g.,
in OpenAI Gym (Brockman 2016)).

3. Generative: The agent has knowledge of R, but only a
generative or sampling access to T , such as with a sim-
ulator. For any s ∈ S and a ∈ A, the agent can sample
s′ ∼ T (s, a). This access level is common in cases where
the set of next possible states is too large to enumerate.

4. Analytic: The agent has direct access to T and R as in a
distribution model MDP. This means that for every s ∈ S
and a ∈ A, the agent knows exactly the outputs of the
functions T (s, a, ·) and R(s, a, ·).

5. Structured: The agent has direct access to T and R as
in an analytic MDP, and furthermore the agent has access
to structured representations of these models that may be
leveraged for efficient and effective decision-making.

1This is an indefinite-horizon MDP. Infinite-horizon MDPs with
discount factors can be converted into equivalent indefinite-horizon
MDPs. Indefinite-horizon MDPs should also have proper policies
to be well-defined; see Mausam and Kolobov (2012, Sec. 2.4).

We focus in this paper on what is meant by structured rep-
resentations, and methods that make use of such structure in
many different forms. Later in the paper, we will also discuss
how lower levels of MDP access can effectively be upgraded
to structured access via learning.

3 Planning
In this section, we provide a brief overview of formalisms
and algorithms for AP as structured representations of
MDPs. We conclude with pointers to more comprehen-
sive references and repositories for interested readers to get
started with planning.

3.1 AP Representations
AP practitioners formalise decision-making problems as
structured MDPs, which compactly represent large worlds,
with the aid of first-order logic and the closed world assump-
tion. We begin by providing a minimal formalism of struc-
tured MDPs by covering how one is able to represent states
and transitions in a factored form. The formalism presented
in this section is commonly referred to as the classical plan-
ning setup in which problems are discrete, fully observable
and deterministic. However, the presented ideas can gener-
alise to involve probabilities, as well as further extensions of
the presented MDP formalism, which we cover in Sec. 3.3.

States The necessary recipe components for constructing
states in a planning task include (1) a set of predicates P, and
(2) objects O. A predicate takes the form p(x1, . . . , xn) ∈ P
where p is simply a predicate symbol, and the xi’s are its
arguments. The arity of a predicate is the number of ar-
guments it takes. The set of objects O is a set of constant
symbols. With these two ingredients, one can define propo-
sitions, which are obtained from predicates by assigning ob-
jects from O to all their arguments. The process of assigning
objects to predicate arguments is called grounding. For ex-
ample, in(x, y) is a predicate with arguments x and y, and
can be grounded into a proposition in(dog,bedroom),
which means that the dog is in the bedroom.

A state in a planning task is simply a set of proposi-
tions. AP representations follow the closed-world assump-
tion, which states that the propositions in the state represent
all true facts, and anything else not in the state is assumed
false. For example, suppose that our world also contains the
dirty predicate and the current state is

{in(dog,bedroom),hungry(dog),brown(dog)}.

Given that dirty(dog) is not present in the state, we know
that the dog is not dirty.

Goals AP problems are goal-oriented, as opposed to
reward-oriented in the common RL problem treatment. This
treatment of decision-making problems can be represented
in our MDP formalism by treating terminal states as goal
states. A goal condition G in a planning task is defined as
a propositional formula, and a state s is a goal state if its
closed-world interpretation satisfies the formula G. Thus,
we can implicitly represent the set of all goal states G in an
MDP without enumerating all of them. For example, we may
have a goal condition ¬hungry(dog) which can describe
all goal states regardless of where the dog is located.



Transitions Transitions in AP are defined from a set of
action schemata A, which similarly to predicates, can be
grounded from task objects to induce a high-order polyno-
mial number of actions and transitions. In the goal-oriented
setting, such actions exhibit negative rewards in the reward
maximisation setting in order to represent action costs.

An action schema in a planning task is a tuple a =
⟨arg(a),pre(a), add(a),del(a)⟩, where arg(a) denotes a
set of arguments and pre(a)/add(a)/del(a) are sets of pred-
icates from P instantiated with arguments from arg(a) rep-
resenting the preconditions (pre) that must be true for the
action to be executable, and its positive (add) and negative
(del) effects. For example, we can define a move schema by

arg(a) = {x, l1, l2} , pre(a) = {in(x, l1)} ,
add(a) = {in(x, l2)} , del(a) = {in(x, l1)} .

An action schema a can be grounded into an action a by
assigning objects from O to arguments in arg(a). Each ac-
tion corresponds to a set of transitions. More specifically, for
each state s and action a, we say that a is applicable in s if
pre(a) ⊆ s, in which case we define the successor state by
s′ = (s \ del(a))∪ add(a). Preconditions and action effects
implicitly induce the probability values of transitions. More
specifically, we have T (s, a, s′) = 1, and T (s, a, s′′) = 0
for all s′′ ̸= s′. Furthermore, if a is not applicable in s, we
have T (s, a, t) = 0 for all states t.

For example, the defined action schema move induces
the action move(dog,bedroom,kitchen) when we as-
sign the schema arguments to the objects dog, bedroom,
and kitchen. This action can be applied in the previously
mentioned state to create with probability 1 a new state

{in(dog,kitchen),hungry(dog),brown(dog)}.

3.2 Benefits of Structure
The presented AP representation for modelling MDPs pro-
vides several benefits for efficient decision-making.
Attention The use of predicate logic in AP allows us to
view states as databases from which one may make queries
to determine transitions and relevant information for the
goal. Suppose we extend our example state to encode other
true but irrelevant information about the world:

{in(dog,bedroom),hungry(dog),brown(dog),
dirty(bedroom),likes(dog,bedroom),

can make(dog,sandwich),in(bed,bedroom)}.

The previous move action is still applicable in this state
and due to the implicit frame axiom of the AP formalism,
applying the action does not change the additional, irrelevant
facts. One can draw an analogy of the database view of AP to
the ML concept of attention where one focuses only on the
necessary information in the input for making decisions. In-
deed, AP approaches leverage this relevance insight (Muise,
McIlraith, and Beck 2012; Corrêa et al. 2020; Silver et al.
2021) for achieving effective planning performance in com-
plex environments.

Automation AP can be viewed as a declarative program-
ming paradigm where problems are specified as a program
in a planning language such as PDDL. The primary advan-
tage from this viewpoint is that one does not have to write a

solver for a problem and only a model of the problem. This
can save time and effort required for developing solvers and
also making changes to the problem. Furthermore, by as-
suming standardised input languages for planning, AP re-
searchers have developed highly optimised planners.

Complexity The usage of predicate logic also allows us to
compactly represent combinatorially large state spaces. For
example, if we have a predicate of arity k and there are n
objects, then the maximum number of possible propositions
we can create is nk. However, thanks to the closed-world
assumption, we do not have to explicitly mention all false
propositions so states are generally very small and com-
pactly represented. The case is similar for action schemata.
Indeed the compactness of the planning task formalised as
above is reflected in the result that solving a planning task
represented in this way is EXPSPACE-complete (Erol, Nau,
and Subrahmanian 1995).

3.3 Planning Extensions
The previous section identified the key ingredients com-
monly used in AP research from and for which a plethora
of powerful algorithms have been developed. Although we
only covered the classical planning setup so far, there exist
various AP extensions which bootstrap off similar ideas for
handling more complex features. Without going into formal
details, we present pointers to such AP extensions.

Uncertainty Probabilistic Planning (Mausam and
Kolobov 2012) extends the classical planning setup by
allowing for probabilistic transitions, thus encapsulating
the presented MDP formalism. This has been done in
PPDDL (Younes and Littman 2004) by extending action
schemata with sets of effects with associated probabilities.
RDDL (Sanner 2010) is another language which can encode
factored MDPs as well as specifying common probability
distributions of actions. It differs from PDDL by providing
a fluent-centric representation of actions and can also be
viewed as a Dynamic Bayesian Network.

Nondeterministic Planning (Cimatti et al. 2003) is a
variant of probabilistic planning where probabilities for
transitions are not given or unknown. Conformant Plan-
ning (Smith and Weld 1998) is the problem of computing
plans in partially observable environments that are guaran-
teed to succeed with probability 1 or greater than a specified
threshold (Domshlak and Hoffmann 2006, 2007).

Time and Numerics PDDL 2.1 (Fox and Long 2003) ex-
tends classical planning by introducing both time and nu-
merics. Numeric Planning introduces functions and numeric
expressions, allowing the representation of numeric state
variables capturing e.g. resources, physical properties, and
plan metrics. Temporal Planning extends the definition of
actions and plans to allow for durative and concurrent ac-
tions, as well as deadlines and temporal synchronisation.

Beyond Agentic Setups The classical planning setup is
agent-centric, where environmental processes are modelled
as if they were performed by the agent. Hybrid Plan-
ning (Fox and Long 2006), formalised in the PDDL+ lan-
guage, introduces continuous variables as well as the abil-



ity to model continuous processes and events for represent-
ing environmental changes. Multi-Agent Planning (Torreño
et al. 2018) has been represented in MA-STRIPS (Brafman
and Domshlak 2008) for which proper encodings lead to
more efficient planning as opposed to modelling multiple
agents with classical planning.

3.4 State-of-the-Art from Structure
Despite the computational complexity of solving planning
tasks, AP researchers have developed a number of powerful
techniques and solvers for tackling them. In this section, we
focus on the main methodologies underlying the former, and
also draw ties to similar themes from the RL literature. The
presented techniques originate from classical planning but
the underlying ideas generalise to various extensions cov-
ered in Sec. 3.3 such as probabilistic planning.

We begin by describing components of heuristic search,
a state-of-the-art technique for planning. The components
involve the derivation of (1) domain-independent heuristic
functions for use with (2) heuristic search algorithms. This
approach draws analogies to state-of-the-art RL methodolo-
gies involving value function approximation and search (Sil-
ver et al. 2016; Sutton 2019). Next, we cover a wide variety
of other planning techniques falling under the umbrella of
term of (3) problem decomposition. This subsection draws
analogies to the diverse field of Hierarchical RL (HRL).
More specifically, both HRL and decomposition techniques
in planning involve breaking down larger difficult problems
into smaller, more manageable subproblems.

Heuristic Functions Some RL algorithms employ ap-
proximate value functions to estimate the maximum ex-
pected reward achievable from a given state over infinite
horizons with discounts or finite horizons to help compute
optimal policies. Contrarily, some AP algorithms use heuris-
tic functions which estimate the optimal cost-to-go to a goal
state for computing solutions. Formally, a heuristic is a func-
tion on states h : S → R ∪ {∞} where ∞ is used to
represent deadend states, states that cannot reach the goal
state. The optimal heuristic h∗ returns the optimal plan cost
from a state to a goal, and a heuristic h is admissible if
h(s) ≤ h∗(s),∀s ∈ S. Admissible heuristics used in the
A∗ search algorithm are guaranteed to return optimal so-
lutions, while inadmissible heuristics are used with search
algorithms such as Greedy Best First Search (GBFS) for re-
turning solutions quickly, but not necessarily optimal.

Heuristic functions in planning are often synthesised by
approximating h∗ through solving easier relaxations of the
original task. The delete-relaxation of a planning task in-
volves removing delete effects of all actions and leads to
the derivation of widely-known planning heuristics includ-
ing the inadmissible FF (Hoffmann and Nebel 2001) and the
admissible LM-cut heuristic (Helmert and Domshlak 2009).

There also exists a suite of heuristics arising from solv-
ing abstractions of the original task. Early works include
extending Pattern Database (PDB) heuristics (Culberson
and Schaeffer 1996, 1998) to planning (Edelkamp 2002;
Haslum et al. 2007), which in turn have later been gener-
alised to Merge and Shrink (M&S) abstractions (Helmert,
Haslum, and Hoffmann 2007). Cartesian abstractions (Seipp

and Helmert 2013, 2018) also generalise PDB heuristics and
provide more efficient abstraction refinements than M&S.

Cost partitioning (Katz and Domshlak 2008) provides an
approach for adding multiple heuristics into one in an admis-
sible way by partitioning the cost of each action among these
heuristics. It has been used as a theoretical tool to compare
different classes of heuristics (Helmert and Domshlak 2009)
and has also been extended in various fashions for construct-
ing strong admissible heuristics (Pommerening, Röger, and
Helmert 2013; Pommerening et al. 2014; Seipp and Helmert
2014; Seipp, Keller, and Helmert 2020).

Novelty heuristics and width-based algorithms (Lipovet-
zky and Geffner 2012, 2017; Katz et al. 2017) make use
of the structured representation of planning tasks for bal-
ancing exploration and exploitation for suboptimal planning
through preferring states that exhibit subsets of facts that
have not been seen before.

Search Algorithms In the context of deterministic plan-
ning, the A∗ algorithm is a heuristic search algorithm which
is guaranteed to return optimal solutions when used with an
admissible heuristic. A∗ extends breadth-first search and as-
signs each search node n, consisting of a state s and a pointer
to its parent node, an f(n) = g(n) + h(s) value where g(n)
is the cost of the path from the initial state to n, and h(s)
is the heuristic estimate of the state. Search nodes are added
and popped from a priority queue based on their f values.

Greedy Best First Search (GBFS) and Weighted A∗ are
variants of A∗ where g(n) = 0 and f(n) = g(n) + w · h(s)
for some w ∈ [1,∞), respectively, for use in satisfic-
ing planning. GBFS has been extended in various ways
for more efficient satisficing planning such as by including
multiple-queues when using multiple heuristics, making use
of preferred operators, and lazily deferring heuristic evalua-
tion (Richter and Westphal 2010; Röger and Helmert 2010).

Anytime heuristic search (Hansen and Zhou 2007) refers
to a class of heuristic search algorithms that continually re-
turn solutions of increasing quality, some of which converge
to optimal solutions. Such algorithms are often able to use
inadmissible heuristics which provide more informative h∗

estimates for better anytime behaviour.
AP researchers also use heuristic search algorithms for

probabilistic planning. LAO∗ (Hansen and Zilberstein 2001)
and LRTDP (Bonet and Geffner 2003) are optimal heuris-
tic search algorithms with an explicit termination condition
once an optimal solution is reached. We classify these al-
gorithms as analytic algorithms as they require access to
the transition function T . Monte Carlo Tree Search algo-
rithms such as UCT (Kocsis and Szepesvári 2006) are any-
time optimal algorithms which can operate with only a gen-
erative transition model and use an inadmissible heuris-
tic for anytime search, which we classify as sampling-
based. However, sampling-based algorithms have a worst-
case convergence rate significantly worse than analytic al-
gorithms (Coquelin and Munos 2007; Walsh, Goschin, and
Littman 2010). Regardless, algorithms have been proposed
which combine the benefits of both worlds (Bonet and
Geffner 2012; Keller and Helmert 2013; Wissow and Asai
2024). Heuristic search algorithms have also been extended



to handle constrained MDPs (Trevizan et al. 2016; Trevizan,
Thiébaux, and Haslum 2017; Schmalz and Trevizan 2024)
by exploiting the convex, dual LP formulation of constrained
MDPs combined with heuristics from the primal space.

Problem Decomposition So far, we have seen how struc-
tured representations offer a rich variety of methods for syn-
thesising heuristic functions for use with heuristic search.
Such representations also allow us to decompose hard, com-
plex problems into easier and smaller subtasks. The idea
of decomposition is also prevalent in HRL in its various
forms (Dayan and Hinton 1992; Kaelbling 1993; Parr and
Russell 1997; Sutton, Precup, and Singh 1999; Dietterich
2000). AP techniques described in this section take advan-
tage of structured representations to compute decomposi-
tions without any search, learning or advice.

Subgoals can be viewed as one form of decomposition,
indicating intermediate goals that must be achieved to syn-
thesise a solution. They were initially introduced through
the concept of landmarks (Porteous, Sebastia, and Hoffmann
2001; Richter, Helmert, and Westphal 2008) which may ei-
ther be a fact that must be reached by any solution, or a set
of actions of which at least one must exist in any solution.
Subgoals have also been recently represented as sketches
which can be used to solve specific domains in polynomial
time (Bonet and Geffner 2021, 2024).

Mutexes and invariants represent sets of facts that are
mutually exclusive in every state, and formulae that hold
true in every state and goal condition, respectively. Mu-
texes are useful for transforming planning tasks into com-
pact representations consisting of a small number of finite
domain variables, rather than sets of facts as described pre-
viously (Helmert 2006, 2009). Invariants on the other hand
can be used to prune irrelevant states and actions (Alcázar
and Torralba 2015; Fiser and Komenda 2018). Such repre-
sentations allow for more efficient problem analysis.

Factored planning (Brafman and Domshlak 2006) and
symbolic search (Edelkamp 2003; Speck 2022) allow for
performing search that does not incur exponential blowups
in certain domains (Gnad 2021, Sec. 6). Factored plan-
ning refers to the idea of partitioning state variables for de-
composing problems for which one can perform decoupled
search (Gnad and Hoffmann 2018). Symbolic search refers
to a class of algorithms performing reasoning or search over
sets of states represented by Binary Decision Diagrams.

Symmetries in planning state spaces and transitions can
also be computed and detected (Pochter, Zohar, and Rosen-
schein 2011; Shleyfman et al. 2015; Sievers et al. 2019) in
order to prune large segments of the state space. The concept
of symmetries can again be viewed as a form of problem
decomposition as it involves collapsing equivalent subprob-
lems to generate an easier task to solve.

Incorporating prior knowledge General AI agents aim
to complete tasks which in some form or another are spec-
ified by humans, whether it be through reward functions in
RL, or goal-conditioned models in AP. As pointed out and
studied by (Booth et al. 2023) truly faithful reward func-
tions are generally sparse and represent goal specifications,
whereas in practice RL practitioners encode prior knowl-

edge into the reward function to help RL agents learn faster.
Contrarily, AP practitioners funnel knowledge into or on top
of the existing planning model of the task via formal lan-
guages, for which tools exist for repairing incorrect mod-
els (Lin, Grastien, and Bercher 2023; Gragera et al. 2023).

Works for incorporating prior knowledge in planning gen-
erally involve employing formal languages. Hierarchical
Task Networks (HTNs) (Erol, Hendler, and Nau 1994; Nau
et al. 2003; Bercher, Alford, and Höller 2019) are used
to model hierarchies and orderings of tasks. Variants of
temporal logics have been used to express both state and
action-centric temporal preferences for modelling domain
control knowledge (Bacchus and Kabanza 2000; Bienvenu,
Fritz, and McIlraith 2006; Baier et al. 2008). Reward ma-
chines (Icarte et al. 2018, 2022) employ finite state machines
for modelling reward functions with the ability to express
temporal properties and properties of regular languages.

Logic programming languages have been used in AP
under the nomenclature of axioms (Thiébaux, Hoffmann,
and Nebel 2005) for improving modelling and speeding up
search (Ivankovic and Haslum 2015), defining valid tasks
for a domain (Grundke, Röger, and Helmert 2024), specify-
ing goals for RL (Agostinelli, Panta, and Khandelwal 2024),
and directly encoding solution strategies for planning do-
mains (Chen, Horčı́k, and Šı́r 2024).

3.5 Planning Resources
Benchmarks Planning researchers have been running the
International Planning Competition2 (IPC) for over two
decades which exhibits a large and diverse set of bench-
marks for both classical planning and more expressive ex-
tensions. Some of the planning domains used in previous
IPCs also contain generators for automatically constructing
new problems3. The PDDLGym4 (Silver and Chitnis 2020)
package automatically converts PDDL domains and prob-
lems into OpenAI Gym environments for use with RL.

Planners Fast Downward5 (Helmert 2006) is a well-
known AP system consisting of various powerful planner
configurations for solving classical planning tasks. To find
planners that handle more expressive AP formalisms cov-
ered in Sec. 3.3 or specific problem setups, one can refer
to planners submitted to the various IPC tracks and relevant
papers or ask in the planning slack channel6.

Further References The planning.domains7 initiative
provides several AP resources and solvers as a free and
open-source cloud service. Other useful open-source li-
braries include the Unified Planning library8 which provides
a Python interface to model and solve planning problems
using existing classical, numeric, temporal, multi-agent, and
hierarchical planners, and the Scickit-Decide library9 which

2https://www.icaps-conference.org/competitions/
3https://github.com/AI-Planning/pddl-generators
4https://github.com/tomsilver/pddlgym
5https://github.com/aibasel/downward
6https://tinyurl.com/planning-community
7http://planning.domains/
8https://github.com/aiplan4eu/unified-planning
9https://airbus.github.io/scikit-decide/

https://www.icaps-conference.org/competitions/
https://github.com/AI-Planning/pddl-generators
https://github.com/tomsilver/pddlgym
https://github.com/aibasel/downward
https://tinyurl.com/planning-community
http://planning.domains/
https://github.com/aiplan4eu/unified-planning
https://airbus.github.io/scikit-decide/


train = test train size = test size train size ⊂ test size

...

Figure 1: Generalisation setups for decision-making. AP ap-
proaches incorporating learning often handle the most gen-
eral case (right) involving arbitrarily large test problems.

provides a framework for specifying and solving RL, AP,
and scheduling problems. For textbook references, we refer
to books by Ghallab, Nau, and Traverso (2004) and Geffner
and Bonet (2013) for comprehensive introductions to AP.
The AI book (Russell and Norvig 2020) covers planning as
well as other related AI topics. The PDDL book (Haslum
et al. 2019) provides a comprehensive introduction and ref-
erence to the AP language and its extensions.

AP in the Wild AP has also been used outside of bench-
marks in the IPC. The ‘poster-child of applications of AI
planning’ is the Mars Exploration Rovers (Bresina et al.
2005). More recently, AP technology has been incorporated
into embodied AI systems (Liu, Palacios, and Muise 2023;
Kumar et al. 2024). Common embodied AI benchmarks
such as ALFWorld (Shridhar et al. 2021), a combination of
the NLP TextWorld (Côté et al. 2019) and grounding AL-
FRED (Shridhar et al. 2020) benchmarks, use PDDL as a la-
tent structure for representing the state of the environment.
Conversely, common model-free RL benchmark domains
such as MiniGrid (Chevalier-Boisvert et al. 2019) exhibit
characteristics of classical planning problems: determinis-
tic actions and goals in the form of sparse rewards. Such
domains exhibit structured AP representations which can be
explicitly encoded or learned (Sreedharan and Katz 2023).

4 Learning Structure and from Structure
RL setups involve learning from interactions with the en-
vironment for solving single tasks, but also learning from
experiences that can be used for helping solve unseen
tasks (Taylor and Stone 2009; Kirk et al. 2023). AP technol-
ogy also exhibit learning capabilities, such as learning dead-
end detectors within a single problem (Steinmetz and Hoff-
mann 2017) analogous to clause-learning in SAT solvers,
and computing pattern databases (Culberson and Schaeffer
1998) from abstractions of planning problems. In this sec-
tion, we focus on learning and generalisation for AP across
unseen problems. We begin by defining the generalisation
problem for planning which is an out-of-distribution task.
This is because evaluation is performed across unseen tasks
with arbitrary numbers of objects.

This involves learning structured AP models from raw in-
puts which can generalise to unseen situations and scenarios
which we cover in Sec. 4.1. By doing so, we can leverage AP
technology for more efficient and effective decision-making
as opposed to having no models of the world. Furthermore,
we cover methodologies for learning directly from struc-
tured AP models in order to make planning faster. We treat

this from two perspectives. In Sec. 4.2, we survey the statisti-
cal inference view of learning to plan from training data and
the benefits of doing so from structured models. In Sec. 4.3,
we cover program synthesis for constructing compact solu-
tions of (possibly infinite) sets of structured AP problems
with the added benefits of explainability and verifiability.

Generalisation in Planning
We tie together all aforementioned subfields of AP incor-
porating learning as the Generalisation in Planning setup,
which we formulate and describe by its components:
1. A problem tuple ⟨D,Ttrain,Ttest⟩ where D is a domain,

Ttrain is a finite set of training tasks drawn from D, and
Ttest is a (possibly infinite) set of testing tasks from D

2. An algorithm which outputs a set of plans corresponding
to tasks in Ttest and exhibits two modules:

(a) a learner module, which takes in D and Ttrain and
outputs a knowledge artifact, and

(b) a planner module, which takes in arbitrary tasks from
Ttest and the artifact to output a solution for each task.

The Generalisation in Planning setup is similar to the Zero-
Shot Generalisation in RL setup (Kirk et al. 2023) with the
main difference lying in the specification of a domain, a set
of similar tasks. The Zero-Shot RL setup formalises simi-
larity of tasks with probability distributions in Contextual
Markov Decision Processes which may not be known a pri-
ori. Conversely, the Generalisation in Planning setup takes
advantage of formal languages in AP in order to explicitly
define the domain and task.

4.1 Learning Planning Models
In this section, we see how MDPs at continuing, episodic,
generative, or analytic access level can be upgraded to struc-
tured access by learning a transition model of the environ-
ment corresponding to T . Model-based RL (MBRL) ap-
proaches sometimes rely on observations or active explo-
ration of the environment to learn a model of the envi-
ronment. The classic “Dyna” framework (Sutton 1991) in
its introduction mentioned a step for “Learning of domain
knowledge in the form of an action model”, before using the
learned model to “plan”. A similar approach can be used to
learn the domain model D in various forms. This model D
compactly represents the set of transitions T . Advantages
of MBRL include better explanability of the decisions, sam-
ple efficiency and thereby better learning speed, and safety
assessment of the agent (Moerland et al. 2023). Addition-
ally, learning a domain model is better than learning a task-
specific model (as done in many RL settings) because the
learned domain model can be reused for any task following
the same dynamics, irrespective of the number of objects,
configuration of objects in the environment, etc.

Learning from passive state-action traces Action Model
Learning for Planning has a rich history of learning action
models from a set of input state-action transitions (Arora
et al. 2018; Aineto, Jiménez, and Onaindia 2022). The
classical approaches learned PDDL-like models domain for
deterministic transition systems. LOCM (Cresswell, Mc-
Cluskey, and West 2009), LOCM2 (Cresswell and Gregory



2011), etc. present a class of algorithms that use finite-state
machines to create PDDL models from observed plan traces.
ARMS (Yang, Wu, and Jiang 2007), AMAN (Zhuo and
Kambhampati 2013), etc. leverage MAX-SAT to learn ac-
tion models with partial or noisy traces. FAMA (Aineto,
Celorrio, and Onaindia 2019) reduces model recognition to
a planning problem and can work with partial action se-
quences and/or state traces as long as correct initial and
goal states are provided. Bonet and Geffner (2020a) and Ro-
driguez et al. (2021) present approaches for learning rela-
tional models using a SAT-based method when the action
schema, predicates, etc. are not available. These approaches
take as input a predesigned correct and complete directed
graph encoding the structure of the entire state space. A cen-
tral theme of these approaches is to analyse the states before
(and after) an action is applied to learn the common fea-
tures as preconditions (and effects). Callanan et al. (2022)
provides APIs for many of these approaches.

Learning from passive image traces The works men-
tioned above learn a model of the agent using transitions
that are represented using successive states in S. Many times
such information is not directly available, and there are ap-
proaches that learn the environment model using images.
Asai et al. (2022); Verma, Marpally, and Srivastava (2021);
Xi, Gould, and Thiébaux (2024), etc. learn lifted PDDL ac-
tion models from image traces. These approaches have been
shown to work well on domains in grid formats or from the
PDDLGym library (Silver and Chitnis 2020). Campari et al.
(2022) learn similar models for embodied AI domains using
images of the environment to get state information.

Learning from directed exploration Xu and Laird
(2010) and Lamanna et al. (2021) use online learning to
learn a PDDL action model incrementally, instead of learn-
ing from observations. The idea is to incorporate new obser-
vations to improve the action model. This setting is closer
to the typical MBRL setting. IRALe (Rodrigues et al. 2011)
is an active learning based method that learns lifted transi-
tion modules by exploring actions in states where its par-
tially learned preconditions almost hold. Verma, Marpally,
and Srivastava (2021) use active querying to learn a PDDL
model for an agent. Verma, Marpally, and Srivastava (2022)
learn high level capabilities (or skills) of the agent and learn
a PDDL model in terms of those capabilities.

Many recent approaches learn models for environment
with stochastic transition systems. Incremental Learning
Model (Ng and Petrick 2019) employs reinforcement learn-
ing to construct PPDDL models without relying on plan
traces. This approach strategically prioritizes the execu-
tion of actions about which the model has limited infor-
mation, gradually building a comprehensive PPDDL model
of the environment through iterative learning. Chitnis et al.
(2021) present an approach for learning probabilistic rela-
tional models where they use goal sampling as a heuristic for
generating relevant data. The central idea for the agent is to
generate a goal far away from the initial state, and the agent
tries to reach that goal using the model known at that point.
The data generated from executing the actions while trying
to reach that goal is used to learn the environment model.

Verma, Karia, and Srivastava (2023) learn a PPDDL model
using autonomous active querying. These queries are in the
form of policies that the agent must execute in the environ-
ment, and learn a model based on the resulting observations.

4.2 Learning for Planning
As mentioned previously, MBRL exhibits various benefits
from being able to access closed-form representations of
MDP components, including data efficiency, safety, and ex-
planability. In this section, we highlight further advantages
for learning that can be gained from planning representa-
tions discussed in Sec. 3. Notably, such representations ex-
hibit rich structural information to aid learning by improving
efficiency and performance, and do not require additional
computation to learn from scratch.

Before we begin, we also make special mention to related
fields of Relational RL (Dzeroski, Raedt, and Driessens
2001; Hazra and Raedt 2023; Marra et al. 2024) and In-
ductive Logic Programming (Muggleton and Raedt 1994;
Lavrac and Dzeroski 1994; Cropper et al. 2022) which sim-
ilarly learn from structured data using first-order logic.

Low cost of reasoning Advantages of planning represen-
tations for learning to solve decision making tasks are mani-
fold arising from the rich structural information of the task at
hand they implicitly encode. One advantage of this is the low
number of data samples required to learn domain knowledge
for unseen tasks. In comparison to model-free approaches
which have to learn latent features from both raw inputs and
exploration, planning representations operate on relational
information from which generating features is efficient and
well-aligned with the task at hand.

Early works in L4P exploited the structure of planning
tasks to quickly and automatically derive features (Martı́n
and Geffner 2004; Yoon, Fern, and Givan 2008; Celorrio,
Aguas, and Jonsson 2019) or logical rules (Khardon 1999;
Gretton and Thiébaux 2004) that were correlated with and
relevant to the task at hand. Despite the much more prim-
itive compute available at the time of such works, these
methods were able to solve simple planning tasks such as
Blocksworld which are still unsolved with deep learning
and large architectures at the time this paper was writ-
ten (Valmeekam et al. 2023b,a; Valmeekam, Stechly, and
Kambhampati 2024). Furthermore, recent works incorpo-
rating learning in planning continue to make use of small
datasets, with an emphasis of demonstrating high data ef-
ficiency. For example, experiments in (Chen and Thiébaux
2024) use a few dozen small training tasks and a median
time of one second to generate labels for use in supervised
learning across various domains.

Exploiting graph learning research More recent re-
search progress in L4P has been exploiting graph learning
architectures such as message passing graph neural networks
(GNNs) (Gilmer et al. 2017), in line wth the current surge of
interest in the latter.10 Graph learning approaches can take
on arbitrarily sized inputs, display extrapolation capabili-
ties (Xu et al. 2021) and theoretical relations to counting log-
ics (Morris et al. 2019; Xu et al. 2019; Barceló et al. 2020;

10Based on ICLR’24 publications: https://tinyurl.com/3xjknfhh

https://tinyurl.com/3xjknfhh


Grohe 2021) that standard neural networks operating on raw
inputs do not exhibit.

L4P graph learning works generally learn reusable heuris-
tic and value functions (Shen, Trevizan, and Thiébaux 2020;
Ståhlberg, Bonet, and Geffner 2022; Chen, Thiébaux, and
Trevizan 2024), policies (Toyer et al. 2018, 2020; Dong et al.
2019; Garg, Bajpai, and Mausam 2020; Sharma et al. 2022;
Wang and Thiébaux 2024), or preprocessing techniques (Ma
et al. 2020; Silver et al. 2021) that can be used to solve un-
seen tasks. Furthermore and in line with the previous point
of low cost of reasoning, it has been shown that classical
machine learning making use of graph kernels can be used
to train models as expressive as GNNs and solve AP tasks
several orders of magnitude faster than deep learning (Chen,
Trevizan, and Thiébaux 2024; Chen and Thiébaux 2024).

Automatic reward functions and labels Standardised
representations of planning tasks allow for various meth-
ods of automatically generating faithful reward functions or
supervised training labels for arbitrary domains and tasks.
Related to the previous point, this means that there is no
need for planning practitioners to design reward functions
for each domain individually and instead it is possible to
take off-the-shelf algorithms for generating rewards and la-
bels for learning. For example, the ASNets (Toyer et al.
2018, 2020) framework and its numeric planning exten-
sion (Wang and Thiébaux 2024) performs an RL-style ap-
proach of exploring with a partially learned policy and ex-
ploiting with a teacher planner as a proxy for a reward func-
tion. It is also possible to exploit various existing domain-
independent heuristics (Bonet and Geffner 2001) that are
commonly used in planning as dense reward functions for
RL approaches (Gehring et al. 2022), and conversely use RL
directly for learning heuristic functions (Micheli and Valen-
tini 2021; Ståhlberg, Bonet, and Geffner 2023).

Furthermore, it is possible to automatically generate su-
pervised training labels from training tasks with domain-
independent planners directly. This is can be done for learn-
ing heuristic functions by extracting optimal value functions
from optimal plan traces. Works have also exploited the fact
that in certain search algorithms, heuristics are better viewed
as ranking functions (Garrett, Kaelbling, and Lozano-Pérez
2016), for which it is also possible to learn from optimal
plans with various different optimisation formulations us-
ing RankSVM (Garrett, Kaelbling, and Lozano-Pérez 2016),
differentiable loss functions (Chrestien et al. 2023), classifi-
cation (Hao et al. 2024), and Linear Programs (Chen and
Thiébaux 2024). Orthogonally, Núñez-Molina et al. (2024)
proposed improved regression functions for learning heuris-
tics using bounds derived from truncated Gaussians.

4.3 Generalised Planning
This area of research focuses on computing and represent-
ing generalisable knowledge for planning. In the context of
the Generalisation in Planning framework articulated at the
start of Sec. 4, this class of approaches addresses the prob-
lem of computing or learning the “knowledge artifact” or
Generalised Planning Knowledge (GPK) in the form of al-
gorithmic generalised plans (Levesque 2005; Srivastava, Im-
merman, and Zilberstein 2008; Bonet, Palacios, and Geffner

2009; Srivastava, Immerman, and Zilberstein 2011; Hu and
Giacomo 2011; Segovia-Aguas, Jiménez, and Jonsson 2016;
Silver et al. 2024), generalised policies and Q-functions for
stochastic settings (Fern, Yoon, and Givan 2006; Ng and
Petrick 2022; Karia, Kaur Nayyar, and Srivastava 2022)
and other forms of knowledge for reducing the computa-
tional complexity of future planning tasks. Most work in this
area focuses on learning via program synthesis for trans-
fer to tasks with unbounded numbers of objects; almost all
work addresses scenarios where test tasks feature more ob-
jects (and corresponding longer horizons and larger, differ-
ent state spaces) than training tasks.

Approaches for Generalised Planning (GP) can be evalu-
ated on various dimensions (Srivastava, Immerman, and Zil-
berstein 2011), including the domain coverage, i.e., the frac-
tion of tasks of interest where it would be applicable; and
cost of instantiation or computational complexity of using
GPK to compute solutions for new tasks in a zero-shot fash-
ion. Typically, these two metrics are inversely correlated.
Learning generalised plans is desirable because they yield
high domain coverage at low costs of instantiation. How-
ever, finding such generalised solutions is challenging: it is
well known that relative simple representations for gener-
alised plans and are equivalent to counter-based models of
computing, and thus equivalent to Turing equivalent, mak-
ing it difficult to determine, in general, whether a given gen-
eralised plan will terminate and achieve a goal condition.

Several algorithms push the boundary of decidability on
this problem for structured classes of generalised plans (Sri-
vastava 2010; Hu and Giacomo 2011; Srivastava, Immer-
man, and Zilberstein 2012). The sieve family of algo-
rithms (Srivastava et al. 2011; Bonet and Geffner 2020b;
Srivastava 2023) presents structure-independent, sound ap-
proaches for evaluating counter-based generalised plans. In
conjunction with logic-based abstractions that map problem
states into vectors of counters, these algorithms have been
used to compute generalised plans as well as sketches (Bonet
and Geffner 2021), as another form of GPK.

As in approaches for learning for planning, multiple
classes of models have been considered: generative mod-
els (simulators) as well as analytic and structured models.
While much of the work discussed above utilizes structured
domain models, recent approaches also address the problem
of learning GPK without analytical domain models. In par-
ticular, recent research indicates that deep learning in con-
junction with logic-based abstractions originally developed
for learning generalised plans yields sample efficient ap-
proaches for learning generalised heuristics (e.g., (Karia and
Srivastava 2021; Ståhlberg, Bonet, and Geffner 2022; Chen,
Thiébaux, and Trevizan 2024)) and generalised Q-functions
in RL problems (Karia and Srivastava 2022) without access
to analytic/structured domain models.

5 Conclusion
This survey paper provides a primer into the field of AI Plan-
ning (AP) by introducing core concepts and ideas revolving
around the theme of structure. Furthermore, we covered ar-
eas concerned with learning structure in order to perform
AP, as well as learning from structure for improving AP.
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Chen, D. Z.; Horčı́k, R.; and Šı́r, G. 2024. Deep Learning for
Generalised Planning with Background Knowledge. CoRR,
abs/2410.07923.
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Lozano-Pérez, T.; Kaelbling, L. P.; and Barry, J. 2024. Prac-
tice Makes Perfect: Planning to Learn Skill Parameter Poli-
cies. In Robotics: Science and Systems (RSS).
Lamanna, L.; Saetti, A.; Serafini, L.; Gerevini, A.; and
Traverso, P. 2021. Online Learning of Action Models for
PDDL Planning. In IJCAI.
Lavrac, N.; and Dzeroski, S. 1994. Inductive logic program-
ming - techniques and applications. Ellis Horwood.
Levesque, H. J. 2005. Planning with Loops. In IJCAI.
Lin, S.; Grastien, A.; and Bercher, P. 2023. Towards Auto-
mated Modeling Assistance: An Efficient Approach for Re-
pairing Flawed Planning Domains. In AAAI.
Lipovetzky, N.; and Geffner, H. 2012. Width and Serializa-
tion of Classical Planning Problems. In ECAI.
Lipovetzky, N.; and Geffner, H. 2017. Best-First Width
Search: Exploration and Exploitation in Classical Planning.
In AAAI.
Liu, X.; Palacios, H.; and Muise, C. 2023. Egocentric Plan-
ning for Scalable Embodied Task Achievement. In NeurIPS.
Ma, T.; Ferber, P.; Huo, S.; Chen, J.; and Katz, M. 2020.
Online Planner Selection with Graph Neural Networks and
Adaptive Scheduling. In AAAI.
Marra, G.; Dumancic, S.; Manhaeve, R.; and Raedt, L. D.
2024. From statistical relational to neurosymbolic artificial
intelligence: A survey. Artif. Intell., 328: 104062.
Martı́n, M.; and Geffner, H. 2004. Learning General-
ized Policies from Planning Examples Using Concept Lan-
guages. Appl. Intell., 20: 9–19.
Mausam; and Kolobov, A. 2012. Planning with Markov De-
cision Processes: An AI Perspective. Morgan & Claypool
Publishers.
McDermott, D.; Ghallab, M.; Howe, A. E.; Knoblock, C. A.;
Ram, A.; Veloso, M. M.; Weld, D. S.; and Wilkins, D. E.
1998. PDDL-the planning domain definition language.
Technical report.
Micheli, A.; and Valentini, A. 2021. Synthesis of Search
Heuristics for Temporal Planning via Reinforcement Learn-
ing. In AAAI.
Moerland, T. M.; Broekens, J.; Plaat, A.; and Jonker, C. M.
2023. Model-based Reinforcement Learning: A Survey.
Found. Trends Mach. Learn., 16: 1–118.
Morris, C.; Ritzert, M.; Fey, M.; Hamilton, W. L.; Lenssen,
J. E.; Rattan, G.; and Grohe, M. 2019. Weisfeiler and Leman
Go Neural: Higher-Order Graph Neural Networks. In AAAI.
Muggleton, S. H.; and Raedt, L. D. 1994. Inductive Logic
Programming: Theory and Methods. J. Log. Program.,
19/20: 629–679.
Muise, C. J.; McIlraith, S. A.; and Beck, J. C. 2012. Im-
proved Non-Deterministic Planning by Exploiting State Rel-
evance. In ICAPS.



Nau, D. S.; Au, T.; Ilghami, O.; Kuter, U.; Murdock, J. W.;
Wu, D.; and Yaman, F. 2003. SHOP2: An HTN Planning
System. J. Artif. Intell. Res., 20: 379–404.
Ng, J. H. A.; and Petrick, R. P. 2022. Generalised task
planning with first-order function approximation. In CoRL.
PMLR.
Ng, J. H. A.; and Petrick, R. P. A. 2019. Incremental
Learning of Planning Actions in Model-Based Reinforce-
ment Learning. In IJCAI.
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