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Reinforcement learning (RL) is successfully applied in var-
ious domains (Juang and Rabiner 1991; Khiatani and Ghose
2017; Schrittwieser et al. 2020; Van Roy et al. 2023; Mor,
Garhwal, and Kumar 2020), yet it struggles to provide
safety and behavioural guarantees (Garcıa and Fernández
2015; Yang et al. 2023). Neurosymbolic AI (NeSy), with
its ability to combine logical reasoning and neural percep-
tion, has been explored as a potential solution (Yang et al.
2023; Zhang et al. 2023; Reichstein et al. 2019). How-
ever, existing NeSy methods, such as probabilistic logic
shields (Yang et al. 2023), focus on single-step guaran-
tees, limiting their effectiveness where multistep reasoning
is required. To extend NeSy to efficient sequential reason-
ing, we introduced relational neurosymbolic Markov mod-
els (NeSy-MMs) that have been shown promising results on
generative tasks (De Smet et al. 2024).

We propose a new framework for neurosymbolic rein-
forcement learning that incorporates relational NeSy-MMs
as internal models for an RL agent. NeSy-MMs allow the
agent to reason over multiple time steps and provide safety
guarantees throughout the training process. We expect that
this integration will provide policies that are resilient to test-
time perturbations and adhere to given constraints over time,
e.g. safety constraints.

Relational Neurosymbolic Markov Models
Relational NeSy-MMs are sequential probabilistic mod-
els over neurally-parametrised discrete-continuous random
variables (Figure 1). They are probabilistic reasoning mod-
els that use random variables to model symbols, relations,
and logical constraints. Neural predicates φ and φg map
raw inputs (e.g. images) to symbols and vice versa, for dis-
criminative and generative tasks. For instance, consider a
MiniHack (Samvelyan et al. 2021) game (Figure 2), where
the monsters can attack the player. With NeSy-MM we can
model the sequences of interactions as well as a safety con-
straint for the player not being attacked.

Because of the sequential structure of NeSy-MMs, part
of the world model can be specified by replacing unknown
transition functions by neural networks. Finally, NeSy-MMs
are relational models, a popular and very expressive repre-
sentation for representing states in, for instance, databases
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Figure 1: NeSy-MMs sequentially factorise neural (Nt) and
symbolic states (St) over time. They can be conditioned on
evidence (Zt).

and planning (Russell and Norvig 2020). Moreover, re-
lational representations facilitate strong generalisation be-
haviour (Hummel and Holyoak 2003).

Inference and Learning in NeSy-MMs
To bridge the gap between planning (sequential inference)
and reinforcement learning, we propose a new, differentiable
inference technique that combines non-parametric approxi-
mate Bayesian inference with exact NeSy inference.

We address the differentiability limitations of traditional
particle filters by leveraging a novel approach rooted in neu-
rosymbolic reasoning. Resampling, which hampers differen-
tiability, is circumvented using a Rao-Blackwellised particle
filter (RBPF) (Murphy and Russell 2001). The RBPF recur-
sively computes pφ(Xt+1 | Z0:t+1) as∫

pφ(Xt+1 | xt,Zt+1)pφ(xt | Z0:t) dxt, (1)

where pφ(Xt+1 | xt,Zt+1) can be computed exactly in
NeSy settings by leveraging advancements in exact infer-
ence (Kisa et al. 2014; Darwiche 2020).

By removing resampling and having access to the exact
transition probabilities, we can exploit an up-until-now un-
explored synergy with gradient estimation methods (Kool,
van Hoof, and Welling 2019; De Smet, Sansone, and Zuid-
berg Dos Martires 2023), which approximate gradients for
pφ(Xt+1 | Z0:t+1) recursively. For example, using the Log-
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Figure 2: NeSy-MMs used as neurosymbolic policies that provide safety guarantees. As in a classic RL algorithms, (→)
executes an action in the environment, and (←) provides a new observation to the policy. The agent (bottom left) has to reach
the staircases (top right). Each NeSy state Hi can contain raw data, or relational symbols. The transition from Hi to Hi+1 can
be fully logical, neural, or a mixture of both. Each state is also conditioned on a safety property, such that the agent is not killed
by the monsters.

Derivative trick (Williams 1992), we compute:

∇φpφ(Xt+1 | Z0:t+1) (2)
= EXt

[∇φpφ(Xt+1 | Xt,Zt+1)]

+ EXt
[pφ(Xt+1 | Xt,Zt+1)∇φ log pφ(Xt | Z0:t)] .

To ensure scalability, we employ cluster factorisation to
decompose X into clusters {Xi}Bi=1 that become condi-
tionally independent given Z. This factorisation reduces
the computational burden by allowing exact computation of
pφ(Xt+1 | xt,Zt+1) for each cluster:

pφ(Xt+1 | xt,Zt+1) =

B∏
i=1

pφ(X
i
t+1 | xt,Zt+1). (3)

For clusters containing infinite variables Iit, i.e. both count-
ably infinite and continuous (uncountable) domains, we first
obtain samples using a traditional particle filter. This leaves
a purely finite distribution for the remaining variables Fi

t,
which is computed exactly:

B∏
i=1

pφ(F
i
t+1 | Iit+1,xt,Zt+1)pφ(I

i
t+1 | xt,Zt+1). (4)

This hybrid approach unites local exact inference, clus-
ter factorisation, and tailored gradient estimation methods
to enable optimisation across finite, infinite, and logical vari-
ables in hybrid domains. Our resulting differentiable particle
filter effectively exploits the conditional dependency struc-
ture of the NeSy states Xt, providing a scalable and gen-
eralisable solution. Intuitively, one can view NeSy-MMs as
differentiable planning models that can specify only part of
the underlying environment, while the rest is learned while
interacting with it.

Neurosymbolic Reinforcement Learning
The goal of using NeSy-MMs as RL policies is to obtain
formal guarantees within a given time horizon. Previous ef-
forts (Yang et al. 2023) have focused on providing single-
step guarantees by shielding (Jansen et al. 2020) a neural

policy with a probabilistic logic program (De Raedt, Kim-
mig, and Toivonen 2007). While effective, this approach
does not scale to multistep guarantees because of the #P-
hardness of its inference procedure. NeSy-MMs resolve
this problem by using unbiased approximate inference tech-
niques instead.

Consider again a MiniHack level where the agent is in a
room with two monsters and has to reach a goal (Figure 2).
The optimal strategy in this case is to take the key and wait
to lure the two monsters away from the goal. Only once the
monsters are close enough and the agent has the key, it can
move through the corridor, open the door, and move safely
to the goal before the monsters can catch up. Hence, safely
reaching the goal is not something that can be decided by
single-step reasoning. Concretely, if the agent is governed by
a policy π and a sensor φsens gives an estimate of the current
state of the game, then these will form the input to a NeSy-
MM. The NeSy-MM then updates the policy to π+(a| ) =
π(a | safet:T , ) that incorporates the safety constraints via
approximate Bayesian inference. Finally, we want to obtain
a policy such that,

Pπ+(safet:T | ) ≥ Pπ+(safet | ) (5)

≥ Pπ(safet:T | ) (6)
This means our NeSy policy is going to be safer than the

single time-step shielded policy (5) from Yang et al. (2023),
that is in turn safer than the unshielded policy (6), for any
time horizon. In the future, we aim to empirically verify
this idea and more closely integrate NeSy-MMs into the RL
framework by analysing the behaviour of the expected re-
ward in the presence of neurosymbolic policies.
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