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Abstract
Reinforcement learning from human feedback (RLHF) en-
ables machine learning systems to learn objectives from hu-
man feedback. A core limitation of these systems is their as-
sumption that all feedback comes from a single human teacher,
despite querying a range of distinct teachers. We propose the
Hidden Utility Bandit (HUB) framework to model differences
in teacher rationality, expertise, and costliness, formalizing the
problem of learning from multiple teachers. We develop a va-
riety of solution algorithms and apply them to two real-world
domains: paper recommendation systems and COVID-19 vac-
cine testing. We find that the Active Teacher Selection (ATS)
algorithm outperforms baseline algorithms by actively select-
ing when and which teacher to query. The HUB framework
and ATS algorithm demonstrate the importance of leveraging
differences between teachers to learn accurate reward mod-
els, facilitating future research on active teacher selection for
robust reward modeling.

1 Introduction
Specifying objective functions for machine learning sys-
tems is challenging, and misspecified objectives can be
hacked (Pan, Bhatia, and Steinhardt 2022; Skalse et al. 2022)
or incentivise degenerate behavior (Zhuang and Hadfield-
Menell 2020; Thomas and Uminsky 2020; Krakovna et al.
2020). Techniques such as reinforcement learning from hu-
man feedback (RLHF) enable ML systems to instead learn
appropriate objectives from human feedback (Christiano
et al. 2017; Lee, Smith, and Abbeel 2021; Stiennon et al.
2020). These techniques are widely used to finetune large
language models (OpenAI 2023; Anthropic 2023; Touvron
et al. 2023; Google 2023) and to train reinforcement learning
agents (Christiano et al. 2017; Lee, Smith, and Abbeel 2021).
However, while RLHF is relied upon to ensure that these
systems are safe, helpful, and harmless (Bai et al. 2022), it
still faces many limitations and unsolved challenges (Casper
et al. 2023).

In particular, RLHF systems typically rely on the assump-
tion that all feedback comes from a single human teacher,
despite gathering feedback from a range of teachers with
varying levels of rationality and expertise (Daniels-Koch
and Freedman 2022). For example, Stiennon et al. (2020),
Bai et al. (2022) and Ouyang et al. (2022) assume that all
feedback comes from a single teacher, but find that anno-
tators and researchers actually disagree 23% to 37% of the

time. Reward learning has been shown to be highly sensitive
to incorrect assumptions about the process that generates
feedback (Hong, Bhatia, and Dragan 2022; Freedman, Shah,
and Dragan 2021; Skalse and Abate 2022; Milli and Dra-
gan 2020), so this single-teacher assumption exposes these
systems to dangerous failures (Daniels-Koch and Freedman
2022). Ideally, RLHF systems should consider differences in
teacher rationality and expertise to improve their safety and
reliability.1

We introduce a novel problem called a Hidden Utility
Bandit (HUB) to model teacher differences in RLHF. A
HUB is similar to a multi-armed bandit (MAB), in that at
each timestep the agent has a consistent set of alternatives
(called “arms”) and receives utility based on which it chooses
(“pulls”). Unlike a MAB, however, the agent observes the
arm’s output (“item”) but not the associated utility. Like in
RLHF, it must learn the utility function based on comparison
feedback, but unlike in RLHF, the agent can choose amongst
multiple teachers. Optimal HUB solutions must therefore ac-
tively select which teachers to query when so as to maximize
the expected discounted sum of utilities. Figure 1 shows a
simple HUB in which the two arms are vending machines,
the two teachers are human taste-testers, and the outputs are
fruit.

We present preliminaries in Section 2 (and discuss fur-
ther related work in Section 6), then formalize the HUB
framework (Section 3). We then develop an Active Teacher
Selection (ATS) method that selects which teachers to query
when to maximize cumulative discounted utility (Section 4).
Since there are no existing solutions to the novel HUB prob-
lem, we introduce multiple families of baseline methods and
evaluate these against ATS on a realistic recommendation
task (Section 5.1). ATS outperforms methods with fixed ex-
ploration windows, demonstrating the usefulness of selecting
when to query teachers, and ATS with specific teacher selec-
tion outperforms general teacher selection, underscoring the
usefulness of selecting which teacher to query. As a proof-of-
concept, we also demonstrate application of this framework
to the real-world problem of evaluating COVID-19 vaccines
with expensive and unreliable tests (Section 5.2). The result

1Of course, teachers may have varying values as well. Balancing
competing values is an open problem in social choice theory, and
thus beyond the scope of this work, but see Conitzer et al. (2024)
for further discussion.



is a HUB framework and an ATS algorithm2 that demonstrate
the importance of leveraging differences between teachers
to learn accurate reward models. These will facilitate and
benchmark improved methods, ultimately leading to scalable
reward learning algorithms that learn accurate, robust and
value-aligned models.

2 Preliminaries
Multi-armed bandits (MAB) are stateless sequential decision-
making problems (Robbins 1952; Slivkins 2019). At each
timestep the agent chooses one of K arms, each with a dis-
tribution over utilities. When the agent pulls arm k ∈ K, it
receives utility sampled from arm k’s distribution u ∼ Dk.
The agent’s goal is to maximize its expected cumulative util-
ity. Our framework is similar, though arm utilities are hidden
(as in many real-life applications), and the agent must learn
about them from teacher preferences (as in RLHF).

Partially observable Markov decision processes (POMDP)
are sequential decision-making problems where the world
state is partially hidden from the agent (Littman, Cassan-
dra, and Kaelbling 1995). A POMDP problem is a tuple
⟨S,A, T ,R,O,Ω, γ⟩, where S and A are the state and ac-
tion spaces, T and R are the transition and reward functions,
and γ is the discount factor. At time t, the agent begins in state
st, takes action at, transitions to state st+1 determined by
T (st, at) and receives reward rt = R(st, at, st+1). Rather
than observing states directly, the agent observes an observa-
tion ωt+1 from the observation space O determined by the
observation function Ω(st+1, at). A POMDP solution is a
policy that balances inferring the underlying state and acting
in the environment to maximise expected cumulative reward.

While calculating this solution is typically intractable, ap-
proximate POMDP algorithms can perform well. Partially
observable Monte Carlo planning (POMCP) algorithms pro-
duce time-efficient online solvers that form a belief tree of
fixed depth then use rollouts to estimate the values of the
leaf nodes (Silver and Veness 2010). In this work we use
partially observable Monte Carlo planning with observation
widening (POMCPOW), a POMCP-style algorithm that uses
a weighted particle filter to efficiently produce approximate
solutions for problems with large state spaces (Sunberg and
Kochenderfer 2018).

3 Hidden Utility Bandits
We design the Hidden Utility Bandit (HUB) framework to for-
malize the problem of reward learning from multiple teachers.
Formally, a HUB is a partially-observable sequential decision-
making problem consisting of a set of items (each with a
distinct utility), a set of arms (each with a fixed distribution
over items), and a set of teachers (each with a rationality
parameter and cost). We assume that the agent can take one
action (pulling an arm or querying a teacher) per timestep.
Following an existing standard in work on RLHF (Lee, Smith,
and Abbeel 2021), a HUB models each teacher as Boltzmann-
rational with its noisiness modulated by a rationality param-
eter β ∈ [0,∞). In particular, the probability that a teacher

2Our open-source ATS Julia library is available at
github.com/[redacted]/ATS.

with rationality parameter β prefers item i to j is below:

Pr(i ≻ j;β,U) = exp(βU(i))
exp(βU(i)) + exp(βU(j))

, (1)

where U : I → R gives the true utility of all items in set I.
At each step of the HUB problem, the agent chooses

between pulling an arm, observing an item sampled from
that arm’s distribution and receiving but not observing that
item’s utility, or querying a teacher, receiving feedback modu-
lated by that teacher’s rationality parameter but incurring that
teacher’s query cost. We assume that all teachers give feed-
back based on a single shared utility function. The agent’s
objective is to maximize the expected discounted sum of
utilities, so it must balance querying costly teachers to learn
about the utility function with pulling arms to earn utility.
Definition 3.1. A hidden-utility bandit (HUB) is a tuple
⟨I,U , C, β, F,Q, γ⟩:

• I is a set of N items, each with a hidden utility.
• U : I → [umin, umax] is a utility function over I , where
U is the utility function space.

• C = {c1, c2, . . . , cK} is a set of K arm choices, each
associated with an arm distribution Dk : I → [0, 1]
giving the probability of returning each item in I , where
D = D1 × D2 × · · · × DK is the joint arm distribution
space over all arm choices C.

• β = {β1, β2, . . . , βM} is M teacher rationality param-
eters.

• F = {f1, f2, . . . , fM} is M teacher query costs.
• Q : I × I → [0, 1] is a query profile that gives proba-

bilities of picking queries in
(I
2

)
.

• γ is a discount factor.
Here, the agent can observe I, C, β, F , Q, and γ but cannot
observe the utility function U or the arm distributions D. At
each timestep t, the agent can select an arm choice ct ∈ C
or a teacher rationality parameter βt ∈ β. If the agent pulls
an arm choice ct ∈ C, it observes an item it sampled from
the arm distribution Dct and receives but does not observe
the utility ut = U(it). Conversely, if the agent queries a
teacher with rationality parameter βt ∈ β, it receives and
observes an item pair (i, j) sampled from the query profile
Q, a preference pt sampled from Bernoulli(P ) given the
probability P = Pr(i ≻ j;βt,U) in Equation 1, and the
teacher query cost ut = fβt .

Since the agent’s objective is to maximize the expected dis-
counted sum of utilities E[Σ∞

t=0γ
tut], it must balance query-

ing teachers to learn about the utility function with selecting
bandit arms to earn utility. Standard RLHF systems alternate
between fitting a reward model to teacher feedback and learn-
ing a policy using the reward model on a predefined schedule.
However, the HUB framework allows the agent to interweave
these processes to optimize performance.

3.1 Naive HUB Inference
We propose a naive HUB inference baseline in Algorithm 1.
This allows the agent to infer hidden information: the joint
arm distribution DC = (D1,D2, . . . ,DK) (common to
stochastic multi-armed bandit problems) and utility function
U (unique to the HUB). In Algorithm 1, the agent randomly



Figure 1: A simple Hidden Utility Bandit (HUB) with two arms and two teachers. The agent pulls the first arm, observes an
apple, and receives the apple’s utility of 8 without observing it. The agent then pulls the second arm, observes a banana, and
receives the banana’s utility of 2 without observing it. Because these utilities are hidden, the agent foregoes the opportunity for
utility on the third timestep to ask the expert teacher which fruit is better. The expert replies that apples are better than bananas,
so the agent pulls the first arm to maximize apples for all remaining timesteps.

pulls arms and queries a preselected teacher for a fixed num-
ber of timesteps (lines 1-12), approximates the joint arm
distribution and teacher preference probabilities with sample
means (lines 13-14), then estimates the utility function (lines
15-16). The agent can then simply calculate the the expected
utility of each arm and pull the arm with the highest expected
utility for the remainder of the episode.

Using these approximate teacher preference probabilities,
the difference in utility values for items i and j, ∆ij = U(i)−
U(j), can be calculated in the following way:

Pr(i ≻ j;βm,U) = 1

1 + exp(−βm∆ij)
=⇒ ∆ij (2)

= − 1

βm
ln

[
1

Pr(i ≻ j;βm,U)
− 1

]
.

(3)

Despite the simplicity of Algorithm 1, it is possible to
prove that it converges to the ground truth utility function U∗

and arm distribution set DC∗ in the limit of infinite queries.
We prove the following theorem in Appendix A.1:

Theorem 3.2. If the predicted utility function Û and the
predicted arm distribution D̂C are estimated by executing
Algorithm 1 with T samples, then Û → U∗ and D̂C → DC∗

as T → ∞.

However, exploring randomly for a fixed number of
timesteps and querying a fixed teacher may be suboptimal. By
maintaining and updating an internal belief over the hidden
information, the agent can query teachers only when teacher
feedback is necessary to update its belief.

4 Active Teacher Selection
The Active Teacher Selection (ATS) algorithm solves the
HUB problem efficiently by maintaining a belief over the
utility function and arm distributions, and choosing when to
query teachers. This allows it to only query when required
for decision-relevant belief updates. ATS also actively selects
which teacher to query. When teachers are “noisy” (β < ∞),
the preference probability Pr(i ≻ j;β,U) correlates with

the difference in utility between i and j, so it will sometimes
be more informative for ATS to select teachers with lower
β values (Michaud, Gleave, and Russell 2020; Barnett et al.
2023). Importantly, this removes the need to set the problem-
specific hyperparameters in Algorithm 1 for exploration (T )
and teacher selection (βm).

4.1 ATS Algorithm
The ATS algorithm has two general steps: the HUB is first
converted to a simplified partially observable Markov deci-
sion process (POMDP) (Littman, Cassandra, and Kaelbling
1995) and then solved using a Monte Carlo POMDP solver
with custom rollout policies.

Constructing the HUB-POMDP The HUB-POMDP state
contains the HUB utility function and arm distributions. The
HUB-POMDP reward function gives the expected utility of
each arm according to this state.
Definition 4.1. A hidden utility bandit POMDP (HUB-
POMDP) is a tuple ⟨S,A, T ,R,Ω,O⟩:

• S = U× D is the state space: the state s ∈ S is a tuple
⟨U ,DC⟩ that is fixed.

• A = C ∪ β is the action space: the arm choices C and
teachers β.

• T : S × A → S is the stationary transition function:
T (s, a) = s ∀s∈S ∀a∈A.

• R : S ×A → R is the reward function:

R(s, a) =

{
Σi∈IU(i)Da(i) if a ∈ C
−fa if a ∈ β

• Ω : I ∪ P is the observation space: the items I and
query-preferences P = I × I × {0, 1}.

• O : A× Ω → [0, 1] is the observation function:

O(a, ω) =

{
Da(i) if a ∈ C
Q(i, j) Pr(i ≻ j;βm = a,U) if a ∈ β

Teacher selection can be general or specific. Under specific
selection, the agent chooses which teacher to query. The
HUB-POMDP’s action space contains all M teachers, A =
C ∪ β, as shown in the HUB-POMDP above. Under general



Algorithm 1: NAIVEHUBINFERENCE(·)
Require: HUB ⟨I,U , C, β, F,Q, γ⟩, umin, umax, T samples, βm of selected teacher
Initialize: frequency[c], frequency[c][i], frequency[b][q], preferences[b][q]
1: for t = 1, . . . , T do
2: if sampleUniformly({TRUE, FALSE}) then
3: sample c ∼ C ▷ Sample arm uniformly at random
4: sample i ∼ Dc ▷ Sample item from (unobserved) arm distribution
5: frequency[c]← frequency[c] + 1
6: frequency[c][i]← frequency[c][i] + 1
7: else
8: sample b ∼ β ▷ Sample teacher uniformly at random
9: sample q = (i, j) ∼ Q ▷ Sample query from query profile

10: sample p ∼ Bernoulli(Pr(i ≻ j; b,U)) ▷ Sample preference given Equation 1
11: frequency[b][q]← frequency[b][q] + 1
12: preferences[b][q]← preferences[b][q] + p

13: D̂c(i)← frequency[c][i]
frequency[c]

∀c ∈ C, i ∈ I ▷ Estimate arm distributions

14: P̂ (b, q)← preferences[b][q]
frequency[b][q]

∀b ∈ β, q ∈ Q ▷ Estimate preference probabilities

15: ∆ij = − 1
βm ln

[
1

P̂ (βm, q=(i,j))
− 1

]
∀i, j ∈ I ▷ Calculate using Equation 2

16: (x, y)← argmaxx,y [∆xy] ▷ Find indices of maximum element

17: Û(y)← umin, Û(i)←
[

umax
umax−umin

]
∆iy + umin ∀i ∈ I \ {y} ▷ Estimate utilities

selection, the agent chooses when to query a teacher, but as
in RLHF cannot choose which teacher to query. The HUB-
POMDP’s action space is modified to contain a single general
teacher selection action, A = C ∪ {βg}.

These alternatives offer a tradeoff: general selection re-
duces the state space size and computational complexity
while specific selection provides the agent with additional
control over its feedback. Our experimental results (reported
in Section 5.1) indicate that specific greatly outperforms
general teacher selection, so we will use ATS with specific
teacher selection unless otherwise specified.

Solving the POMDP While exact POMDP solutions are
typically intractable, approximate POMDP algorithms often
perform well. Partially observable Monte Carlo planning
(POMCP) algorithms produce time-efficient online solvers
that form a belief tree of fixed depth and use rollouts to
estimate leaf node values (Silver and Veness 2010). POMCP
with observation widening (POMCPOW) uses a weighted
particle filter to efficiently produce approximate solutions for
problems with large state spaces (Sunberg and Kochenderfer
2018), so we adapt it to the HUB-POMDP with specialized
rollout policies. We describe and compare candidate rollout
policies that we designed specifically for the HUB problem
in Appendix B. ATS with the custom best arm rollout policy
performs best, so we use that POMCPOW variant.

4.2 Query Sample Complexity
We evaluate the efficiency of learning hidden utilities U from
teacher queries by computing upper and lower bounds on
teacher query sample complexity. Theorem 4.2 (proved in Ap-
pendix A.2) upper bounds queries required for a confident es-
timation as a function of the number of correct classifications
required to learn U , which is nontrivial to calculate but can
be estimated from our naive baseline experiments (described

in Section 4.3). Theorem 4.3 (proved in Appendix A.3) lower
bounds queries required to receive correct classifications for
each query pair at least once, assuming that the teacher is
queried about each pair until a correct answer is received.
Theorem 4.2. We can bound the maximum number of teacher
queries t required to learn the hidden utilities U with κ confi-
dence in the worst case as t ≤ r(1−p)

pκ , where r is the number
of successful classifications from teachers required to learn
the hidden utilities, and p = minβ,∆ij

1
1+exp(−β(∆ij))

is the
worst-case teacher accuracy.
Theorem 4.3. We can bound the minimum number of
teacher queries t required to receive a correct answer for
each query pair with κ confidence in the worst case as

t ≥ log( k
p )N(N−1)

2 log(1−p) , where N is the number of items, and
p = minβ,∆ij

1
1+exp(−β(∆ij))

is the worst-case teacher ac-
curacy.

4.3 Teacher Noise Inference in ATS
RLHF systems typically assume that the teacher rationality
parameters β are known. However, as this is sometimes unre-
alistic, we show in Theorem 4.4 that β can also be estimated
from preference data. Specifically, given Pr(i ≻ j;βm,U),
it is possible to etimate β̂m = 1

zβm, where z is a scal-
ing factor determined by U . z is based on the difference
∆ij = U(i)− U(j), so as long as the same comparison pair
(i, j) is used, all teacher rationality estimates will be on the
same scale. (They can be calculated directly if ∆ij happens
to be known for a specific (i, j).)3 We prove the theorem
below in Appendix A.4.

3Note that it is also possible to directly add β to the state space
of the HUB-POMDP and then solve it, but this increases the size of
the state space and makes the problem less tractable.



Theorem 4.4. Given two items i, j ∈ I where U(i) < U(j)
and the preference probability P = Pr(i ≻ j;βm,U) from
Equation 1 we can estimate β̂m = 1

zβm as in Equation 4. If
∆ij is known, we can further calculate βm = z · β̂m, where
z = −∆−1

ij .

β̂m = ln
( 1

P
− 1

)
. (4)

We demonstrate this procedure in our experiments in Sec-
tion 5.2. In addition, we evaluate this procedure in simulation
by setting β = {0.01, 1.0}, running a random policy for 1000
timesteps, estimating {β̂1, β̂2}, and scaling the estimate so
that the greatest value is equal to 1.0. We observe a mean
squared error of only 0.061 across 100 simulations, indicat-
ing that this procedure is accurate.

5 Experiments
We apply the HUB framework to two real-world domains:
paper recommendations and COVID-19 vaccine testing. In
the recommendation domain, we conduct comprehensive ex-
periments that evaluate the performance of various solution
algorithms (Section 5.1), compare rollout simulation policies
(Appendix B), and examine the impact of varying teacher
query costs (Appendix C). The more complex vaccine do-
main provides a proof-of-concept, using the HUB framing
to address an urgent problem and demonstrating how β val-
ues can be estimated from real-world data. We find that the
HUB framework captures both problems well, that the ATS
algorithm outperforms all baselines in comprehensive testing
in the recommendation domain, and that ATS is the best-
performing algorithm that also identifies the best vaccine in
the vaccine domain proof-of-concept.

Algorithms We fix ATS to use specific teacher selection
and the best arm rollout policy unless otherwise specified.
To our knowledge, the HUB problem is novel and has no
solutions in prior literature, so we construct multiple fam-
ilies of baseline methods (naive and random) for compar-
ison. Naive algorithms choose randomly amongst pulling
arms and querying the selected teacher for T timesteps, use
these observations to estimate the arm distributions and util-
ity function (using Algorithm 1), then pull the arm with the
highest estimated expected utility at each timestep. Naive al-
gorithms require problem-specific hyperparameters βm and
T , so for these experiments we select the intermediate of 3
teachers (βm = β2) and test a range of exploration horizons
(T ∈ [50, 100, 200]). Random algorithms select actions uni-
formly at random from a given set. We evaluate a random
algorithm that selects actions from the entire action space, as
well as one that selects only arms.

5.1 Conference Recommendation Domain
In the recommendation domain, the system recommends
AI conferences from which to read relevant papers. There
are three paper categories (Application, Benchmark, The-
ory) with specified relevance scores, and three conferences
(ICLR, ICML, AAAI) with different paper category com-

positions4. The recommender cannot directly observe the
relevance scores, so it must learn them by asking professors,
whose judgements vary from completely random (β1 = 0) to
highly accurate (β3 = 50). In these experiments, query costs
are always 0. (See Appendix C for experiments varying query
costs.) Each day, the system recommends one conference,
a paper is sampled from that conference’s distribution, and
the system earns a hidden utility score representing that pa-
per’s category’s relevance. Alternatively, the system queries a
professor who provides a preference over a pair of paper cat-
egories. Applying the HUB framework, paper categories are
the item set I = {A,B, T}, relevance scores are the hidden
utility function U , conferences are arm choices C = {c1 =
ICLR, c2 = ICML, c3 = AAAI}, and professors are teach-
ers with rationality β = {β1 = 0, β2 = 0.01, β3 = 50}.

Figure 2 shows an example paper recommendation prob-
lem in which it will sometimes be more informative to query
the noisy Professor 2 over the more rational Professor 3. This
is because the frequency with which a noisy teacher prefers a
lower-reward item over a higher-reward one gives informa-
tion about the difference between the rewards, and in this
example the recommender must learn how much more rele-
vant Application papers are than Benchmark papers. Without
this information, the system cannot distinguish between cases
where U(A) = 8 (indicating that the expected relevance of
ICLR is greater than ICML) and where U(A) = 6 (indicating
the reverse).

Experiments We evaluate all algorithms for 25 runs of
1000 steps on 20 paper recommendation tasks. Each task is a
HUB with I , C, and β as described above and a unique tuple
⟨U ,DC⟩. U and D are discretized, and each task’s ⟨U ,DC⟩
is chosen such that c1 has the highest expected relevance
(E[U(i ∼ c1)] > E[U(i ∼ c2)] ≥ E[U(i ∼ c3)]) and all
paper distributions are different and non-deterministic (Dj ̸=
Dk ∀j,k∈C and Dc(i) ̸= 1.0 ∀i∈I,c∈C).
Results While all non-random algorithms successfully
identify the most relevant conference in expectation (Fig-
ure 3b), ATS with specific teacher selection best balances
querying teachers with recommending papers, achieving the
highest average discounted cumulative reward (Figure 3a),
and most accurately learning relevance scores (Figure 4).

Figure 3b shows how often each algorithm learns to pull
the best HUB arm and therefore recommend the most rele-
vant conference over the course of training. All HUB solution
methods (ATS, Naive[50], Naive[100], Naive[200]) success-
fully identify the most relevant conference, recommending
it about three times as often as they would if they were be-
having randomly (“Random” baseline, light green line) and
about twice as often as if they were blindly recommending
conferences (“Random Arms” baseline, dark green line). This
indicates that the HUB formalism can be used to accurately
represent the paper recommendation problem.

While all solution methods identify the best arm, ATS does
so most efficiently, querying teachers sparingly even at the
start of the task (Figure 3c) and best optimizing the HUB

4Example relevance scores and paper category compositions
were selected arbitrarily.



Figure 2: Paper recommendation as a HUB problem. Paper categories (Application, Benchmark, Theory) are items (I), professors
are teachers with rationality (β) and cost (F ) parameters, conferences are arms with distributions (D), and relevance scores are
utilities (U). The goal is to recommend the most relevant conferences to read papers from.

(a) Discounted cumulative reward (b) Frequency of pulling best arm (c) Frequency of querying teacher

Figure 3: Comparison of ATS, naive and random algorithms. ATS best maximizes discounted reward (a) and identifies the
highest-reward arm more often than most baselines and comparably with Naive[100] and Naive[200], which explore more and
earn less reward (b). ATS initially queries teachers less often than naive baselines, but continues querying teachers throughout
the episode (c). All data is averaged across 25 runs on 20 HUB problems and smoothed over 10 steps.

objective of expected discounted cumulative reward (Fig-
ure 3a). Moreover, ATS forms the most accurate estimates
of the utility function and expected conference relevance
scores (Figure 4) after 1000 timesteps, while continuing to
explore and potentially improve this estimate by occasionally
querying teachers and recommending other conferences (Fig-
ure 5a). In contrast, Naive algorithms stop learning after their
hand-specified exploration horizon (Figure 5b), and Random
algorithms never learn at all (Figure 5c). This demonstrates
the benefits of actively selecting when to query teachers, as
in ATS, rather than following a predefined RLHF schedule.

Figure 7 compares ATS with specific and general teacher
selection. Standard RLHF systems do not allow the agent
to select which teacher to query and are most akin to gen-
eral selection. However, we show that the additional control
afforded by specific selection allows ATS to make more in-
formative queries. Figure 7a shows that ATS with specific
teacher selection earns higher expected reward than ATS with
general teacher selection, and Figure 7b shows that ATS with
general teacher selection queries all arms roughly equally,
failing to identify the one with highest expected reward.

5.2 COVID-19 Vaccine Testing Domain
Bandit-type problems are commonly used to model medical
treatment investigation, so as a proof-of-concept we apply the
HUB framework to a real-world medical problem: evaluating
vaccines for the 2019 Novel Coronavirus (COVID-19). This
task is complicated by the difficulty of evaluating whether a

patient is infected: many infections are asymptomatic, and
other illnesses cause similar symptoms. There are many ways
to test whether patients have COVID-19, including symp-
tom surveys, antigen tests, and RT-PCR tests, but these vary
widely in accuracy and cost.

The HUB framework directly models these challenges.
Let the item set be easily observable patient symptoms,
I = {None,Cough,Fever}. The “arms” are vaccine can-
didates, C = {c1 = VaccineA, c2 = VaccineB, c3 =
NoVaccine}, and the “teachers” are COVID-19 test types,
{Survey,Antigen,RT-PCR}. Surveys are the least accu-
rate but least expensive, while RT-PCR tests are the most
accurate and most expensive. We estimate the US dollar cost
of surveys at $1.20 (accounting for 10 minutes of time at
the US federal minimum wage of $7.25), antigen tests at
$42, and RT-PCR tests at $62 (median prices reported by (Lo
et al. 2023)), then scale these costs by 0.05. We estimate β
by gathering real-world data on the sensitivity of COVID-19
symptom surveys (Rufino et al. 2023), antigen tests (Harmon
et al. 2021), and RT-PCR tests (Binny et al. 2023), interpret
this sensitivity as the probability P of the test “preferring”
a patient with no COVID-19 (U = umax) to a patient with
definite COVID-19 (U = umin), let ∆ij = umin − umax,
and calculate βm using Equation 4. We construct arm distri-
butions where patients display the most frequent and severe
symptoms with no vaccination, and the least symptoms with
Vaccine A, and a utility function where symptoms that have a
greater chance of indicating COVID-19 infection have lower



(a) L2 loss of U estimate (b) L2 loss of arm reward estimate

Figure 4: Accuracy of reward learning using ATS (with specific and general teacher selection) and naive algorithms (with
exploration parameters of 50, 100, and 200). ATS with specific teacher selection learns both the underlying utility function (a)
and the expected rewards of each arm (b) much more accurately than ATS with general teacher selection and naive algorithms.
The middle line is the median, boxes are the IQR, whiskers are 1.5 times the IQR, and diamonds are outliers.

(a) ATS (b) Naive[50] (c) Random

Figure 5: Mean action frequencies for various algorithms. c actions are arm pulls and β actions are teacher queries. Data is
averaged across 25 runs of 20 HUB problems and smoothed over 10 steps.

scores. These values are reported in Figure 6.

Experiments We evaluate all algorithms for 25 runs of
1000 steps on this COVID-19 task. U and D are more finely
discretized than in the recommendation HUB to permit more
realistic values, so the resulting HUB-POMDP has 5 times
more states and is more challenging to solve. We fix the
parameters to the values reported in Figure 6, which are
derived from real-world data and estimates.

Results Figure 8 summarises the results. ATS is the only
algorithm that both earns high reward during training (Fig-
ure 8a) and successfully identifies the most effective vaccine
(c1 in Figure 8b). The Random Arms baseline earns slightly
higher reward during training (because it vaccinates at every
timestep), but fails to learn which vaccine is most effective,
which is a core goal of the vaccine trial. The Naive baselines
identify the best vaccine, but conduct excessive costly tests.

6 Related Work
Inverse Reinforcement Learning Inverse reinforcement
learning (IRL) is a reward learning technique in which the
agent infers a reward function given behavioral samples from
an optimal policy (Ng and Russell 2000; Abbeel and Ng
2004) or a noisy teacher (Ziebart 2010). It is similar to RLHF
in that reward information comes from a teacher rather than

the environment, but distinct in that it requires teachers to
perform the task well themselves (Milli and Dragan 2020).
In contrast, RLHF and the HUB framework excel in domains
where the teacher can distinguish good performance, but
does not know how to produce it themselves, such as those
presented in Section 5.

Cooperative Inverse Reinforcement Learning Coopera-
tive inverse reinforcement learning (CIRL) extends the IRL
framework to allow collaboration between the agent and the
teacher (Hadfield-Menell et al. 2016; Malik et al. 2018). HUB
problems can be viewed as a specific class of CIRL games in
which there are multiple teachers, but they can only act (by
providing feedback) when the agent requests it (by querying
them). However, CIRL problems are DEC-POMDPS, which
are NEXP-complete and thus functionally intractable (Bern-
stein et al. 2002). By fixing the teacher policy and arm distri-
butions, the HUB framework reduces the problem to a much
more tractable POMDP with a stationary transition function.
Optimal agent solutions to the CIRL game balance inference
and control to produce qualitatively valuable behaviors, such
as only asking the human questions when necessary (Shah
et al. 2020). The algorithm that best solves the HUB problem,
ATS, demonstrates similarly conservative querying behavior.

Crowdsourcing Prior work has investigated the related
problem of combining feedback from multiple noisy anno-



Figure 6: COVID-19 vaccine testing as a HUB problem. Symptoms (None, Cough, Fever) are items (I), tests are teachers with
rationality (β) and cost (F ) parameters, and vaccines are arms (C) with the specified distributions over patient symptoms (D).

(a) Specific teacher selection outperforms
general teacher selection.

(b) ATS with general teacher selection
doesn’t identify the best arm.

Figure 7: Performance of ATS with specific and general
teacher selection. All data is averaged across 25 runs on
20 HUB problems, smoothed over 10 steps, and discounted
with γ = 0.99.

tators (Dawid and Skene 1979), often to label training data
for supervised learning. Raykar et al. (2010) present an ap-
proach that learns teacher expertise and uses teacher feedback
to fit a classifier simultaneously, while Rodrigues, Pereira,
and Ribeiro (2014) generalise gaussian process classification
to model noisy annotators and combine their feedback into
reliable labels for supervised learning. This body of work
underscores the difficulty and importance of combining feed-
back from varying and noisy teachers in machine learning.

7 Conclusion
We formalized the teacher selection problem in reward learn-
ing and proposed a solution method that expresses this prob-
lem as a POMDP. Our empirical results underscore the ap-

(a) Discounted cumulative reward

(b) ATS action frequencies

Figure 8: Performance of all algorithms and ATS action fre-
quencies on the COVID-19 vaccine testing problem. Ran-
dom Arms and ATS both earn high reward from frequently
vaccinating participants (a), though only ATS additionally
identifies the most effective vaccine (b).

plicability of this framework to real-world problems, as well
as the importance of modeling human teachers as distinct
entities and actively choosing when and which to query.

Limitations and Future Work The purpose of this paper
is to investigate the novel problem of selecting teachers in
RLHF, so we empirically evaluate tasks where learning the
utility function is more challenging than optimizing it. How-
ever, many real-world tasks, such as language model finetun-
ing, also involve challenging optimizations across enormous
state spaces. Future work should combine our methods and
insights with existing work on state abstractions and hierar-
chical options to scale the HUB formalism and ATS method
to more complex domains.
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A Proofs
A.1 State Estimation (Theorem 3.2)
Theorem 3.2. If the predicted utility function Û and the predicted arm distribution D̂C are estimated by executing Algorithm 1
with T samples, then Û → U∗ and D̂C → DC∗ as T → ∞.

Proof (Sketch).. Since the number of arms is finite and they are pulled uniformly as T → ∞, the number of times that a
given arm ck is pulled approaches infinity. Since each pull samples an item from the true distribution Dk∗ i.i.d., the empirical
distribution D̂k will approach Dk∗ in the limit of infinite pulls. This argument applies for all arms ck ∈ C, so D̂C → DC∗

as T → ∞. Similarly, in the limit of infinite queries, P̂ (β, (i, j)) will approach P ∗(β, (i, j)) = Pr(i ≻ j;β,U∗), the true
probability that teacher b prefers item i over item j, as determined by Equation 1. Given β, (i, j) and P̂ (β, (i, j)) from the first
T timesteps, we can calculate ∆ij = Û(i) − Û(j) using Equation 2. Given ∆ = [∆01,∆02, . . . ,∆NN ], umax and umin, we
can calculate Û as described in Algorithm 1. Û → U∗ as P̂ → P ∗, which occurs as T → ∞.

A.2 Query Complexity Upper Bound (Theorem 4.2)
Theorem 4.2. We can bound the maximum number of teacher queries t required to learn the hidden utilities U with κ confidence
in the worst case as t ≤ r(1−p)

pκ , where r is the number of successful classifications from teachers required to learn the hidden
utilities, and p = minβ,∆ij

1
1+exp(−β(∆ij))

is the worst-case teacher accuracy.

Proof. Let X ∼ NegBinom(r, p).
Let κ represent the upper bound desired confidence.
We bound the maximum number of queries t required to observe r correct classifications with confidence κ as:

Pr(X = t; r, p) ≥ κ

E[X]

t
≥ Pr(X = t; r, p) ≥ κ applying the Markov Inequality(

r(1− p)

p

)
·
(
1

t

)
≥ κ derived from the definition of the Negative Binomial Probability Mass Function

r(1− p)

pκ
≥ t

The worst case teacher accuracy is

p = min
β,∆ij

exp(βU(i))
exp(βU(i)) + exp(βU(j))

from Equation 1

= min
β,∆ij

1

1 + exp(−β∆ij)
.

A.3 Query Complexity Lower Bound (Theorem 4.3)
Theorem 4.3. We can bound the minimum number of teacher queries t required to receive a correct answer for each query pair

with κ confidence in the worst case as t ≥ log( k
p )N(N−1)

2 log(1−p) , where N is the number of items, and p = minβ,∆ij

1
1+exp(−β(∆ij))

is
the worst-case teacher accuracy.

Proof. We bound the minimum number of queries t required to observe the correct answer i ≻ j with confidence κ as:

Pr(X ≥ t; p) ≥ κ

(1− p)tp ≥ κ

t ≥
log(κp )

log(1− p)

Since there are N items, there are N(N−1)
2 unique pairs. The minimum number of queries t required to observe the correct

answer for each pair with confidence κ is therefore



t ≥
log(kp )N(N − 1)

2 log(1− p)
.

The worst case teacher accuracy is

p = min
β,∆ij

exp(βU(i))
exp(βU(i)) + exp(βU(j))

from Equation 1

= min
β,∆ij

1

1 + exp(−β∆ij)
.

A.4 β Estimation (Theorem 4.4)
Theorem 4.4. Given two items i, j ∈ I where U(i) < U(j) and the preference probability P = Pr(i ≻ j;βm,U) from
Equation 1 we can estimate β̂m = 1

zβm as in Equation 5. If ∆ij is known, we can further calculate βm = z · β̂m, where
z = −∆−1

ij .

β̂m = ln
( 1

P
− 1

)
. (5)

Proof (Sketch).. First, we define an affine mapping function fa,b(x) = ax + b such that fa,b(U(i)) = 0 and fa,b(U(j)) = 1.
Lemma A.1 shows that this is always possible when U(i) ̸= U(j) and furthermore that a = −1

i−j . Let z, y be the parameters that
make this mapping for these particular values of U(i) and U(j). Note that z = −1

i−j = −∆−1
ij .

Next, suppose we have that β′
m = 1

aβm, it follows that:

P = Pr(i0 ≻ i1;βm,U)

=
exp(βmU(i))

exp(βmU(i)) + exp(βmU(j))
(by Equation 1)

=
exp(βm

a · aU(i) + βm

a b)

exp(βm

a · aU(i) + βm

a b) + exp(βm

a · aU(j) + βm

a b)

=
exp(β′

m · (aU(i) + b))

exp(β′
m · (aU(i) + b)) + exp(β′

m · (aU(j) + b))
(by definition of β′

m)

=
exp(β′

m · fa,b(U(i)))
exp(β′

m · fa,b(U(i))) + exp(β′
m · fa,b(U(j))

(by definition of fa,b)

=
exp(0)

exp(0) + exp(β′
m)

=
1

1 + exp(β′
m)

.

Finally, solving for β′
m yields β′

m = 1
zβm = ln( 1

P − 1) → βm = z · ln( 1
P − 1).

Lemma A.1. Given any two numbers m, n ∈ R such that m ̸= n, there exists an affine transformation fa,b : R → R that maps
the greater number to 1 and the lesser number to 0.

Proof (Sketch).. Suppose that m > n without loss of generality. We therefore must solve the following system of equations:
fa,b(m) = am + b = 1 and fa,b(n) = an + b = 0. The solution is a = −1

n−m and b = m
n−m + 1, which always exists when

m ̸= n.

B POMCPOW Rollout Policies
ATS solves the HUB-POMDP using partially observable Monte-Carlo planning with observation widening (POMCPOW)
augmented with a custom rollout policy for estimating the value of leaf nodes in the search tree. We evaluate a random action
rollout policy, which takes actions uniformly at random from A = C ∪ β, a random arm rollout policy, which chooses arms
uniformly at random from C, and a best arm policy, which calculates which arm has the highest expected utility according to the
current belief b, then always chooses that arm.

Since a utility-maximizing agent will choose arms more often if it believes them to have higher utility, the best arm policy
rollouts most closely resemble the actions the actual policy would take from belief b, yielding the most accurate value estimates.
As a result, ATS with best arm rollouts outperforms the alternatives on the paper recommender domain, as shown in Figure 9.
Results are averaged across 25 runs on 20 different paper recommendation tasks.



Figure 9: Performance of ATS with various rollout policies. The best arm rollout policy outperforms the random arm and random
action rollout policies. All data is averaged across 25 runs on each of 20 HUB problems, smoothed over 10 steps, and discounted
with γ = 0.99.

C HUB Cost effects
We investigate the impacts of teacher query cost on ATS performance by varying professor feedback costs in the paper
recommendation domain. We set linear costs F = {−1,−2,−3} and scale them by a cost multiplier. As in the other paper
recommendation experiments, results are averaged across 25 runs on 20 different paper recommendation tasks.

We find that ATS responds rationally to changes in costs, querying teachers more sparingly (Figure 10b) and consequently
identifying the best arm more slowly (Figure 10a as overall costs increase. This leads to a slight decrease in overall performance
(Figure 10c).



(a) Frequency of pulling the best arm (b) Frequency of teacher queries

(c) Discounted cumulative reward

Figure 10: ATS behavior and performance varies with teacher query costs. Data is averaged across 25 runs on 20 paper
recommendation HUB problems and smoothed over 10 steps.


