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Abstract
Synthesising realistic and responsive virtual characters capa-
ble of traversing complex 3D environments remains a chal-
lenging task. Existing approaches have generated convincing
human motions on a two-dimensional plane; however, many
neglect the necessity of traversal through three-dimensional
settings. Consequently, these methods often result in unreal-
istic motions, with frequent clipping and floating feet. More-
over, some methods rely on auxiliary data, such as height
maps, which are difficult to obtain. To address these limita-
tions, we present InterLevel, a novel reinforcement learning
approach for training physically simulated characters to nav-
igate multi-level environments. Our system leverages a novel
reward function that encourages the character’s movement
within 3D space, and we utilise a wide variety of stair gradi-
ents, dimensions, and orientations to ensure a generalised pol-
icy. InterLevel achieves an average progress of 46.8%, sig-
nificantly exceeding the 30.1% of the current state-of-the-art
method. Furthermore, the visualizations demonstrate a clear
qualitative gap between our method and the existing method.
While the existing method fails in most cases, our InterLevel
consistently generates plausible motions, even on stairs with
large gradients.

Introduction
Simulation of a 3D traversal policy can be a ground-breaking
stride in allowing virtual characters to quickly navigate var-
ious floors of a given world space, opening the field to
new possibilities for simulated avatars in computer interac-
tion. The ability to realistically traverse staircases and multi-
level environments holds many potential applications. In
fields such as robotics and video games, it allows humanoid
avatars to traverse real-world environments, including eleva-
tion changes. While previous works (Tessler et al. 2023; Lee
and Joo 2023; Peng et al. 2022, 2018; Rudin et al. 2022) have
achieved realistic human motion simulations, they still lack
methods to adequately traverse multi-level environments, of-
ten resulting in characters feeling disconnected.

Some of these works (Peng et al. 2018; Rudin et al. 2022)
simulate this process using auxiliary 3D environment infor-
mation, such as height maps. However, these models remain
constrained by their dependency on access to auxiliary infor-
mation that is difficult or sometimes impossible to obtain.
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To address this limitation, our proposed method focuses
on developing a policy that can generate practical and re-
liable motions that can traverse various environments us-
ing realistic data without a need for auxiliary information.
This will allow virtual characters to navigate the environ-
ment more realistically and believably and possibly enable
humanoid robots to perform these actions in a real environ-
ment.

However, synthesising physically plausible navigational
motion in a real environment is a complex challenge. Sim-
ply repeating prerecorded motion capture data of a human
climbing up stairs quickly leads to unrealistic results, with
frequent clipping and floating feet if not perfectly aligned
with the environment (Hassan et al. 2021; Holden et al.
2020). Physics-based methods allow for more flexibility
when performing these actions (Pan et al. 2023; Peng et al.
2018); however, consistently simulating these motions to al-
low a character to climb stairs of varying dimensions and
shapes is an ongoing challenge. Stairs introduce a unique
challenge for traversal, as the humanoid must precisely and
consistently plant their feet on each step before shifting their
centre of mass up the stairs.

This work presents InterLevel, a reinforcement learn-
ing approach that allows physically simulated characters to
climb stairs realistically and consistently. Our system uses
a novel reward function that encourages the avatar’s move-
ment within a 3-dimensional space. We use various gen-
erated staircases at multiple angles to allow for generalis-
ing unseen staircases. Compared to prior work, InterLevel
shows more realistic and precise climbing motions and can
handle numerous stair gradients, dimensions, and numbers
at various orientations from the character. Our system pro-
vides the following contributions: (1) A reinforcement learn-
ing approach to train realistic physics-based humanoid char-
acters to navigate varied terrain. (2) A novel reward function
that encourages the character to follow a given trajectory. (3)
Characters that can navigate various stairs with greater sta-
bility and efficiency compared to prior work.

Related Work
Data-Driven 3D Motion Generation
Data-driven motion generation techniques, such as motion
matching, have shown impressive results in creating realistic



Figure 1: Our InterLevel policy uses a physics-based data-driven 3D motion synthesis approach to create effective motion for
navigating 3D scenes. InterScene (Pan et al. 2023), a SOTA method, often fails on stairs with varying heights, whereas our

approach ensures stable ascent.

Figure 2: Example framework for real-world applications.

character animation. (Holden et al. 2020) proposed Learned
Motion Matching, a technique that utilised multiple neu-
ral networks to emulate various parts of Motion Matching,
enabling unique player-controlled animations based on a
predefined database of animations. Their approach demon-
strated the ability to generate responsive character anima-
tions in real time, having specific applications within video
games. (Zhang et al. 2018) introduced Mode-Adaptive Neu-
ral Networks. This quadruped-based motion control archi-
tecture leverages unstructured motion capture data and a gat-
ing network to dynamically update and blend different ani-
mations within a dataset. This approach successfully facili-

tated smooth transitions between different locomotion mod-
els. (Starke et al. 2020) presented a Local Motion Phase
framework for bipedal and quadruped characters using op-
timisation techniques to enable responsive character control
from unstructured motion capture data. Their method auto-
matically extracted local motion phases from the data and
leveraged neural networks to produce responsive, natural-
looking animations.

While these data-driven approaches create realistic-
looking motions, they are susceptible to clipping and float-
ing joints and are limited to the behaviours in their dataset.
Therefore, generating motions for novel environments, such
as staircases, is challenging for purely data-driven ap-
proaches. (Qing et al. 2023; Nguyen, Bao, and Nguyen
2022) attempt to solve this issue by blending the motions
of two actions based on the current state of the environment.
However, they are still restricted to their dataset. In contrast,
physically driven approaches have a greater ability to gen-
eralise to novel environments that are not present within the
training data.

Physics-Based Methods
Physics-based models synthesise motions by training the
given network within a physically driven environment, solv-
ing for actions that accomplish the given task or behaviour.
This allows the model to adapt to new environments and ob-
jectives, and transferring this trained model to a real-world
application is possible.



Early works, like (Hodgins et al. 1995; Yin, Loken, and
van de Panne 2007), proved that performing basic movement
and sports tasks with physically driven characters was possi-
ble. Over time, these approaches have continued to improve,
with recent advancements in deep reinforcement learning
showing promising results in producing robust policies for
complex tasks. (Peng et al. 2018) proposed DeepMimic, a
deep reinforcement learning framework, utilising reference
motion capture to create a reward system that can train a
variety of control policies on different tasks in a physically
realistic environment. Their approach created robust and dy-
namic motions but required considerable motion capture
data for training. (Peng et al. 2022) introduced Adversarial
Skill Embeddings (ASE), a project that is a critical founda-
tion for our research. ASE is a training framework that learns
various reusable skills that work with completing navigation
and obstacle-based tasks. By learning a diverse set of skills
in a latent space, ASE allows for generating adaptive and
versatile character behaviours.

Physics-based approaches have shown promising results
for character-environment interactions, such as walking and
quadruped robots on stepping stones (Nguyen, Bao, and
Nguyen 2022). However, many of these typically rely on re-
ward function designs locked to a 2D plane, limiting their
ability to handle complex 3D environments. Our work ex-
pands on this concept by introducing a novel reward func-
tion and learning scheme specifically designed for 3D nav-
igation, enabling characters to traverse multi-level environ-
ments and areas of varying heights.

Character-Scene Interactions
The ability to synthesise realistic interactions between
avatars and the environment is crucial to producing realis-
tic animations and applying them to real-world objects. Re-
cently, numerous works have focused on developing systems
for full-body character control and scene interaction.

(Hassan et al. 2023) proposed a method for synthe-
sising physical character-scene interactions using scene-
conditioning and a visual discriminator. Their approach is
conditioned on the characters’ movements and the objects
in the environment, allowing for the generation of realistic
interactions. By leveraging randomised placements, sizes,
and properties of objects, their method can generalise to a
broader range of scenarios. (Rempe et al. 2023) introduced
Trace and Pace, a diffusion model that uses a trajectory-
driven, physics-based humanoid to emulate pedestrian in-
teractions in various environments. In their approach, each
agent navigates the environment while avoiding collisions
with other agents, resulting in realistic crowd behaviour.
(Pan et al. 2023) presented InterScene, a system for synthe-
sising character motions using a finite state machine and var-
ious pre-trained policies to explore and interact with a pro-
vided 3D scene. However, InterScene struggles to produce
policies that are not localised to a 2D plane in the scene, due
to the given reward function.

Previous works therefore struggle in handling multi-level
environments, with no methods that look specifically to han-
dle various slopes or staircases.

Figure 3: InterLevel Training Framework.Our system con-
sists of a Motion Discriminator that distinguishes between
reference climbing motions and generated motions, provid-
ing a style-based reward signal Rs(st) for the climbing pol-
icy. The policy πt(at|st) controls a simulated character in
a physics-based environment to climb the generated stair-
case. The Reward Function encodes the key features of the
task, such as location and velocity targets Rp(st), and over-
all promotes human-like behaviour through the total reward
rt. The character and environment state st are passed as ob-
servations to the policy at each time step t, which outputs
actions at to control the character.

We formulate our training environment with various stair-
case configurations at different slopes and orientations rela-
tive to the character’s starting state. This allows for greater
flexibility and generalisation compared to methods that rely
on a fixed environment or predefined object layouts. By
training on a diverse set of staircases, our policy learns to
adapt to different inclines and orientations, enabling more
robust multi-level navigation.

Methodology
Overview
Our InterLevel system consists of a reinforcement learning
framework for training physically simulated characters to
climb objects, specifically stairs, realistically. We formulate
the problem as a Markov Decision Process (MDP), where
the character acts as the agent and our 3D environment st as
the state. At each time step t, the character observes the task
state gt, current state st, and its joint positions, velocities,
etc. and passes it to a policy πt(at|st) that outputs a given
action at. The goal is to climb the stairs in a realistic way
that resembles the motion capture data provided.

Observations
At each step, the environment and character state st consists
of the following 118-dimensional (118D) information:

• Root Height (1D)
• Root Rotation (6D)
• Root Linear and Angular Velocity (6D)
• Local Joint Rotations (72D)
• Local Joint Velocities (28D)
• Distance in XYZ to Target (3D)
• Distance Between MB and MT (1D)



Figure 4: Labelled InterLevel Environment.The distance to
the target is visualised using a solid green line between the
hips of the humanoid and the current target marker. MB and
MT are displayed by a red sphere in the scene.

• Angle Difference Between Root and MT , Relative to the
Line Connecting MB and MT (1D)

Where MB and MT , represent the position of the bot-
tom and top markers respectively. Defined as MB =
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Rotations are represented using a continuous 6D rotation
representation to ensure cohesive data representation (Zhou
et al. 2020). The XML for defining the skeleton of the agent
is the same as described in (Peng et al. 2021, 2022; Has-
san et al. 2023; Pan et al. 2023), having 12 movable internal
joints with 28 degrees of freedom.

Actions
The agent’s action space is represented by a 28D vector cor-
responding to the target orientations of each joint. The vector
is generated by the trained policy and is subsequently passed
to the Issac Gym environment to drive the movements of the
humanoid character in the scene.

Reward Function
Our approach’s reward function consists of three main
components: Location Reward (Rlocation), Facing Reward
(Rfacing), and Velocity Reward (Rvelocity). Figure 5 visually
represents the reward policy. The overall reward function
produces a weighted combination of these terms to assess
performance Rp, as

Rp = wloc ·Rlocation + wface ·Rfacing + wvel ·Rvelocity, (1)

where wloc, wface, and wvel are weighted values for each re-
ward. The function encourages the agent to follow the de-
sired trajectory as they progress up the incline, providing a
more significant reward as the agent successfully navigates
the slope. Specifically, the Location Reward guides the char-
acter to MT . The Facing Reward encourages the character to
orient towards MT , while the Velocity Reward encourages
the policy to maintain a predefined velocity. We explain each
reward in detail below.

Figure 5: 3D Training Reward Policy. The total reward rt
comprises three main components: Location Reward, Fac-
ing Reward, and Velocity Reward. The Location Reward is
calculated using a combination of Gaussian functions (De-
fined by σ1

t , σ2
t , and σ3

t ). The ReLU-Modified 3D Threshold
Gaussian term creates a reward gradient guiding the charac-
ter to MT .

Location Reward The location reward is calculated using
a combination of Gaussian and ReLU functions. The root
position at time t, pt, of the avatar is passed into the function,
where the x (pxt ), y (pyt ), and z (pzt ) positions are extracted.
pyt is passed as a parameter for defining the weight and σ
for each Gaussian distribution. Two initial distributions are
specified with σ1

t and σ2
t , representing the direction of the in-

cline from the highest point, and the opposite direction past
the peak, where a threshold across 0 is then used to define a
Threshold Gaussian function that ensures that if the policy
overshoots, it is not punished. A scaling factor is also ap-
plied to Gx(pt;σ

2
t ) to ensure the peaks of the distributions

are equal, ensuring the highest reward lies at the target posi-
tion, otherwise, the smaller σ value past the target position
will create a higher reward at the incorrect position.

Gx(pt;σt) =
1
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This is then combined with a third Gaussian function,
weighted by σ3

t , across the 3rd dimension to create a 3D
reward function that will ensure that the agent is rewarded
based on being more central on the incline, creating a 3D
Threshold Gaussian.

Finally, the root pyt position is used to calculate where the
agent is, relative to between MB and MT , which is passed to
a ReLU function to be then used to scale the 3D Threshold
Gaussian to create the final ReLU-Modified 3D Threshold
Gaussian.

Rlocation = TGx ·Gz(p
z
t ;σ

3
t )·ReLU((pyt −my

b )/(m
y
t −my

b ))
(4)



Figure 6: Graphical Example of Threshold Gaussian. De-
scribed in Equation 3. The reward is plotted on the y-axis,
and the distance to the target is plotted along the x-axis.

Facing Reward The facing reward is formulated as a
weighted reward based on the agent’s current orientation rel-
ative to the direction of the desired trajectory, calculated as
the dot product between the target direction and the agent’s
current direction, where 1 is perfectly aligned, 0 is perpen-
dicular, and -1 is the opposite direction. In this case, it en-
courages the character to face in the direction of MT to en-
sure that it will continue to move towards the target. It is
then passed to a ReLU function to prevent a negative penalty
from being applied.

Rfacing = max(0, Efacing) = ReLU(Efacing), (5)
Efacing = Ftar · Fcur, (6)

where Ftar and Fcur represent the target and current direc-
tion of the character.

Velocity Reward For the velocity reward, the previous pt
and pt−1 are used to calculate the agent’s current velocity; a
reward is then given proportional to how close the calculated
velocity is to a predefined velocity value, defined by the user.
This allows the policy to be trained to act quicker or slower.
The Velocity Reward is written as

Rvelocity = e−2·Evel
2

, (7)
Evel = ReLU(Star − Scur), (8)

where Star and Scur denote target speed and current speed,
respectively.

Throughout the development process, we conducted ex-
tensive testing with these reward functions, enabling and dis-
abling individual components to evaluate their impact on the
agent’s performance. This iterative approach allowed us to
fine-tune the contribution of each reward and identify their
influence on the training outcomes.

Motion Discriminator
The style reward Rs, described in (Peng et al. 2021), is de-
signed to increase the reward when the trained policy can
create motions that appear to be similar to the given dataset,
which is calculated using the discriminator, as seen in Fig-
ure 3. This can be described as a given motion M = (si, ai),
where si are example states from the dataset, and ai are ac-
tions from the policy, where the objective is for ai to imitate
the orientations seen in si to maximise a given goal func-
tion g and attempt to deceive the discriminator D(s, a) into
believing that the action a is sampled from the dataset.

Training
Dataset
For this system, we used clips from the SFU Motion Cap-
ture Database (Ying et al. 2018), specifically 0017 Running
OnBench001 and 0017 RunningOnBench002. Each clip was
segmented into climbing and descending, focusing on the
upward and downward movements. Among these segments,
we utilized ascending motion clips to train the proposed
model, however the descending clips are still available for
potential training of a descending traversal model.

Simulation Setup
NVIDIA’s Isaac Gym (Makoviychuk et al. 2021) is used for
simulation, a powerful GPU-accelerated simulator designed
for training policies for a large variety of robotics tasks.

To ensure that the policy remains generalised and robust,
even in unseen conditions, we employ a level of randomness
in the initial state of each episode, for the starting position of
the character and the rotation of the staircase, exposing the
agent to various trajectories and scenarios. As well as this,
depth, width, and height are varied within the dataset.

The initial position of the character is a random value
within a predefined range from the center of the environ-
ment. The staircase’s rotation is sampled from a uniform dis-
tribution of values from 0 to 360 degrees around the vertical
axis. This is then translated to ensure the staircase faces the
center of the environment.

Figure 7: Episode length throughout training. The duration
of each episode generally increases as the agent learns to
climb the stairs longer before terminating. The smoothed
curve (green) shows the upward trend against the raw data
(light green).

Implementation
For training, we used the PPO algorithm(Schulman et al.
2017) with a constant learning rate of 2e-5, the same algo-
rithm that showed promising results in (Pan et al. 2023; Peng
et al. 2021). The batch size was set to 256, and the minibatch
size was 64. The training process was configured to run for
a maximum of 1,000,000 epochs, with intermediate results
saved every 500 epochs and the best model saved after 50
epochs, the model was never trained to the full 1,000,000
epochs. The model utilized a multi-layer perceptron (MLP)
with units [1024, 512] and ReLU activation. We employed
gradient clipping with a norm of 1.0 and set the entropy co-
efficient to 0.0. The reward shaping scale value was set to
1, and the discount factor (gamma) was 0.99. The training



also included normalization of input and value, and the use
of mixed precision was disabled.

Early Termination
We can confidently assert that if the agent falls to the ground
or onto the staircase, then it is unlikely that we want to
encourage this behaviour. As such, inspired by (Pan et al.
2023), we introduce an early termination criterion during the
training process. (Pan et al. 2023) uses a pre-defined height,
with the condition that if the hips of the character fall be-
low that height, the episode is reset, instead we propose a
specified distance from the hips in the vertical axis, where
if the head or feet enter this boundary, it is considered hor-
izontal, and the episode is terminated early. Due to this, we
were able to effectively detect failures during training above
ground level.

The episode will continue until one of the reset criteria
is met; either the agent successfully ascends the staircase,
the maximum number of time steps is reached, or an early
termination condition is met. If the agent is unsuccessful in
ascending the stairs, either by time or a fall, they receive a
low reward and are reset.

Figure 7 illustrates the length of each episode across each
step. This is used to monitor how long the agent can nav-
igate the given environment before the episode terminates,
either by completion of the task or by an early termination
method being met. Initially, the policy appears to struggle
with basic movement and maintaining balance, leading to
lower episode length; however, after learning to balance and
climb the stairs, the episode length can gradually increase.

Experiments

Figure 8: Qualitative comparison of InterLevel (Ours) (Left)
against our ablated model, InterLevel-2D (Right).

Ablation Study
To demonstrate the benefits of incorporating a reward func-
tion that considers three dimensions, we conduct an ablation
study regarding Rlocation. In the ablated version, the model
is trained with a reward function where the ReLU scaling
component of the Rlocation is locked to 1. That is, Eq. (4) is
changed into:

Rlocation = TGx ·Gz(p
z
t ;σ

3
t ) · 1 (9)

Figure 9: Example Staircase configurations used for train-
ing and evaluation. The staircases have step heights of 0.05
(Left), 0.1 (Middle Left), 0.15 (Middle Right), and 0.2
(Right) units, respectively, to allow the policy to generalise
to varying inclines.

We call the ablated model without the scaling component
InterLevel-2D. InterLevel-2D struggles to produce motions
that begin to navigate the staircase, converging to instead
navigate below the target. In contrast, the fully implemented
policy can successfully climb the staircase and complete the
task (Figure 8).

This demonstrates that our novel Gy component is an es-
sential element in creating effective policies for navigating
in 3D environments.

Quantitative Comparison
To assess the effectiveness of our trained policy, we con-
ducted experiments on unseen staircases of various heights.
We tested the model over 4096 trails, each with a ran-
domised staircase from the dataset with heights ranging
from 0.5m to 0.2m, recording the average progress up the
stairs and the percentage of episodes terminated due to one
of the early termination conditions being met, and the aver-
age time taken to complete the staircase in seconds.

Table 1 shows the results found, demonstrating the ef-
fectiveness of the InterLevel training algorithm against cur-
rent state-of-the-art method, InterScene (Pan et al. 2023).
Our approach can achieve consistently higher performance
when navigating these staircases, achieving a significant in-
crease in progress over InterScene and our ablated model,
InterLevel-2D. As well as this, our method is the only
method that was able to produce motions that completed the
staircase.

These quantitative metrics (Table 1, 2, 3) show the effec-
tiveness of this reinforcement learning approach and the pro-
posed novel reward function. In Table 1, the progress value
of our method is 16.7% higher than InterScene, this shows
our model’s ability to apply these movements to the environ-

Method Progress (%) ET (%) Time (s)
InterScene 30.1% 6.8% -

InterLevel-2D 34.8% 19.4% -
InterLevel 46.8% 24.9% 8.49

Table 1: Quantitative results of our InterLevel against Inter-
Scene (Pan et al. 2023) and InterLevel-2D on staircases of
varying heights over 4096 trials, example staircases in Fig-
ure 9. ET denotes early termination. − denotes no successful
cases of the agent climbing all the stairs to the end.



Method Progress (%) ET (%) Time (s)
InterScene 42.5% 10.0% -

InterLevel-2D 59.7% 23.2% -
InterLevel 48.8% 17.2% 12.8

Table 2: Quantitative results of our InterLevel against Inter-
Scene (Pan et al. 2023) and InterLevel-2D on staircases of
0.05m over 4096 trials. − denotes no successful cases of the
agent climbing all the stairs to the end.

Method Progress (%) ET (%) Time (s)
InterScene 30.4% 4.6% -

InterLevel-2D 33.9% 7.6% -
InterLevel 55.2% 16.4% 12.3

Table 3: Quantitative results of our InterLevel against Inter-
Scene (Pan et al. 2023) and InterLevel-2D on staircases of
0.1m over 4096 trials. − denotes no successful cases of the
agent climbing all the stairs to the end.

ment effectively with a large variety of staircases. The Early
Termination (ET) value of our method is 24.9%, this means
that our model is attempting to traverse more of the stair-
case than InterScene, as the low ET value of the InterScene
is due to avoidance of the obstacle, as opposed to traversal
and interaction.

In Table 2, we present an experiment that only contains
cases of 0.05 gradient staircases, different from all staircases
seen in Table 1. We can obtain a consistently higher average
with both InterLevel-2D and Interlevel in this case. In Table
3, we present cases of 0.1 gradient staircases. In this case,
compared to Table 1, there was a larger gap between Inter-
Scene and Ours. This is due to the fact that with the higher
gradient, InterScene is unable to reach a higher progress
percentage without genuine traversal of the staircase. Fur-
thermore, in these high-gradient cases, our final model ob-
tains a much higher progress percentage than InterLevel-2D,
which demonstrates the significance of the 3D information.
By training with our novel reward function on a diverse set
of staircases at varying angles, InterLevel learns a more gen-
eralised policy for being able to traverse these unseen stair-
cases, simulating realistic behaviour.

When considering completed episodes, we analyse the
time taken for completion. Showing that the only completed
episodes are from the InterLevel policy. Over all staircases,
InterLevel can achieve completion in 8.49 seconds, show-
ing that it can not only complete the staircase effectively,
but within a reasonable time frame. Subsequently, with 0.05
gradient staircases, it became 12.8 seconds, and 12.3 sec-
onds with 0.1 gradient staircases.

Qualitative Comparison
Our proposed InterLevel generates high-quality motion in
a wide range of scenarios. The agent can consistently take
continuous steps up the staircase while maintaining balance
and adapting to the varied heights of the staircases. As visu-
alized in Table 4, our method significantly outperforms In-
terScene (Pan et al. 2023). InterScene (Pan et al. 2023) can

capture the motion data appropriately, however, it struggles
to apply this to the given environment, resulting in the pol-
icy circling underneath the target location. In Table 4 (a), the
agent in the result of InterScene frequently loops underneath
the target floor and falls on the staircase, without being able
to recover. In Table 4 (b), as the agent approaches the under-
side of the floor, it is not blocked, due to the lower height,
and remains at the position for the duration of the episode.
In Table 4 (c), even at a gradient of 0.05, InterScene fails
to traverse the staircase, falling over the low floor, and is
unable to recover. In comparison, InterLevel can be seen in
Table 4 (a, b, c) successfully navigating the same staircases,
reaching the target marker at the correct height.

Limitation

While the results are promising, some artefacts are still
present in the motion. One such artefact is that the avatar
keeps its left foot at a 20-degree angle from the floor
throughout all movements, caused by a misplaced marker
during the dataset’s recording. As a result, the policy learned
to mimic this error, creating the effect we see from the avatar.

Further on, a significant issue occurs as the agent pro-
gresses up the staircase. The policy has learned to lock out
its legs and lean forward as it approaches 80-90% up the in-
cline, likely in an attempt to maximise the reward function
without the danger of continuing the climb and potentially
failing. These artefacts can be seen in Figure 10.

Figure 10: Artefacts observed in the generated climbing mo-
tions. The character’s left foot remains at a 20-degree angle
throughout the movement (left), and the character tends to
lock out the legs and lean forward when approaching MT

(right).

Additionally, further hyper-parameter tuning can be used
to potentially address these artefacts and improve the over-
all performance of the model. The current hyper-parameters,
such as the learning rate, regularization coefficients, and re-
ward function weighting, may not fully capture the nuances
of the desired motions or penalize undesirable behaviors ef-
fectively. Adjusting these parameters could help the policy
better generalize across a range of movements and environ-
ments, reducing the tendency to overfit to specific errors,
such as the locked legs and foot misalignment.



InterLevel InterScene (Pan et al. 2023)

(a)

(b)

(c)

Table 4: Qualitative comparison between InterLevel (Ours) (Left) and InterScene (Pan et al. 2023) (Right), on staircases of
varied gradients, both are trained on the same motion data.

Conclusion

InterLevel presents a novel reinforcement learning system
for synthesising stair-climbing motions for physically simu-
lated characters. Our core contributions include a novel re-
ward function that encourages human-like movements while
successful navigation towards a target. Effective generali-
sation is achieved through training with various staircases
of different heights and orientations, leading to high per-
formance, even in unseen environments. Quantitative and
qualitative analysis demonstrates the approach’s effective-
ness while being able to achieve stable and realistic motions
in new environments.

Future work should focus on extending the system for
more complex environments, such as varied step heights and
downward slopes. It should also investigate real-world appli-

cations of the policy. Additionally, alternative tracking mea-
sures should be explored, such as distance sensors from the
front of the feet, which could prove more applicable to real-
world implementations. Addressing these issues could en-
hance the overall adaptability of the system, making signifi-
cant contributions to character-scene interactions.
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