
The Next-Generation of Planning
Heuristics: GNNs and Beyond

Felipe Trevizan

PRL Workshop
2/Jun/2024

Machine Learning is Ubiquitous

• The public is already getting used to ML systems, e.g., Large Language Models

• LLMs are scoring relatively high in reasoning benchmarks, e.g., Gemini 1.5 Pro:
‒ 60.7% (0-shot) on under-graduate physics problems

‒ 77.7% (0-shot) on coding problem

• But sometimes they are unable to solve simple planning problems:

1

A

B

C

C

B

A

Machine Learning for Planning

Can Machine Learning solve planning problems? Yes!

• We can learn a generalized policy that solves all problems of a given domain

• Does not work for every domain
‒ Some domains are too hard

‒ Limited expressivity for these approaches

Can Machine Learning help to solve planning problems? Yes!

• Learn to guide a search algorithm towards good solutions

• The search algorithm can recover from bad predictions by the ML model

• Focus of this talk: graph-based approaches to learn such guidance

2

Outline

• Three graph-based approaches for learning heuristics

• Two novel methods to use these graphs for planning

3

AI Planning

4

Generate a course of action to reach given goals.

Path-finding in a gigantic transition system:

• states: world states

• transitions: actions

• set of goal states

Solution:

• Plan: action sequence leading to a goal state

 Initial state → action1 → action2 → … → actionn→ Goal state

A

B

C

C

B

initial state goal

STRIPS Representation

STRIPS is supported by PDDL:

5

Objects:
A, B, C ← blocks

Initial State:
clear(A), on(A,B), on(B,C),
on-table(C)

Goal:
on(C,B)

Predicates:
on(block, block)
holding(block)
…

Action Schemas:
name: stack(x, y)
precondition: holding(x) clear(y)
effect:
 holding(x),  clear(y)
 clear(x), hand-empty, on(x,y)

propositionsinstances of

actionsinstances of

A

B

C

C

B

initial state goal

Domain Problem

delete effects

add effects

Heuristics

• Heuristics: cost estimators used to guide search (e.g., A* and GBFS)

‒ ℎ(𝑠): estimates the cost of reaching the goal from state 𝑠

• Domain-independent heuristics: (optimal) solution to a relaxation

• Delete-relaxation: remove negative effects
‒ too hard to solve optimally

‒ sub-optimal solutions computable
in polynomial time

‒ popular delete-relaxation heuristics
are h-ff, h-add, h-max, lm-cut

6

Predicates:
on(block, block)
holding(block)
…

Action Schemas:
name: stack(x, y)
precondition: holding(x) clear(y)
effect:
 holding(x),  clear(y),
 clear(x), hand-empty, on(x,y)

Domain

Graph Neural Networks

• Message Passing NN [GSR17]

7

[GSR17] Neural Message Passing for Quantum Chemistry. J. Gilmer, S.S. Schoenholz, P.F. Riley, O. Vinyals, G.E. Dahl. PMLR. 2017.
Image from https://distill.pub/2021/gnn-intro/

STRIPS-HGN:
Learning domain-independent heuristics

Reference:
• Domain-Independent Planning Heuristics with Hypergraph Networks. William Shen, Felipe

Trevizan, and Sylvie Thiébaux. ICAPS 2020.
Code:
• https://github.com/williamshen-nz/STRIPS-HGN

8

p1

g1

g2p3

p4

p6

p5p2

Background: h-max/h-add

• Delete relaxation + Ignore interactions between sub-goals
‒ If , each is a sub-goal

• estimates the minimum cost from to :

‒ when :

‒ when :

9

• nodes: propositions
– green: goal prop.
– blue: true in state s

H-max/add as Shortest Path in a Hypergraph

No well-defined distance function because of the hypertails
• Fixed by using max or sum to resolve hypertails

Can we learn a distance function for these hypergraphs from scratch?

Previous equations are computing a shortest path from each goal proposition
to a proposition that is currently true in the following hypergraph:

p1

g1

g2p3

p4

p6

p5p2

s = {p1,p3,p5}
h-max(s, {g1}) = 2
h-add(s, {g1}) = 5• arcs: actions

– head: add effect
– hypertails: preconditions

10

STRIPS-HGN

• MPNN extended to support hypergraphs

• We use the implicit hypergraph from h-max/add

• Learned MLPs: 𝑓enc , 𝑓dec , 𝜙
𝑒 , 𝜙𝑣,𝜙𝑢

• Aggregation functions: 𝜌𝑒→𝑣,𝜌𝑒→𝑢,𝜌𝑣→𝑢

ℝ𝑓enc 𝑓dec

Update functions

x M

Delete Relax
 Hypergraph

U

E

V

E

V

Message Passing Layer Updated
 Hypergraph

11

Element-wise sum

Training

• Example generation
‒ Generate optimal plan πi for problems Pi, i ∈ {1, …, n}

‒ Training samples (G, h*(s)) for each state s encountered in πi

• Weight optimization
‒ Regression problem

‒ Mean Squared Error loss:

12

Experiment

Domain-specific setting (few-shot learning):
• Evaluation done using unseen problems of the domain used for training

Domain-independent setting (zero-shot learning):
• Evaluation done using problems of an unseen domain
• E.g., trained on BW and Gripper problems and evaluated on Zeno problems

13

Lifted Learning Graph:
Improving Domain-Independent Learning

Reference:
• Learning Domain-Independent Heuristics for Grounded and Lifted Planning. Chen, D., Thiébaux, S.

and Trevizan, F. In Proc. of 38th AAAI Conference on Artificial Intelligence. 2024.
Code:
• https://github.com/dillonzchen/goose

14

Motivation

STRIPS-HGN has a drawback:

• It builds the complete hypergraph to do message passing
‒ h-max/h-add do this implicitly

• Each message passing step is expensive

We want a graph that scales up better:

• Compact even for large instances

• Still represents the properties of domains and problems

Idea: design a graph based on the lifted representation

15

Lifted Learning Graph

16

Instance
Subgraph

Action Schema
Subgraph

Objects

Arguments of predicate

Propositions in initial state and goal

Predicates

Mentions of pred in schema

Arguments of predicate

Arguments of schema

Action schema

stack(x, y)
precondition: holding(x) clear(y)
effect:
 holding(x),  clear(y),
 clear(x), hand-empty, on(x,y)

Domain-Independent Experiment (2)

• Training: previous IPCs domains except evaluation domains

• STRIPS-HGN is trained as a domain-specific heuristic

• Greedy Best-First Search (GBFS) is used for evaluating heuristics

17

Grounded graphs
defined in the same
paper as LLG

Theoretical Results

We have characterized expressiveness of our networks:

• LLG cannot represent h-max/h-add
• STRIPS-HGN can represent h-max/h-add
• None of them can represent optimal

solution to delete-free problem

These results are based on the connection between MPNN and the Weisfeiler-
Lehman algorithm for graph isomorphism/color-refinement:

‒ MPNNs are at most as powerful as color refinement [XWL19]

18

[XWL19] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural networks? In International
Conference on Learning Representations. 2019

Instance Learning Graph:
Learning Domain-Specific Heuristics

Reference:
• Return to Tradition: Learning Reliable Heuristics with Classical Machine Learning. Chen, D.,

Trevizan, F. and Thiébaux, S. In Proc. of 34th Int. Conf. on Automated Planning and Scheduling
(ICAPS). 2024.

Code:
• https://doi.org/10.5281/zenodo.10757383

19

Motivation

Domain-independent knowledge is:
• hard to learn
• expensive to encode

Domain-specific knowledge is more effective
• no need to encode actions (schemas)
• algorithms remain domain-independent

Idea for domain-specific graph:

• Simplify LLGs since the action schemas and predicates will remain the same
for all problems of the same domain

20

Instance Learning Graph

• Nodes: all objects and all propositions in the initial state and goal condition

• Edges: between a proposition and the objects used to instantiate it

• Colors (labels):

‒ Edges: position of the object in the predicate associated with proposition

‒ Nodes:
▪ Objects

▪ Achieved goal proposition

▪ Achieved proposition

▪ Unachieved goal proposition

21

× set of predicates, e.g., (AP,on) and (UG,on)

Domain-Specific Experiments

• Using the IPC 2023 Learning Track problems and methodology:
‒ 99 problems in increasing order of difficult for training

‒ 30 problems for evaluation for each difficulty

22

Outline

• Three Graphs-based approaches for Learning Heuristics

• Two new methods to use these graphs for planning

23

Optimal Ranker:
Learning a Ranking Function

Reference:
• Guiding GBFS through Learned Pairwise Rankings. Hao, M., Trevizan, F., Thiébaux, S., Ferber, P. and

Hoffmann, J. In Proc. of 33rd Int. Joint Conf. on AI (IJCAI). 2024.
Code:
• https://zenodo.org/records/11107790

24

Motivation

Greedy Best-First Search (GBFS):

25

What if we change h(s) to:
•10 × h(s) ?
• log(1+h(s)) ?

The solution will not change
because GBFS uses the
heuristic to order/rank

states!

Idea: learn a ranking between states instead of a heuristic (goal distance
estimator)

Learning a Ranking between States

• Given two states s and s’ learn if s is better than or equal to s’ or s’ is better
than or equal to s

• Advantages

‒ It is a classification problem instead of a regression problem

‒ More data for free: no need to compute h*(ti,j) for training

Instead, say that si is better than ti,j for all i
26

Optimal Ranking

• We can go one step further: learn a total quasi-order, i.e., satisfies

‒ Totality, transitivity and reflexivity

• Optimal Ranking: total quasi-order between the states in the optimal plan
and their siblings

• Even more data for free:

‒ an optimal plan of size n contains O(n2b) ordered pairs

‒ due transitivity, we need only O(nb) pairs to encode all pairs
27

branching factor

Learning and using Optimal Rankings

Learn using Direct Ranker [KWP20]

• Bring your own NN to compute
embeddings

• Learns how to compare states:

‒ r(si,sj) = σ(𝑤 · (embi - embj))

‒ si is better than or eq to sj if r(si,sj) ≤ 0

• Guarantees total-quasi order

Use in GBFS by converting r(si,sj) to a global ranking function r̂(s):

• r(si,sj) ≤ 0 iff r̂(si) ≤ r̂(sj)

• Smaller values of r(̂s) are preferred

28

[KWP20] Koppel, M.; Segner, A.; Wagener, M.; Pensel, L.; Karwath, A.; and Kramer, S. 2020. Pairwise Learning to Rank by Neural
Networks Revisited: Reconstruction, Theoretical Analysis and Practical Performance. ECML PKDD. 237–252

Domain-Specific Experiments (2)

• Same IPC Learning Track 2023 setting as before

29

31.7% Increase 15.8% Increase

WL-Kernel:
GNNs features for Classical ML

30

Reference:
• Return to Tradition: Learning Reliable Heuristics with Classical Machine Learning. Chen, D.,

Trevizan, F. and Thiébaux, S. In Proc. of 34th Int. Conf. on Automated Planning and Scheduling
(ICAPS). 2024.

Code:
• https://doi.org/10.5281/zenodo.10757383

1 2 3 1

Y BG
…

Motivation

We have been using GNNs so far but they have some drawbacks
‒ Several hyperparameters
‒ Several parameters to be learned

Recall from our theoretical results regarding LLGs:

‒ MPNNs are at most as powerful as color refinement

Idea: Use color refinement directly

‒ Generate features with same expressiveness power as the GNNs learned
embeddings

‒ Use classical (non-NN) ML algorithms

31

WL Algorithm

The Weisfeiler-Leman algorithm graph isomorphism test based in color (label)
refinement [LW68]

• At each iteration, the new color of a nodes is defined based on its own color
and its neighbors’ color

• Repeat for k iterations

Example: on(a,b) colors

0. green

1. green, {{blue, blue}}

2. (green, {{blue, blue}}), {{(blue, {{green, yellow}}), (blue, {{green, green}})}

32

[LW68] Leman, A.; and Weisfeiler, B. 1968. A reduction of a graph to a canonical form and an algebra arising during this reduction.
Nauchno-Technicheskaya Informatsiya.

ILG colors:
Unachieved goal proposition

Achieved proposition
Object

WL Graph Kernel

A kernel k(x,y) in ML is a function measuring the “similarity” between x and y

WL Graph Kernel [SSV11]:

‒ Compute the WL colors for all nodes for all graphs in the training set

‒ Represent new graphs as a histogram of its WL colors over the known colors

‒ Compare two graphs by the dot product of their histograms

33

1 2 3 2

2 1 3 3 1

Y BG

…

…
R

WL-Kernel(G1,G2) = 1×2 + 2×1 + …

G1:

G2:

Drop colors not seen in training set

Y BG

[SSV11] Shervashidze, N.; Schweitzer, P.; Van Leeuwen, E. J.; Mehlhorn, K.; and Borgwardt, K. M. 2011. Weisfeiler-lehman graph kernels.
Journal of Machine Learning Research.

Domain-Specific Experiments (3)

• Same IPC Learning Track 2023 setting as before

• GPR: Gaussian Process Regression

34
21.5% Increase

Interpreting WL Features and Theoretical Results

For details on this come to our talk on

Tuesday 15:00-16:30 (Planning & Learning)
Return to Tradition: Learning Reliable Heuristics with Classical Machine Learning

35

Take away message

ML-based heuristics have the potential to replace classical planning heuristics
for sub-optimal planning

36

Total Coverage in the IPC 2023 Learning Track

STRIPS-HGN
2020

LAMA-First (557)

(430)

But there are several challenges

• Some domains are still challenging for ML

‒ From the IPC 23 Learning Track: Floor title, Rovers, Satellite, Transport and
Child Snack

• Computing training data (optimal plans) is expensive

‒ Try to get even more data for free

• Curriculum Learning, e.g., how to generate problems for training?

‒ IPC provided problems in increasing order of difficulty

• Continual Learning

‒ Improve the model during search (evaluation) when better solutions are
found

37

Thank you

and to my collaborators and students:
• Dillon Chen
• Florian Geisser
• Joerg Hoffmann
• Malte Helmert
• Mingyu Hao
• Patrick Ferber
• Sylvie Thiébaux
• William Shen

38

Questions?

39

	Slide 0: The Next-Generation of Planning Heuristics: GNNs and Beyond
	Slide 1: Machine Learning is Ubiquitous
	Slide 2: Machine Learning for Planning
	Slide 3: Outline
	Slide 4: AI Planning
	Slide 5: STRIPS Representation
	Slide 6: Heuristics
	Slide 7: Graph Neural Networks
	Slide 8: STRIPS-HGN: Learning domain-independent heuristics
	Slide 9: Background: h-max/h-add
	Slide 10: H-max/add as Shortest Path in a Hypergraph
	Slide 11: STRIPS-HGN
	Slide 12: Training
	Slide 13: Experiment
	Slide 14: Lifted Learning Graph: Improving Domain-Independent Learning
	Slide 15: Motivation
	Slide 16: Lifted Learning Graph
	Slide 17: Domain-Independent Experiment (2)
	Slide 18: Theoretical Results
	Slide 19: Instance Learning Graph: Learning Domain-Specific Heuristics
	Slide 20: Motivation
	Slide 21: Instance Learning Graph
	Slide 22: Domain-Specific Experiments
	Slide 23: Outline
	Slide 24: Optimal Ranker: Learning a Ranking Function
	Slide 25: Motivation
	Slide 26: Learning a Ranking between States
	Slide 27: Optimal Ranking
	Slide 28: Learning and using Optimal Rankings
	Slide 29: Domain-Specific Experiments (2)
	Slide 30: WL-Kernel: GNNs features for Classical ML
	Slide 31: Motivation
	Slide 32: WL Algorithm
	Slide 33: WL Graph Kernel
	Slide 34: Domain-Specific Experiments (3)
	Slide 35: Interpreting WL Features and Theoretical Results
	Slide 36: Take away message
	Slide 37: But there are several challenges
	Slide 38: Thank you
	Slide 39: Questions?

