
Q* Search: Heuristic Search with Deep Q-Networks

Forest Agostinelli 1, Shahaf S. Shperberg 2, Alexander Shmakov 3, Stephen McAleer 4, Roy Fox 3,
Pierre Baldi 3

1University of South Carolina, Columbia, South Carolina, USA
2Ben-Gurion University of the Negev, Beer Sheva, Israel

3University of California, Irvine, California, USA
4Carnegie Mellon University, Pittsburgh, Pennsylvania, USA

Abstract

Efficiently solving problems with large action spaces using
A* search has been of importance to the artificial intelligence
community for decades. This is because the computation and
memory requirements of A* search grow linearly with the
size of the action space. This burden becomes even more ap-
parent when A* search uses a heuristic function learned by
computationally expensive function approximators, such as
deep neural networks. To address this problem, we introduce
Q* search, a search algorithm that uses deep Q-networks to
guide search in order to take advantage of the fact that the sum
of the transition costs and heuristic values of the children of
a node can be computed with a single forward pass through a
deep Q-network without explicitly generating those children.
This significantly reduces computation time and requires only
one node to be generated per iteration. We use Q* search on
different domains and action spaces, showing that Q* suf-
fers from only a small runtime overhead as the action size
increases. In addition, our empirical results show Q* search
is up to 129 times faster and generates up to 1288 times fewer
nodes than A* search. Finally, although obtaining admissible
heuristic functions from deep neural networks is an ongoing
area of research, we prove that Q* search is guaranteed to
find a shortest path given a heuristic function does not over-
estimate the sum of the transition cost and cost-to-go of the
state.

Introduction
A* search (Hart, Nilsson, and Raphael 1968) is an algorithm
that searches for a sequence of actions that forms a path be-
tween a given start state and a give goal, where a goal is
a set of goal states. By maintaining a search tree consist-
ing of nodes that represent states and edges that represent
transitions between states, search is performed by expanding
nodes in this search tree where nodes are prioritized for ex-
pansion according to a given cost. The expansion of a node
and the computation of the cost of its child nodes is one of
the most time-consuming portions of A* search. Node ex-
pansion is performed by applying every possible action to
the state associated with a given node to generate the child
nodes. The cost of a node is computed by adding its path cost
plus to its heuristic value, where the path cost is the sum of
transition costs from the start node to the given node and the

Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

heuristic value is computed by a heuristic function that esti-
mates the cost to go from the state associated with the node
to a closest goal state, commonly referred to as the cost-to-
go. Since a single iteration of A* search entails removing a
node from the priority queue, expanding the node, comput-
ing the cost of its children, and pushing its children to the
priority queue, for each iteration of A* search, the number
of new nodes generated, the number of applications of the
heuristic function, and the number of nodes pushed to the
priority queue increases linearly with the size of the action
space. This escalating computational load can be substan-
tial, particularly considering that the evaluation of heuris-
tic functions can be computationally intensive. Moreover, in
numerous domains, the process of generating states can also
be time-consuming, notably in motion-planning and chemi-
cal synthesis. However, it is worth noting that much of this
computational effort might be redundant, as A* search typi-
cally does not expand every single node it generates.

The need to reduce this linear increase in computational
cost has become more relevant with the more frequent use
of deep neural networks (DNNs) (Schmidhuber 2015) as
heuristic functions. While DNNs are universal function ap-
proximators (Hornik, Stinchcombe, and White 1989), they
are computationally expensive when compared to heuris-
tic functions based on domain knowledge, human intu-
ition, and pattern databases (Culberson and Schaeffer 1998).
Nonetheless, DNNs are able to learn heuristic functions
to solve problems ranging from puzzles (Chen and Wei
2011; Arfaee, Zilles, and Holte 2011; McAleer et al. 2019;
Agostinelli et al. 2019), to quantum computing (Zhang et al.
2020), to chemical synthesis (Chen et al. 2020), while mak-
ing very few assumptions about the structure of the problem.
Due to their flexibility and ability to generalize, DNNs of-
fer the promise of learning heuristic functions in a largely
domain-independent fashion. Removing the linear increase
in computational cost as a function of the size of the action
space would make DNNs practical for a wide range of appli-
cations with large action spaces, such as multiple sequence
alignment, theorem proving, program synthesis, and chemi-
cal synthesis.

In this paper, we introduce Q* search, a search algorithm
guided by a deep Q-network (DQN) (Mnih et al. 2015) that
requires only one node to be generated per iteration. DQNs
are DNNs that map a single state to the sum of the tran-

sition cost and the heuristic value for each of its successor
states. This allows us to only generate one node per itera-
tion as we can store tuples of nodes and actions in a priority
queue whose priority is determined by the DQN. When re-
moving a tuple of a node and action from the queue, we can
then generate a new node by applying the action to the state
associated with that node. In addition, the number of times
the heuristic function must be applied is constant with re-
spect to the size of the action space instead of linear. As a
result, the only aspect of Q* search that depends on the ac-
tion space is pushing a node, along with each of the possible
actions that can be applied to it, to the priority queue. This
is also more memory efficient than explicitly generating all
child nodes as, in our implementation, each action is only
an integer. Our theoretical results show that Q* search is
guaranteed to find a shortest path given a heuristic function
that neither overestimates the cost of a shortest path nor un-
derestimates the transition cost. Our experimental results on
the Rubik’s cube, Lights Out, and 35-Pancake puzzle show
that Q* search is orders of magnitude faster than A* search
and generates orders of magnitude fewer nodes. While these
environments have a fixed action space, the Q* search al-
gorithm is agnostic to whether the action space is fixed or
dynamic. In the Discussion section, we discuss avenues for
future work that use structured prediction to create DQNs
that are applicable to variable action spaces.

Related Work
Partial expansion A* search (PEA*) (Yoshizumi, Miura, and
Ishida 2000) was proposed for problems with large action
spaces. PEA* first expands a node by generating all of its
children, however, it only keeps the children whose cost is
below a certain threshold. It then adds a bookkeeping struc-
ture to remember the highest cost of the discarded nodes.
The intention of PEA* is to save memory, however, the
computational requirements do not reduce as every node re-
moved from the priority queue has to be expanded and the
heuristic function has to be applied to all of its children. No-
tably, PEA* is orthogonal to Q* and can be applied in con-
junction with it to further reduce memory consumption. En-
hanced partial expansion A* search (EPEA*) (Felner et al.
2012) uses a domain-dependent operator selection function
to generate only a subset of children based on their cost.
However, when utilizing function approximations such as
neural networks as heuristic functions, where the change in
heuristic values resulting from action application is not pre-
determined, EPEA* becomes inapplicable.

Deferred heuristic evaluation (Helmert 2006) has been
used to generate only one node per iteration in A* search.
This is accomplished by assigning each child node the same
heuristic value as its parent node and deferring the evalua-
tion of the child nodes until they are removed from the pri-
ority queue. However, this comes at a cost of inaccuracy,
especially when the cost-to-go of a child node can be drasti-
cally different than that of its parent. We compare Q* to this
method in our experiments and show that, in the vast major-
ity of cases, Q* search finds lower-cost solutions and does so
much faster than deferred heuristic evaluation. Furthermore,
in our experiments, deferred heuristic evaluation sometimes

runs out of memory due to its inability to prioritize one child
node over another.

Preliminaries
A search problem instance, denoted as I “

pG, c, start , goal , hq, is comprised of a graph G “ pV,Eq

with states (vertices) in V and edges (transitions) in
E Ď V ˆ V , and a cost function c : E Ñ R` that assigns
costs to graph edges. The instance specifies a starting state
(start) and a target state (goal) or a predicate P : V Ñ 0, 1
indicating whether a state satisfies goal conditions. h is a
heuristic function which assigns to each state s an estimate
of the cost associated with the shortest path leading from s
to a nearest goal state, often termed the “cost-to-go”. The
primary objective is to discover a path within graph G that
connects start to goal . The quality of the derived path is the
cumulative cost of its constituent edges, determined by the
cost function. We denote by dps, s1q the shortest (cheapest)
path between S and s1 in G, and dpstart , goalq by C˚.

Note that the graph is typically given implicitly, where
only the initial state is given alongside a set of transition
functions A. These functions represent various transitions
such as those between different robot configurations, puzzle
permutations, or STRIPS-like states in domain-independent
planning problems. In this work, we adhere to this assump-
tion, meaning that we are provided with an action space A,
and we assume that the set of edges E corresponds to ap-
plying each action a P A from every state s. We denote the
state resulted by applying action a from state s by Aps, aq

and the corresponding transition cost by capsq.

Deep Approximate Value Iteration
Value iteration (Puterman and Shin 1978) is a dynamic pro-
gramming algorithm that is central in solving Markov De-
cision Processes (MDPs) and reinforcement learning prob-
lems (Bellman 1957; Bertsekas and Tsitsiklis 1996; Sutton
and Barto 1998). It iteratively computes the expected value
for each state, initially assuming a zero value for all states
and progressively refining these estimations by applying a
Bellman update. Value iteration is typically formulated for
maximization problems featuring stochastic action effects
and a potentially infinite planning horizon. However, in the
realm of heuristic search, it can be redefined to address min-
imization problems, specifically aimed at minimizing costs,
with deterministic effects and a finite planning horizon. This
redefinition is expressed by the following equation:

V 1psq “ min
aPA

pcapsq ` V pAps, aqqq (1)

In this context, V represents a cost-to-go function, esti-
mating the cost of reaching the closest goal state from a
given state via the shortest path. This cost-to-go function can
seamlessly serve as a heuristic function for A* search.

Nonetheless, representing V as a lookup table is too
memory-intensive for problems with large state spaces. For
instance, the Rubik’s cube has 4.3 ˆ 1019 possible states.
Therefore, we turn to approximate value iteration (Bertsekas
and Tsitsiklis 1996) where V is represented as a parameter-
ized function, vθ, with parameters θ. We choose to represent

vθ as a deep neural network (DNN). The parameters θ are
learned by using stochastic gradient descent to minimize the
following loss function:

Lpθq “ pmin
a

pcapsq ` vθ´ pAps, aqqq ´ vθpsqq2 (2)

Where θ´ are the parameters for the “target” DNN that is
used to compute the updated cost-to-go. Using a target DNN
has been shown to result in a more stable training process
(Mnih et al. 2015). The parameters θ´ are periodically up-
dated to θ during training. While we cannot guarantee con-
vergence to v˚, approximate value iteration has been shown
to approximate v˚ (Bertsekas and Tsitsiklis 1996). For the
puzzles investigated in this paper, the states used for train-
ing vθ are generated by randomly scrambling the goal state
between 0 and K times. This allows learning to propagate
from the goal state to all other states in the training set. This
combination of deep neural networks and approximate value
iteration is referred to as deep approximate value iteration
(DAVI).

Batch Weighted A* Search
A* search (Hart, Nilsson, and Raphael 1968) is renowned as
one of the most widely recognized and influential search al-
gorithms. A* search maintains a priority queue, OPEN, from
which it iteratively removes and expands the node with the
lowest cost and a dictionary, CLOSED, that maps states that
have already been generated to their path costs. The cost of
each node is fpnq “ gpnq ` hpn.sq, where gpnq is the path
cost, the sum of transition costs along the path from start to
n, and hpn.sq is the heuristic value, the estimated cost-to-go
from the state associated with n to a nearest goal state. After
a node is expanded, its children whose states are not already
in CLOSED have their states added to CLOSED and then
pushed to OPEN. If the state of a child node n is already in
CLOSED, but the path cost of n is cheaper than the path cost
recorded in CLOSED, then the path cost of the state associ-
ated with n is updated in CLOSED and n is added to OPEN.
The algorithm starts with only nstart , a node corresponding
to the start state, in OPEN and terminates when the node as-
sociated with a goal state is removed from OPEN.

When executing A* with a learned heuristic function
(e.g., using a DNN), computing heuristic values can make
A* search computationally expensive. To alleviate this issue,
one can take advantage of the parallelism provided by graph-
ics processing units (GPUs) by expanding the B lowest cost
nodes and computing their heuristic values in parallel. Fur-
thermore, even with a computationally cheap and informa-
tive heuristic, A* search can be both time and memory inten-
sive. To address this, one can trade potentially more costly
solutions for potentially faster runtimes and less memory us-
age with a variant of A* search called weighted A* search
(Pohl 1970). Weighted A* search computes the cost of each
node as fpnq “ λgpnq ` hpn.sq where λ P r0, 1s is a
scalar weighting. This combination of expanding B nodes
every iteration and weighting the path cost by λ is referred
to as batch-weighted A* search (BWAS). BWAS is a gener-
alization of A* search since A* search can be recovered by

Algorithm 1 Batch Weighted A* Search (BWAS)
Input: start , DNN vθ , batch size B, weight λ
OPEN Ð priority queue of nodes based on minimal f
CLOSED Ð maps states to their shortest discovered path costs
UB, nUB Ð 8,NIL
LB Ð 0
nstart Ð NODEps “ start , g “ 0, p “ NIL, f “ vθpstartqq

PUSH nstart to OPEN
while not IS EMPTYpOPENq do

generated Ð []
while not IS EMPTYpOPENq and SIZEpgeneratedq ă B do

n “ ps, g, p, fq Ð POP(OPEN)
if IS EMPTY (generated) then

LB Ð maxpf, LBq

if IS GOALpsq then
if UB ą g then

UB, nUB Ð g, n
continue loop

for a in |A| do
s1

Ð Aps, aq

gps1
q Ð gpsq ` capsq

if s1 not in CLOSED or gps1
q ă CLOSEDrs1

s then
CLOSEDrs1

s Ð gps1
q

APPENDpgenerated, ps1, gps1
q, nqq

if LB ě λ¨UB then
return PATH TO GOALpnUBq

generated states Ð GET STATESpgeneratedq

heuristics Ð vθpgenerated statesq

for 0 ď i ď SIZEpgeneratedq do
s, g, p Ð generatedris
h Ð heuristicsris
ns Ð NODEps, g, p, f “ λ¨g ` hq

PUSH ns to OPEN
return PATH TO GOALpnUBq // failure if nUB is NIL

setting λ to 1 and B to 1. A* search is guaranteed to find
a shortest path if the heuristic function is admissible (Hart,
Nilsson, and Raphael 1968) and weighted A* search is guar-
anteed to find a bounded suboptimal path if the heuristic
function is admissible. An admissible heuristic function is a
function that never overestimates the cost of a shortest path.
Furthermore, it has been shown that BWAS is guaranteed to
find a bounded suboptimal path given an admissible heuris-
tic function (Agostinelli et al. 2021). While a DNN is not
guaranteed to be admissible, obtaining admissible heuristic
functions using DNNs is an ongoing area of research (Er-
nandes and Gori 2004; Agostinelli et al. 2021). Pseudocode
for the BWAS algorithm is given in Algorithm 1.

Q-learning
Instead of learning a function, vθ, that maps a state, s, to its
cost-to-go, one can learn a function, qϕ, that maps s to its Q-
factors, which is a vector containing Qps, aq for all actions
a (Bertsekas et al. 1995). In a deterministic, finite-horizon
environment, the Q-factor is defined as:

Qps, aq “ capsq ` γV ps1q (3)
V ps1q can be expressed in terms of Q with V ps1q “

mina1 Qps1, a1q. Learning Q by iteratively updating the left-
hand side of (3) toward its right-hand side is known as Q-

learning (Watkins and Dayan 1992). Like for DAVI, Q is
represented as a parameterized function, qϕ, and we choose
a deep neural network for qϕ. This is also known as a deep
Q-network (DQN) (Mnih et al. 2015). The architecture of
the DQN is constructed such that the input is the state, s, and
the output is a vector that represents qϕps, aq for all actions
a. The parameters ϕ are learned using stochastic gradient
descent to minimize the loss function:

Lpϕq “

´

pcapsq ` min
a1

qϕ´ pAps, aq, a1qq ´ qϕps, aq

¯2

(4)
Just like in DAVI, the parameters ϕ´ of the target DNN

are periodically updated to ϕ during training.
Similar to value iteration, Q-learning has been shown to

converge to the optimal Q-factors, q˚, in the tabular case
(Watkins and Dayan 1992). In the approximate case, Q-
learning has a computational advantage over DAVI because,
while the number of parameters of the DQN grows with
the size of the action space, the number of forward passes
needed to compute the loss function stays constant for each
update. We will show in our results that, in large action
spaces, the training time for Q-learning is 127 times faster
than DAVI.

Methods
Q* Search
We present Q* search, a search algorithm that builds on
A* search to take advantage of DQNs. Q* search uses tu-
ples containing a node and an action, which we will refer
to as node action tuples, to search for a path to the goal.
The path cost of a node action tuple, ps, aq, is gpsq ` capsq

and the heuristic value is hpAps, aqq. Therefore, the prior-
ity of a node action tuple, fps, aq, is fps, aq “ gpsq `

capsq`hpAps, aqq. The Q-factor Qps, aq is equal to capsq`

hpAps, aqq. Therefore, using DQNs, the transition cost and
cost-to-go of all child nodes can be computed using qϕ with-
out having to expand s. In various domains, transition costs
(capsq) for states are often predetermined and readily ac-
cessible, eliminating the need for estimation. However, in
certain contexts, computing these costs can be resource-
intensive. Take motion planning, for instance; calculating
the transition cost between states (configurations) often re-
quires executing a local planner, which can be computation-
ally demanding. Moreover, transition costs may vary de-
pending on the subsequent state, adding another layer of
complexity. For instance, in grid-like environments, the ter-
rain of both the current and next states can influence the tran-
sition cost. Consequently, in the general case, qϕ approxi-
mates ca, but this approximation can be substituted with the
true transition cost if available.

At every iteration, Q* search pops a node action tuple,
ps, aq, from OPEN and generates a new state, s1 “ Aps, aq.
Instead of expanding s1, Q* search applies the DQN to s1 to
obtain the sum of the transition cost and the cost-to-go for
all of its children. Therefore, we only need a single forward
pass through a DNN instead of |A|. Q* search then pushes
the new node action tuples ps1, a1q to OPEN for all actions

Algorithm 2 Batch Weighted Q* Search (BWQS)
Input: start , DNN qϕ, batch size B, weight λ
OPEN Ð priority queue of nodes based on minimal f
CLOSED Ð maps states to their shortest discovered path costs
U, nU Ð 8,NIL
LB Ð 0
nstart Ð NODEps “ start , g “ 0, p “ NIL, a “

NO OP, f “ 0q

PUSH nstart to OPEN
while not IS EMPTYpOPENq do

generated Ð []
while not IS EMPTYpOPENq and SIZEpgeneratedq ă B do

n “ ps, a, g, p, fq Ð POP(OPEN)
if IS EMPTY (generated) then

LB Ð maxpf, LBq

s1
Ð Aps, aq

gps1
q Ð gpsq ` capsq

if IS GOALps1
q then

if U ą g ` capsq then
U, nU Ð g ` capsq, n

continue loop
if s1 not in CLOSED or gps1

q ă CLOSEDrs1
s then

CLOSEDrs1
s Ð gps1

q

for a1 in |A| do
APPENDpgenerated, ps1, gps1

q, a1, nqq

if LB ě λ¨U then
return PATH TO GOALpnU q

generated states actions Ð GET STATESpgeneratedq

transition costs, heuristics Ð qϕpgenerated states actionsq

for 0 ď i ď SIZEpgeneratedq do
s, a, g, p Ð generatedris
g1

Ð g ` transition costsris
h Ð heuristicsris
nps,aq Ð NODEps, a, g, p, f “ λ¨g1

` hq

PUSH nps,aq to OPEN
return PATH TO GOALpnU q // failure if nU is NIL

a1 P A, where the cost is computed by summing the path
cost of s and the output of the DQN corresponding to action
a1. In Q* search, the only part that depends on the size of the
action space is pushing nodes to OPEN. Unlike A* search,
only one node is generated per iteration, regardless of the
size of the action space, and the heuristic function only needs
to be applied once per iteration.

We also perform Q* in batches of size N and with a
weight λ, resulting in a variant denoted as BWQS. It is im-
portant to note that BWQS serves as a generalization of Q*,
where λ “ 1 and B “ 1. Consequently, the pseudocode for
the BWQS algorithm, as outlined in Algorithm 2, inherently
encompasses Q*.

Theoretical Analysis
We will show that the BWQS algorithm qualifies as a
bounded-suboptimal search approach. This indicates that it
is ensured to discover a path with a cost U ď C˚

λ . This holds
true under the condition that all Q-factors Qps, aq never
overestimate capsq `dpAps, aq, goalq;1 we refer to a heuris-

1Note that the network can overestimate each component indi-
vidually, as long as the sum of both components does not result in

tic function meeting this criteria as q-admissible. This proof
is an adaptation for the proof that A* search is an admissible
search algorithm (Hart, Nilsson, and Raphael 1968).

Lemma 1. As long as BWQS did not terminate, either there
exists a node in OPEN corresponding to a prefix of some
shortest path from start to goal , or a shortest path from
start to goal was discovered.

Proof. At the beginning of the search, npstart ,NO OPq is in
OPEN with gpnpstart ,NO OPqq “ 0, which is the prefix of
any shortest path from start to goal . In every search iter-
ation i ą 1 in a shortest path from start to goal was not
discovered, let P be some shortest path from start to goal
and ∆ be the set of closed nodes in P , that were expanded
with optimal g-value. That is, ∆ “ tn|n P P and , n P

CLOSED and gpnq “ dpstart , nqu. ∆ is not empty, as af-
ter the first search iteration, start P ∆. Let n˚ be the el-
ement in ∆ with the highest index. Since an optimal path
from start to goal has not been discovered, n˚ ‰ goal . Let
n1 be the successor of n1 in P . Due the the optimality of P ,
gpn1q “ dpstart , n1q. In addition, since n1 R ∆ and n˚ P ∆,
n1 is in OPEN.

Using Lemma 1, we prove our main theorem.

Theorem 1. Given that all transition costs are greater than
zero, 0 ď λ ď 1, and a q-admissible heuristic function,
BWQS is bounded suboptimal. That is, BWQS returns a so-
lution with a cost bounded by 1

λ ¨C˚, if such a solution exists.

Proof. First, it is important to recognize that BWQS consis-
tently maintains information about the shortest path discov-
ered so far to the goal , identified with a cost denoted as U .
Upon termination, BWQS returns this solution. Termination
of BWQS occurs under two conditions: either a solution is
found with λ ¨ U ď LB, or the OPEN set becomes empty
after exhaustively expanding all nodes in the graph. Conse-
quently, if there exist paths from start to goal , BWQS is
guaranteed to discover one.

Now, we aim to show that the path returned by BWQS is
bounded by 1

λ ¨ C˚. Assume by contradiction that BWQS
has terminated and produced a solution with a cost U ą
1
λ ¨C˚. As the algorithm has concluded, we have LB ě λ¨U ,
indicating that at least one node was expanded with a priority
greater than or equal to λ ¨U . Let nps,aq denote the first node
expanded during the search with a priority greater than or
equal to λ ¨U . According to Lemma 1, at the moment nps,aq

was chosen for expansion, there existed another node nps1,a1q

in OPEN, corresponding to an optimal path (costing C˚).
Since nps,aq was expanded instead of nps1,a1q, we infer

that at the moment of expansion, λ ¨ gpnps,aqq ` qcθps, aq ď

λ ¨ gpnps1,a1qq ` qcθps1, a1q. By virtue of q-admissibility,
gpnps1,a1qq ` qcθps1, a1q ď C˚, thus λ ¨ gpnps,aqq ` qcθps, aq ď

C˚. However, given that the priority of nps,aq was greater
than or equal to λ ¨ U , and U ą 1

λ ¨ C˚, we reach a contra-
diction, as λ ¨ gpnps,aqq ` qcθps, aq ą C˚.

an overall overestimation.

Experimental Evaluation
In this section, we detail our empirical evaluation of Q*.

Settings, Baselines, and Network Architectures
We evaluate Q* across various domains, including the Ru-
bik’s Cube (which has 12 actions), the 7 by 7 Lights Out
puzzle (Agostinelli et al. 2019) (which has 49 actions), and
the 35-Pancake puzzle (which has 49 actions).

We compare Q* to both A* search as well as the deferred
version of A* search (Helmert 2006), which we refer to as
Ad*, where the heuristic value of each child is set to be
the same as the heuristic value of the parent. All algorithms
expand a batch of nodes N , instead of of a single node at
each iteration, and a weight λ (i.e., we evaluated the batch-
weighted version for each algorithm). Both A* and Ad* em-
ploy a state-based cost-to-go function model trained using
DVAI. In contrast, Q* utilizes a state-action-based cost-to-
go estimation, trained using Q-learning.

We train the state-based cost-to-go function with the same
architecture described in Agostinelli et al. (2019), which
has a fully connected layer of size 5,000, followed by an-
other fully connected layer of size 1,000, followed by four
fully connected residual blocks of size 1,000 with two hid-
den layers per residual block (He et al. 2016), followed
by a layer of size 1 representing the cost-to-go. The state-
action-based cost-to-go function (DQN, qϕ ps, aq) also has
the same architecture with the exception that the output
layer is a vector that estimates the cost-to-go for taking ev-
ery possible action. This implementation of qϕ ps, aq esti-
mates capsq ` hpAps, aqq as a single entity. However, to
accommodate the weighted version of Q*, it is essential
to multiply the transition cost capsq by λ, as depicted in
Algorithm 2. Consequently, our current setup does not fa-
cilitate bounded-suboptimal search, for scenarios involving
non-uniform transition costs. Nevertheless, in our evalua-
tion, all transition costs are uniform. Thus, this constant off-
set does not impact the order in which nodes are generated.
However, for future endeavors, this limitation could be ad-
dressed by training a DQN that segregates the computation
of transition costs and cost-to-go (two-head network).

For generating training states, the number of times we
scramble the puzzle, K, is set to 30 for the Rubik’s cube,
50 for Lights Out, and 70 for the 35-Pancake puzzle.

For Q-learning, we select actions according to a Boltz-
mann distribution where each action a is selected with prob-
ability:

ps,a “
ep´ qϕps,aq{T q

ř|A|

a1“1 e
p´ qϕps,a1q{T q

(5)

where we set the temperature T “ 1
3 .

We train each model with a batch size of 10,000 for
1.2 million iterations using the ADAM optimizer (Kingma
and Ba 2014). We update the target networks with the
same schedule defined in the DeepCubeA source code
(Agostinelli et al. 2020). The machines we use for training
and search have 48 2.4 GHz Intel Xeon central processing
units (CPUs), 192 GB of random access memory, and two
32GB NVIDIA V100 GPUs.

20 30 40 50 60
Path Cost

100

101
So

lv
e
Ti
m
e

A* Ad* Q*

(a) RC

24.2 24.4 24.6 24.8 25.0 25.2 25.4 25.6
Path Cost

10−1

100

101

So
lv
e
Ti
m
e

A* Ad* Q*

(b) Lights Out

34.0 34.5 35.0 35.5
Path Cost

10−1

100

101

So
lv
e
Ti
m
e

A* Ad* Q*

(c) 35-pancake

Figure 1: Relationship between the average path cost and the average time to find a solution.

20 30 40 50 60
Path Cost

104

105

106

Nu
m
be

r o
f N

od
es
 G
en

er
at
ed

A* Ad* Q*

(a) RC(12)

24.2 24.4 24.6 24.8 25.0 25.2 25.4 25.6
Path Cost

104

105

106

107
Nu

m
be

r o
f N

od
es
 G
en

er
at
ed

A* Ad* Q*

(b) Lights Out

34.0 34.5 35.0 35.5
Path Cost

104

105

106

107

Nu
m
be

r o
f N

od
es
 G
en

er
at
ed

A* Ad* Q*

(c) 35-Pancake

Figure 2: Relationship between the average path cost and the average node generations.

Prior work on solving the Rubik’s cube with deep re-
inforcement learning and A* search used λ “ 0.6 and
N “ 10000 for BWAS (Agostinelli et al. 2019). How-
ever, since these search parameters create a tradeoff be-
tween speed, memory usage, and path cost, we also ex-
amine the performance with different parameter settings to
understand how A* search and Q* search compare along
these dimensions. Therefore, we try all combinations of λ P

t0.0, 0.2, 0.4, 0.6, 0.8, 1.0u and N P t100, 1000, 10000u.
For each method and each action space, we prune all combi-
nations that cause our machine to run out of memory or that
require over 24 hours to complete. We use the same 1,000
test states used for the Rubik’s cube and 500 test states for
Lights Out as used in previous work by Agostinelli et al.
(2019). We generated 500 test states for the 35-Pancake puz-
zle. Each test state was obtained by scrambling the puzzle
between 1,000 and 10,000.

Results
The results are reported in Figures 1 and 2. These figures
illustrate the relationship between the average path cost and
either the average time taken to find a solution or the average
number of generated nodes, respectively. Both figures em-
ploy a logarithmic scale on the y-axis, with each data point
representing a specific search parameter setting. The dashed
line signifies the lowest average path cost identified, while
the solid line represents either the fastest solution time or
the fewest number of node generations, depending on the

Table 1: The table shows the number of training iterations
per second with a batch size of 10,000 and the projected
number of days to train for 1.2 million iterations. DAVI is
significantly slower than Q-learning, especially when the
size of the action space is large.

Puzzle Method Itrs/Sec Train Time

RC(12) DAVI 3.96 3.5d
Q-learning 8.55 1.6d

RC(156) DAVI 0.42 33d
Q-learning 7.46 1.9d

RC(1884) DAVI 0.04 347d
Q-learning 5.08 2.7d

context, as determined by a hypothetical threshold for an ac-
ceptable average path cost.

The figures show that, for almost any possible path cost
threshold, Q* is significantly faster and generates signifi-
cantly fewer nodes than both A* and Ad*. Ad* exhibits over-
all improvement over A* as it generates only one node per
iteration. However, as it assigns the same f -value to all chil-
dren of a node, it introduces inefficiencies by being unable
to prioritize one child node over another.

The lowest average path cost achieved by all algorithms
remains comparable, with the maximum difference in aver-

20 30 40 50 60
Path Cost

100

101

So
lv
e
Ti
m
e

A* Ad* Q*

(a) RC(12)

10 15 20 25 30 35 40 45
Path Cost

10−1

100

101

So
lv
e
Ti
m
e

A* Ad* Q*

(b) RC(156)

10 15 20 25 30
Path Cost

100

101

102

So
lv
e
Ti
m
e

A* Q*

(c) RC(1884)

Figure 3: Action space size ablation study on Rubik’s cube: average path cost vs average time to find a solution.

20 30 40 50 60
Path Cost

104

105

106

Nu
m
be

r o
f N

od
es
 G
en

er
at
ed

A* Ad* Q*

(a) RC(12)

10 15 20 25 30 35 40 45
Path Cost

104

105

106

107

Nu
m
be

r o
f N

od
es
 G
en

er
at
ed

A* Ad* Q*

(b) RC(156)

10 15 20 25 30
Path Cost

104

105

106

107

108

Nu
m
be

r o
f N

od
es
 G
en

er
at
ed

A* Q*

(c) RC(1884)

Figure 4: Action space size ablation study on Rubik’s cube: average path cost vs average node generations.

age path cost being a mere 0.1%, observed in the RC do-
main. Overall, For RC, in the best case, A* finds a shortest
path 59% of the time while Q* finds a shortest path 56.4%
of the time. For Lights Out, in the best case, both A* and Q*
find a shortest path 100% of the time.

Ablation Study: Varying Number of Actions
In order to study the performance of Q* as the number of
actions increases, we perform an ablation study focusing
on the Rubik’s cube domain. The standard RC action space
includes 12 different actions: each of the six faces can be
turned clockwise or counterclockwise. We denote this action
space as RC(12). For the ablation study, we add meta-actions
to the RC action space, creating RC(156) and RC(1884).
RC(156) has all the actions in RC(12) plus all combinations
of actions of size two RC(144). RC(1884) has all the actions
in RC(156) plus all combinations of actions of size three
(1728). To ensure none of these additional meta-actions are
redundant, the cost for all meta-actions is also set to one.

In the experiments reported earlier, we trained the model
for 1.2 million iterations. However, as the size of the action
space increases, training becomes infeasible for DAVI. Ta-
ble 1 shows that DAVI would take over a month to train on
RC(156) and almost a year to train on RC(1884). Therefore,
we reduce the batch size in proportion to the differences in
the size of the action space with RC(12). Since RC(156) has
13 times more actions, we train DAVI with a batch size of
769, and since RC(1884) has 157 times more actions, we
train DAVI with a batch size of 63. Moreover given the esca-
lation in solving time with the expansion of the action space
in A* search, we utilize a subset of 100 states for RC(156)
and 20 states for RC(1884), instead of the full 500 states
employed for RC(12).

Figures 3 and 4 repeat the experiments of Figures 1 and 2
on the RC environment with the different action-space sizes.

The results show that the performance of Q* over A* and
A*d becomes even more pronounced as the action space in-
creases. In fact, for RC(1884), Ad* was unable to find a so-
lution due to running out of memory. In the most extreme
case, the cheapest average path cost for A* and Q* is identi-
cal for RC(1884), however, Q* is 129 times faster and gener-
ates 1228 times fewer nodes than A*. The ratios for various
desired average path costs are presented in Table 2. It is ev-
ident from the table that Q* consistently outperforms A* in
all instances except one, often exhibiting orders of magni-
tude faster speed and greater memory efficiency than A*.

When comparing A* and Q* to themselves for different
action spaces, Table 3 shows that, though RC(1884) has 157
times more actions than RC(12), Q* only takes 3.7 times as
long to find a solution and generates only 2.3 times as many
nodes. On the other hand, in this same scenario, A* takes
37 times as long and generates 62.7 times as many nodes.
Overall, Q* has much better performance for both metrics.
For RC(156) Q* finds solutions in even less time than it did
for RC(12) due to the addition of meta-actions.

Performance During Training To monitor performance
during training, we track the percentage of states that are
solved by simply behaving greedily with respect to the cost-
to-go function. We generate these states the same way we
generate the training states. Figure 5 shows this metric as a
function of training time. The results show that, in RC(12),
DAVI is slightly better than Q-learning. In RC(156) and
RC(1884), even though the batch size for DAVI is smaller,
the performance is on par with Q-learning. This may be due
to the fact that DAVI is only learning the cost-to-go for a
single state while Q-learning must learn the sum of the tran-
sition cost and cost-to-go for all possible next states.

Table 2: The ratio between A* and Q* search for the solution time and number of nodes generated for hypothetical acceptable
path cost thresholds for RC(12), RC(156), and RC(1884).

Path Cost Threshold

RC (12) RC (156) RC (1884)
22 25 28 12 14 16 8 9 10

Time 0.8 5.1 1.7 50.8 23.9 10.8 129.7 28.5 22.6
Nodes 1.4 11.9 6.8 92.0 64.0 34.5 1288.4 282.8 249.1

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Training Iteration 1e6

10

20

30

40

50

Pe
rc
en

t S
ol
ve

d
wi
th
 G
re
ed

y
Po
lic
y

DAVI Q-learning

(a) RC(12)

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Training Iteration 1e6

10

20

30

40

50

Pe
rc
en

t S
ol
ve

d
wi
th
 G
re
ed

y
Po
lic
y

DAVI Q-learning

(b) RC(156)

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Training Iteration 1e6

10

20

30

40

50

Pe
rc
en

t S
ol
ve

d
wi
th
 G
re
ed

y
Po
lic
y

DAVI Q-learning

(c) RC(1884)

Figure 5: Percentage of training states solved with a greedy policy as a function of training iteration.

Table 3: Ratio of action space sizes, along with performance
ratios (time and nodes generated) compared to RC(12), av-
eraged over all search parameter settings, with standard de-
viation in parenthesis.

Puzzle Actions Method Time Nodes Gen

RC(156) x13 A* 3.5(1.6) 8.7(2.2)
Q* 0.9(0.7) 1.4(1.3)

RC(1884) x157 A* 37.0(6.5) 62.7(5.2)
Q* 3.7(4.0) 2.3(3.6)

Discussion
As the size of the action space increases, Q* becomes sig-
nificantly more effective than A* in terms of solution time
and the number of nodes generated. In the largest action
space Q* is orders of magnitude faster and generates orders
of magnitude fewer nodes than A* while finding solutions
with the same average path cost. For smaller action spaces,
while Q* is almost always faster and more memory efficient,
A* is capable of finding solutions that are slightly cheaper
than Q*. This could be due to the difference in what vθ and
qϕ are computing. Since the forward pass performed by the
DQN, qϕ, is the same as doing a one-step lookahead with
vθ, this could make learning qϕ more difficult than learn-
ing vθ. This may explain why, in the case of Lights Out,
Ad* is, in some cases, faster and generates fewer nodes than
Q*. However, Q* becomes better as the path cost threshold
decreases. Since training and search are significantly faster
for Q-learning and Q*, this gap could be closed with longer
training times and searching with larger values of λ or N .

While the DQN used in this work was for fixed action

spaces, Q* search can readily be applied to a dynamic ac-
tion space given a DQN capable of computing Q-factors for
such an action space. Therefore, it is possible to use Q* to
solve problems with dynamic action spaces by choosing a
DQN architecture that uses structured prediction. Architec-
tures such as graph convolutional policy networks (You et al.
2018), which were used for molecular optimization, could
be modified to estimate Q-factors on problems with a graph
structure that corresponds to the action space. In problems
involving sequences, Long Short-Term Memory (Hochre-
iter and Schmidhuber 1997) or Transformer (Vaswani et al.
2017) architectures could be used to compute Q-factors.
This would have a direct application to problems with large,
but variable, action spaces such as chemical synthesis, theo-
rem proving, program synthesis, and web navigation.

Conclusion

Efficiently solving search problems with large action spaces
has been of importance to the artificial intelligence com-
munity for decades (Russell 1992; Korf 1993; Yoshizumi,
Miura, and Ishida 2000). Q* search uses a DQN to eliminate
the majority of the computational and memory burden asso-
ciated with large action spaces by generating only one node
per iteration and requiring only one application of the heuris-
tic function per iteration. When compared to A* search, Q*
search is up to 129 times faster and generates up to 1288
times fewer nodes. When increasing the size of the action
space by 157 times, Q* search only takes 3.7 times as long
and generates only 2.3 times more nodes. The ability that Q*
has to efficiently scale up to large action spaces could play a
significant role in finding solutions to many important prob-
lems with large action spaces.

References
Agostinelli, F.; McAleer, S.; Shmakov, A.; and Baldi, P.
2019. Solving the Rubik’s cube with deep reinforcement
learning and search. Nature Machine Intelligence, 1(8):
356–363.
Agostinelli, F.; McAleer, S.; Shmakov, A.; and Baldi, P.
2020. DeepCubeA. https://github.com/forestagostinelli/
DeepCubeA.
Agostinelli, F.; McAleer, S.; Shmakov, A.; Fox, R.; Valtorta,
M.; Srivastava, B.; and Baldi, P. 2021. Obtaining Approxi-
mately Admissible Heuristic Functions through Deep Rein-
forcement Learning and A* Search. In International Con-
ference on Automated Planning and Scheduling - Bridging
the Gap Between AI Planning and Reinforcement Learning
Workshop.
Arfaee, S. J.; Zilles, S.; and Holte, R. C. 2011. Learning
heuristic functions for large state spaces. Artificial Intelli-
gence, 175(16-17): 2075–2098.
Bellman, R. 1957. Dynamic Programming. Princeton Uni-
versity Press.
Bertsekas, D. P.; Bertsekas, D. P.; Bertsekas, D. P.; and Bert-
sekas, D. P. 1995. Dynamic programming and optimal con-
trol, volume 1. Athena scientific Belmont, MA.
Bertsekas, D. P.; and Tsitsiklis, J. N. 1996. Neuro-dynamic
programming. Athena Scientific. ISBN 1-886529-10-8.
Chen, B.; Li, C.; Dai, H.; and Song, L. 2020. Retro*: learn-
ing retrosynthetic planning with neural guided A* search.
In International Conference on Machine Learning, 1608–
1616. PMLR.
Chen, H.-C.; and Wei, J.-D. 2011. Using neural networks
for evaluation in heuristic search algorithm. In Twenty-Fifth
AAAI Conference on Artificial Intelligence.
Culberson, J. C.; and Schaeffer, J. 1998. Pattern databases.
Computational Intelligence, 14(3): 318–334.
Ernandes, M.; and Gori, M. 2004. Likely-admissible and
sub-symbolic heuristics. In Proceedings of the 16th Euro-
pean Conference on Artificial Intelligence, 613–617. Cite-
seer.
Felner, A.; Goldenberg, M.; Sharon, G.; Stern, R.; Beja, T.;
Sturtevant, N.; Schaeffer, J.; and Holte, R. 2012. Partial-
expansion A* with selective node generation. In Proceed-
ings of the AAAI Conference on Artificial Intelligence, vol-
ume 26.
Hart, P. E.; Nilsson, N. J.; and Raphael, B. 1968. A for-
mal basis for the heuristic determination of minimum cost
paths. IEEE transactions on Systems Science and Cybernet-
ics, 4(2): 100–107.
He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016. Deep resid-
ual learning for image recognition. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, 770–778.
Helmert, M. 2006. The fast downward planning system.
Journal of Artificial Intelligence Research, 26: 191–246.
Hochreiter, S.; and Schmidhuber, J. 1997. Long short-term
memory. Neural computation, 9(8): 1735–1780.

Hornik, K.; Stinchcombe, M.; and White, H. 1989. Mul-
tilayer feedforward networks are universal approximators.
Neural networks, 2(5): 359–366.
Kingma, D. P.; and Ba, J. 2014. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980.
Korf, R. E. 1993. Linear-space best-first search. Artificial
Intelligence, 62(1): 41–78.
McAleer, S.; Agostinelli, F.; Shmakov, A.; and Baldi, P.
2019. Solving the Rubik’s Cube with Approximate Policy
Iteration. In International Conference on Learning Repre-
sentations.
Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A. A.; Ve-
ness, J.; Bellemare, M. G.; Graves, A.; Riedmiller, M.; Fidje-
land, A. K.; Ostrovski, G.; et al. 2015. Human-level control
through deep reinforcement learning. Nature, 518(7540):
529–533.
Pohl, I. 1970. Heuristic search viewed as path finding in a
graph. Artificial intelligence, 1(3-4): 193–204.
Puterman, M. L.; and Shin, M. C. 1978. Modified policy
iteration algorithms for discounted Markov decision prob-
lems. Management Science, 24(11): 1127–1137.
Russell, S. J. 1992. Efficient Memory-Bounded Search
Methods. In ECAI, volume 92, 1–5.
Schmidhuber, J. 2015. Deep learning in neural networks:
An overview. Neural networks, 61: 85–117.
Sutton, R. S.; and Barto, A. G. 1998. Reinforcement learn-
ing: An introduction, volume 1. MIT press Cambridge.
Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones,
L.; Gomez, A. N.; Kaiser, L.; and Polosukhin, I. 2017. At-
tention is all you need. arXiv preprint arXiv:1706.03762.
Watkins, C. J.; and Dayan, P. 1992. Q-learning. Machine
learning, 8(3-4): 279–292.
Yoshizumi, T.; Miura, T.; and Ishida, T. 2000. A* with Par-
tial Expansion for Large Branching Factor Problems. In
AAAI/IAAI, 923–929.
You, J.; Liu, B.; Ying, R.; Pande, V.; and Leskovec,
J. 2018. Graph convolutional policy network for goal-
directed molecular graph generation. arXiv preprint
arXiv:1806.02473.
Zhang, Y.-H.; Zheng, P.-L.; Zhang, Y.; and Deng, D.-L.
2020. Topological Quantum Compiling with Reinforcement
Learning. Physical Review Letters, 125(17): 170501.

