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Abstract. Large language models (LLMs) have revolutionized a
large variety of NLP tasks. An active debate is to what extent they can
do reasoning and planning. Prior work has assessed the latter in the
specific context of combinatorial planning with PDDL input, based
on manually converting three PDDL domains into LLM prompts.
Here we automate this conversion step, showing how to automati-
cally generate LLM text prompts from PDDL input. We show em-
pirically that our automatically generated prompts result in similar
planning performance as the previous manually generated ones. Be-
yond this, our automatic machinery enables us to run much larger
experiments, providing for the first time a reasonably broad evalu-
ation of LLM action-choice performance in PDDL. Overall, while
LLM action choice at this point lags far behind symbolic planners,
our results shed a somewhat more encouraging light than previously
suggested. All our LLM configurations soundly beat random action
choice, showing that the LLM does carry some information about
general PDDL planning; in some domains, our best LLM configura-
tion scales up further than a state-of-the-art optimal planner.

1 Introduction

Large language models (LLMs) have revolutionized a large variety
of natural language processing tasks. A recent research trend inves-
tigates whether LLMs can also do planning. The word “planning”
here is used in a broad sense, encompassing, for example, robot con-
trol [1], text-based games [27] or Minecraft problem solving [24, 28],
but also less structured tasks such as question answering [e.g. 25, 12],
visual programming [5], and the orchestration of API calls [16].
Here we address combinatorial planning with PDDL input [4, 7],
i.e., the core focus of the Al Planning community. The use of LLMs
in this context is, at this stage, still in its infancy. First works ex-
plored what form of input to provide to the LLM (PDDL, natural
language) [19, 21, 22]; recent work explored the generation of pro-
gram code for generalized planning [20]. Here, we follow up on the
prominent work line by Valmeekam et al. [21, 22], who investigated
the ability of LLMs to produce sequential plans—action sequences
achieving the goal—for PDDL planning tasks. Valmeekam et al. ex-
periment with three wide-spread benchmark domains in Al Planning,
namely Blocksworld, Depots and Logistics, for each of which they
manually engineer natural language descriptions of the actions and
predicates. They ask the LLM to produce a plan, thus serving as a
form of satisficing planner that gives no plan correctness (nor opti-
mality) guarantee. Valmeekam et al. find that LLMs (both GPT-3.5
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Figure 1. AUTOPLANBENCH implements our automatic conversion from
PDDL to natural-language prompts, as well as four different LLM action
choice mechanisms.

and GPT-4) are unable to reliably produce correct plans in their 3
benchmark domains, lagging far behind symbolic planning methods.

We extend Valmeekam et al.’s work by automating the conversion
of PDDL into natural-language prompts for LLM plan generation
(and, more generally, action choice, see below). We thus turn the
use of LLMs with natural-language prompts into an actual automatic
machinery that does not rely on any domain-dependent knowledge
provided by humans apart from the PDDL itself (the standard profile
of domain-independent planning methods in the Al Planning com-
munity). The key technical challenge is to ensure that the (syntactic
and semantic) relationship between an action and its arguments are
captured correctly, and that PDDL object types are made explicit in
the action descriptions in an adequate way.

We address these challenges by leveraging LLMs themselves to
support the conversion from PDDL to natural language. We first use
GPT-4 [15] to convert PDDL predicates into natural language based
on a few generic conversion examples. We then generate natural lan-
guage descriptions of PDDL action schemas by first converting the
preconditions and effects based on a simple composition of the pre-
viously converted predicates, and then providing again a few generic
examples for the overall conversion step. Finally, we compose the
overall domain-description prompt from the predicate and action
schema descriptions. Experimenting with the same benchmarks used
by Valmeekam et al., we show empirically that our automatically
generated prompts result in similar plan-generation performance as
the previous manually generated ones.

Beyond this, our fully automated machinery enables us to run
much larger experiments than Valmeekam et al., providing for the
first time a reasonably broad evaluation of LLM action-choice per-
formance in PDDL planning based on natural language conver-
sion. Figure 1 gives an overview of our implemented framework



AUTOPLANBENCH. We experiment with four different variants of
LLM action choice mechanisms':

e Basic LLM Planning: Domain and problem description provided
once, LLM generates a plan. Same as Valmeekam et al. [21, 22].

e CoT LLM Planning: The LLM also generates a plan, however
the prompt is enriched by Chain-of-Thought (CoT) prompting
[25], where the LLM is prompted to generate “thoughts” between
the predicted actions in the plan. Valmeekam et al. [22] experi-
mented with a simple version of this, producing the states before
and after executing each action; here we allow more flexible rea-
soning, e.g., about the next required actions.

e Act: Here the LLM is used as an action policy instead of a plan
generator, choosing an individual action for the state at each step
in the plan. (A similar idea was explored by Yao et al. [27] in
different, non-PDDL-planning, contexts.)

e ReAct: This configuration, inspired by Yao et al. [27], uses CoT
within Act, generating intermediate thoughts between the actions.

In addition to the three domains provided by Valmeekam et al., we
convert 9 more PDDL domains from the planning literature. We sys-
tematically evaluate the four LLM action choice mechanisms. To as-
sess the planning capabilities of these mechanisms, we provide com-
parisons to (1) LLM action choice mechanisms based directly on
PDDL [22, 19] rather than natural-language encodings thereof; (2)
random action selection as a sanity test to find out whether the LLM
contains any information about planning at all; (3) blind breadth-first
search as a trivial symbolic baseline; and (4) a state-of-the-art op-
timal planner and a strong satisficing planning baseline [10, 11], to
assess the comparison to symbolic planners.

Overall, while LLM action choice at this point lags far behind
state-of-the-art symbolic planning, our results shed a somewhat more
encouraging light than previously suggested by Valmeekam et al. The
comparison to (1) shows (expectedly) that natural language prompts
yield superior performance. In comparison (2), all four LLM action
choice mechanisms soundly beat random action choice, in case of
Act and ReAct by a drastic coverage difference (5-6 times more in-
stances solved overall). This convincingly shows that the LLM does
carry some information about general PDDL planning, an observa-
tion that we believe is not self-evident given the training on internet
text which hardly contains much information about most planning
benchmark domains.”

The comparisons (3) and (4) to symbolic planners relying on
search are less favorable, as one would expect. The satisficing plan-
ner (directly comparable as it does not provide a plan-quality guaran-
tee) reigns supreme throughout. On the positive side, ReAct outper-
forms breadth-first search in two domains (Ferry and Visitall), and
even outperforms the optimal planner in two domains (Ferry and
Grippers). While these are isolated islands of good performance, they
do show promise for LLM planning abilities, in particular as this
performance is obtained without any search. We are releasing the en-
tire AUTOPLANBENCH code base, as well as our LLM benchmark
dataset comprising 12 domains, to support further research into the
use of LLMs in PDDL planning. Overall, our contributions are:

e Automating the conversion of PDDL to natural-language prompts.

1 We use the term “LLM action choice mechanism” here as a generic term
encompassing both plan generation and action policies, and to emphasize
that (in difference to symbolic planners) these mechanisms do not use any
search, instead choosing actions directly.

2 A similar observation was made by Silver et al. [19], but in a more limited
setting considering PDDL prompts and a set-up comparable to our Basic
LLM Planning configuration, which exhibits much worse performance than
our strongest methods.

e Showing that this automation does not result in a performance loss
relative to the previous hand-crafted prompts.

e Implementing four variants of LLM action choice in PDDL plan-
ning, transferring ideas previously proposed in different contexts.

e Broad experiments on 12 domains and systematically evaluating
LLM action choice against representative symbolic planners.

e Publicly available code base in AUTOPLANBENCH.?

2 Background

The Planning Domain Description Language (PDDL) [4] is a
schematic language based on first-order logic introduced for the In-
ternational Planning Competitions* that became a standard definition
language for classical planning problems. Each task in PDDL con-
sists of a domain and problem file. The domain file defines the world
model using predicates describing possible world states, and actions
whose execution changes the current state. The problem file defines
a specific instance from the domain by specifying available objects,
the initial state and the goal.

Each action is defined by its precondition specifying what has to be
true in the state where the action is applied, and by its effect saying
what will become true (add effect) and false (delete effect) in the
resulting state after action’s execution. The solution to a planning
problem is a plan—a sequence of actions leading from the initial
state to a state where the goal condition holds.

Figure 2a shows an excerpt from the Logistics domain that mod-
els delivering packages with trucks within cities and with planes be-
tween cities. The action “drive-truck” describing driving a truck be-
tween two locations is parametrized with variables “?truck”, “?loc-
from”, “?loc-to” and “?city” whose instantiation with objects speci-
fies the truck being driven, the start and the destination location and
the city in which the locations are. The precondition states that the
action can only be executed if the truck is at location ?loc-from and
both locations are in city ?city. The effect makes the atom (at ?truck
MNoc-from) false and (at ?truck ?loc-to) becomes true, i.e., it changes
the state by moving the truck ?truck from ?loc-from to ?loc-to.

Variables can also have types restricting which objects can be used
for their instantiation. For example, ?truck has the type “truck” which
in our example has only one corresponding object “t0”. There are
different variants of the PDDL language with varying expressiveness.
Here, we consider a variant of PDDL allowing typing of variables
and restricted to conjunctive conditions with negations.

PDDL and LLLMs. Valmeekam et al. [21] presented Planbench,
a benchmark framework for assessing different aspects of reasoning
capabilities of LLMs based on classical planning problems formu-
lated in PDDL. Their assessment pipeline can take PDDL domain
and problem files as input as well as natural language (NL) descrip-
tions of the PDDL domain and problem files for assessing LLMs on
NL problem formulations. For the NL inputs, they manually create
a NL description of the domain file and handcraft NL translations
for the individual PDDL actions, predicates and for object names.
The individual translations are used to compose NL descriptions of
problem files and plans.

In their assessment pipeline, Valmeekam et al. [21] prompt an
LLM to generate a plan based on the NL descriptions of the do-
main, the initial and goal state and few-shot examples, i.e., exam-
ple problems with their corresponding plans for in-context learning.
The predicted NL action sequences get translated back into PDDL by

3 https://github.com/minecraft-saar/autoplanbench
4 https://www.icaps-conference.org/competitions/



(:types location locatable - object

I can carry out the following actions:

T package vehicle - Tocatable AP4] G4rive a truck A from a location B in a city D to a location C in the same city D
truck airplane - vehicle
city airport - location)
X . X I have the following restrictions on my actions:
(:predicates (at ?obj - locatable ?loc - Tocation) APR| I can only drive a truck A from a location B in city D to a location C in the same
P (in-city ?obj - package ?city - city) city if it is the case that A is a truck and B is a location and A is at B and ...
(:action DRIVE-TRUCK The actions have the following effects on the state:
:parameters (?truck - truck ?city - city . once I drive a truck A from a location B in a city D to a location C in the same
?loc-from ?loc-to - location) AP city, it is the case that A is at C
:precondition (and (at ?truck ?loc-from) once I drive a truck A from ..., it is not the case anymore that A is at B
A (in-city ?loc-from ?city)
(in-city ?loc-to ?city))

:effect (and (not (at ?truck ?loc-from)) T Everything that is a location or a locatable is also an object

(at ?truck ?loc-to)))

(a) PDDL domain definition with the type hierarchy
(T), predicates (P), and the “drive-truck” action (.A).

(:objects c0 - city

(b) NL domain description consisting of the available actions with parameters (APA),
their preconditions (A7) and effects (Af) and the type hierarchy (7).

o t0 - truck G- My goal is that in the end package_0 is at location_0

10-0 11-0 - Tocation
p0 - package )

My current initial situation is as follows:

(:init © - There is one object that is a truck: truck_0

(in-city 10-0 c0) (in-city 11-0 c0)
(at t0 10-0) (at pO 11-0) )
G- (:goal (and (at p0 10-0)) ) z

(c) PDDL problem file stating the available objects with

types (O), the initial state (Z) and the goal condition (G). state (7).

There are 2 objects that are a Tlocation: location_0, location_1

currently, location_0 is in the city city_0, truck_0 is at location_0 ...

(d) NL problem description stating the goal (G), the available objects (O) and the initial

Figure 2. Part of the Logistics PDDL domain file (2a), a problem file (2c) and the corresponding NL descriptions generated by AUTOPLANBENCH (2b, 2d).

a domain-dependent translator and are automatically evaluated by a
plan validator. This process allows a systematic and objective evalu-
ation of the performance of LLMs on different reasoning-related test
cases. However, the approach includes several domain-dependent
components. Extending the framework to new domains in addition
to the three domains for which Valmeekam et al. [21] provide these
components hence requires manual effort such as the creation of all
NL descriptions for the target PDDL domain.

Silver et al. [19] assess the planning capabilities of LLMs when
using prompts that do not contain any natural language and con-
sist of the target problem definition and two few-shot examples in
PDDL. They evaluate OpenAI’s Codex LLM [2], an LLM specifi-
cally trained to generate code for NL inputs, and find that in some
domains such as Gripper and Movie, LLMs can solve even large
problems while they completely fail on more than half of the do-
mains, including Blocksworld. Valmeekam et al. [22] also assess the
LLM capabilities on PDDL but their prompts include a general task
description in NL and the PDDL domain definition in addition to the
target problem and examples. They find that for Blocksworld, us-
ing PDDL inputs leads to a drop in performance compared to NL
whereas on Logistics they do not observe differences.

In addition to investigating the reasoning capabilities of LLMs on
problems originally formulated in PDDL there has also been work
investigating the usage of LLMs as an interface between problems in
natural language and symbolic Al planning tools. Liu et al. [14] pro-
pose to use LLMs to translate NL descriptions of planning problems
into PDDL. They then use a symbolic planner to find a plan in PDDL
and translate the plans back into NL. Xie et al. [26] focus on letting
LLMs translate goals specified in NL into goal definitions in PDDL.

3 Converting PDDL tasks into natural language

We contribute an automatic conversion of PDDL domains and prob-
lems into NL descriptions, to be used for prompting LLMs to choose
actions. In contrast to previous works [e.g., 21] that created these NL
descriptions manually for each individual planning domain, we in-
troduce a framework, called AUTOPLANBENCH, that generates all

Your task is to generate templates for natural language descriptions for
actions and predicates defined in the PDDL planning language. Tokens starting
with '?' are variables ... For actions, also include the type for each
parameter in the brackets if this information is available. ...

original: (planet ?ob)
output: {?ob} is a planet

original: (undertree ?obj)
output: {?obj} 1is under the tree

original: (in ?obj ?7oc)
output: {?obj} is in {?loc}

original: #PDDL PREDICATE#
Output:

Figure 3. Part of the prompt for converting PDDL predicates into NL
consisting of the task description (top), few-shot examples (middle) and the
target predicate (bottom).

mappings from PDDL objects, predicates and actions to their NL
descriptions automatically. These PDDL-to-NL mappings are then
joined together into a full prompt for an LLM, tasking the LLM
to solve the described planning instance. To achieve this conversion
from PDDL to NL automatically for any input PDDL task, we uti-
lize an LLM (that we refer to as APB-LLM, for AUTOPLANBENCH-
LLM), with few-shot prompting.

Figure 3 illustrates the input prompt received by the APB-LLM for
translating PDDL predicates into NL. The prompt consists of three
parts. The first part is a manually designed instruction explaining
the PDDL-to-NL translation. The second part consists of several ex-
amples illustrating to the APB-LLM how to conduct the translation.
These so-called few-shot examples are hand-crafted, but we use ex-
actly the same examples independently of the target PDDL domain.
We use seven examples of predicates of arity ranging from 0 to 2. The
last part of the prompt consists of the actual predicate that we want to
translate®, i.e., we tell the APB-LLM which PDDL predicate we want
to translate to NL (e.g., “Original: (at ?x ?y)”) followed by “Out-
put:” and we expect the APB-LLM to return its NL description (e.g.,
“{7x} is at {?y}”). Note that the NL descriptions are constructed as

5 We use #PART# to mark parts of the shown prompts that are placeholders
for actual content omitted for the presentation throughout the paper.



Table 1. Example PDDL-to-NL translation by the APB-LLM in the
Logistics domain; predicates at the top; the “drive-truck™ action at the
bottom.

Input: | (truck ?truck ) (location ?location)

[ Output: | {?truck] is a truck | { ?location} is a location” ~ ~ ~ ~ ~ ~ |

Input: | (at ?0bj ?loc) (in-city ?0bj ?city)

Output: | { ?0bj} is at {?loc} | { ?0bj} is in the {?city}

action: drive-truck

parameters: (?truck ?loc-from ?loc-to ?city)

preconditions of drive-truck: ?truck is a truck and ?loc-from is a
location and ?loc-to is a location and ?city is a city and
2truck is at ?loc-from and ?loc-from is in city ?city and
?loc-to is in city ?city

effects of drive-truck: it becomes true that ?truck is at ?loc-to
and it is not the case anymore that ?truck is at ?loc-from

[ Output: [ drive truck {?truck} from location {?loc-from} in city {?city} to|
location {?loc-to} in the same city

Input:

templates with placeholders for actual objects (e.g., “{?0bj}”) which
are replaced later when constructing the final NL task description.
Table 1 (top) shows the NL descriptions of predicates generated in
the Logistics domain.

NL descriptions of actions are generated analogously using a sim-
ilar prompt but with different examples. In this case, each example
consists of the name of the action, its parameters, and NL descrip-
tions of the preconditions and effects that are constructed using the
NL descriptions of the predicates generated by the APB-LLM as de-
scribed above. The precondition is constructed by joining NL de-
scriptions of its positive atoms by “and” and the conjoined negative
preconditions are preceded by “it is not the case that”. The NL de-
scriptions of the positive (add) and negative (delete) effects are con-
joined analogously. Moreover, we compile away parameter types us-
ing unary predicates [9]. We use the same four hand-crafted few-shot
examples of actions independently of the target domain.

Table 1 (bottom) shows an example translation of the “drive-truck”
action from the Logistics domain. It illustrates two interesting char-
acteristics of our NL encodings. First, the order of the arguments in
the generated NL encoding can deviate from the order of the param-
eters in the input PDDL domain. The order of PDDL parameters can
be arbitrary and might not match a natural sounding or even syn-
tactically correct order of arguments of the action verb in NL. We
therefore include one few-shot example where the order deviates in
the prompt for the APB-LLM to prevent the LLM from inferring that
the order needs to be identical. Second, the generated NL description
of “drive-truck"” states the type of each parameter, i.e., it makes use
of the information from preconditions to infer appropriate types. The
complete conversion prompts can be found in Appendix A.

With the NL descriptions of predicates and actions in the form of
templates, we can proceed with the generation of the domain and
problem NL descriptions of the input PDDL task.

Figure 2b shows an excerpt from the NL domain description of the
PDDL Logistics domain (Figure 2a). NL domain descriptions are de-
signed to include the same information as the input PDDL. They start
with the description of all possible actions (A%*), followed by their
preconditions (A7) and effects (A®). If the domain is typed, a ver-
balization of the type hierarchy is added also (7). Our template takes
care of the statements introducing each part of the prompt (e.g. “I can
carry out the following actions:”) as well as of adequately composing
the preconditions and effects into NL sentences (e.g. “Once I #AC-
TION# it is not the case anymore that #EFFECT#” for delete effects).
The positive and negative preconditions are presented in two individ-
ual sentences. The same applies to the add and delete effects. Our
composition method guarantees that all preconditions and effects are
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Figure 4. Overview of the set-up for the LLM plan generation and LLM
action policy usage.

included in the final NL description. Moreover, we use a heuristic to
add indefinite determiners to ensure that the domain encodings refer
to objects in general instead of specific objects (e.g. “drive a truck
A”) and that the referring expressions allow to correctly infer which
expressions refer to the same object.

The NL problem descriptions (see example in Figure 2c and 2d)
consist of the specification of the goal condition (G), followed by
available objects with their types (O), and the initial state (Z).

The object names in PDDL problems can be any strings of char-
acters and they often consist of single letters and numbers. For the
NL description of the planning problems, more natural and semanti-
cally related object names are desirable. Our method generates new
object names based on their types. If a domain is typed, we name
each object after its (most specific) type and enumerate them, e.g.
“t0” (Figure 2c) becomes “truck_0” (Figure 2d). Otherwise, we use
the most general PDDL type “object” for all object names.

The NL descriptions of the initial state and goal are constructed
using the NL descriptions of the corresponding predicates obtained
by the APB-LLM. For example, the goal “(at p0 10-0)” (Figure 2c)
is converted into “package_O is at location_0” and appended to “My
goal is that in the end” (Figure 2d). If there is more than one goal
fact, they are conjoined using “and”. The description of the initial
state is constructed analogously but starts with “Currently,”.

4 LLM action choice mechanisms

Our automatic PDDL-to-NL translation can be used in concert with
different LLM action-choice techniques. We distinguish LLM plan-
ning techniques (returning a whole action sequence at once) vs. LLM
policy techniques (returning one action at a time); but they both con-
sist of three core components, namely P-LLM, T-LLM and a simula-
tor (see Figure 4). The NL description of the input PDDL task con-
structed using AUTOPLANBENCH described in Section 3 is passed
to the LLM (denoted as P-LLM) responsible for the actual action
choice (i.e., either a sequence of actions or a single action). The out-
put of the P-LLM is in the form of NL. So, we pass its output to
another LLM (denoted T-LLM) which translates the NL descriptions
of actions (or action sequences) back to the PDDL format. Finally,
we pass the PDDL actions returned by the T-LLM to the simulator
responsible for validation and analysis of the system’s action choice.
We describe each component below.

Simulator. We implemented an environment simulator for the
PDDL domain in AUTOPLANBENCH. The simulator makes use of
the plan validator VAL® to determine whether an action is applica-
ble in the current state, or to obtain the unsatisfied preconditions if
it is not applicable. For LLM planning, the simulator only validates
the output action sequence and determines whether it solves the task.

6 https://github.com/KCL-Planning/VAL



For LLM policies, the simulator updates the world state after every
action chosen by the LLM.

Instead of giving back the resulting world state in PDDL format,
taking inspiration from prior work on non-PDDL forms of planning
with LLMs [23, 18, 27, 13], our simulator produces a NL obser-
vation about actions’ effects as feedback for the next LLM-policy
step. If the action is applicable, the observation is a statement about
the action being executed (e.g., “I drive truck truck_O from ... to
... for the NL action “Drive truck_O from ... to ...”). This descrip-
tion is obtained by converting the PDDL action into its NL de-
scription using AUTOPLANBENCH. If the action is not applicable,
our simulator states why this is the case, e.g., “I cannot drive truck
truck_0 from location location_0 in city city_0 to ... because truck_0
is not at location_0.” This type of feedback is constructed by con-
verting the PDDL action and the unsatisfied preconditions into their
NL descriptions using the template “I cannot #ACTION# because
#UNSAT-PRE#” where each #PART# is, again, constructed using
AUTOPLANBENCH.

Lastly, the simulator also determines whether the LLM’s action
choice reached the goal which is used as a termination condition for
LLM policies.

T-LLM. The T-LLM translates the NL actions from the P-LLM
output to valid actions in the PDDL format so that it can be fur-
ther passed to the simulator. This translation is done by providing
the T-LLM a prompt consisting of a statement providing information
about the task (i.e., translating NL into PDDL) and the output for-
mat, followed by the NL descriptions of all actions of the domain
obtained using AUTOPLANBENCH and the objects from the current
problem. Lastly, up to five pairs of an NL action description from
the domain and the corresponding PDDL action are included as few-
shot examples. The domain-specific prompts are generated entirely
automatically based on the generated PDDL-to-NL conversions and
are identical for all action choice mechanisms (see Appendix D for
details). This approach can be applied to any domain and is indepen-
dent of the order of the verb and its arguments in the NL descriptions,
hence allowing more flexibility than the domain-specific, rule-based
translation approach used by Valmeekam et al. [21].

P-LLM. The P-LLM component implements the actual action
choice mechanism. Figure 5 shows the structure of the prompts for
the P-LLM in the LLM planning (left) and LLM policy (right) set-
up. All prompts start with an instruction of the planning task (1),
followed by the NL description of the goal (2) and the domain (3).
Then a few-shot example from the same domain is included (4). It
consists of the NL description of the goal of the example problem,
the initial state and an example for the generation of an action or ac-
tion sequence—this part is specific for each individual LLM action-
choice method and we discuss it in detail below. The last part of the
prompt consists of specific instructions for the LLM action-choice
mechanisms (5), followed by the initial state of the target problem (6)
(see complete prompts in Appendix D).

For LLM planning, the P-LLM predicts a complete sequence of
NL actions, each in a separate line (see instructions (5) in Figure 5
(left)). The output of the P-LLM is translated into PDDL line-by-
line by the T-LLM and then passed to the simulator that determines
whether the generated action sequence is a valid plan for the task.

For LLM policies, the P-LLM generates a single action that is di-
rectly translated by the T-LLM and passed to the simulator which in
turn produces a NL observation (or terminates the planning process
in case the goal is satisfied). The generated NL observation is added
to the history buffer (see Figure 4 (bottom)). In each step, the initial

You are an assistant for giving instructions

to successfully complete small tasks. ...
Please instruct me how to complete my task.

You are an assistant for giving instructions to
successfully complete small tasks. ...
Please instruct me how to complete my task.

My task is to execute actions until reaching 2 My task is to execute actions until reaching my
my goal. My goal is that in the end #GOAL# G goal. My goal is that in the end #GOAL#
#NL DOMAIN DESCRIPTION# 43 #NL DOMAIN DESCRIPTION#

Here are some examples Here is an example of one complete round of
#FEW SHOT EXAMPLE# 4 providing me instructions.

#FEW SHOT EXAMPLE#
Please instruct me how to complete my task.
Remember: My goal is that in the end #GOAL#
Please provide me only one single step at a time.
You can tell me to look around to get a
description of what I see.
when I am finished with my task then please tell
me: 'You are finished'.

Please provide me a step-by-step instruction g
for how to complete my task. Remember: My

goal is that in the end #GOAL#.

please provide each step in a new Tine.

My current initial situation is as follows:
#INITIAL STATE#

My current initial situation is as follows:
,,,,,,, #INITIAL STATEH ..

#1st P-LLM OUTPUT#
(7) #1st NL OBSERVATION#

Figure 5. Structure of the prompts for the P-LLM in the LLM planning
(left) set-up and in the policy set-up at the second prediction step (right).
LLM planning LLM policy
[STATEMENT] My goal is that in the end #GOAL# Act
My goal is that in the end #GOAL# I: My current initial situation is as follows:
., My current initial situation is #OBJECTS + INITIAL STATE#
£ as follows: You: #NL ACTION 1#
% #OBJECTS + INITIAL STATE# I: #OBSERVATION FROM ENVIRONMENT#
2 [PLAN] You: #NL ACTION 2#
T #NL ACTION 1# I: #OBSERVATION FROM ENVIRONMENT#
Z  #NL ACTION 2#
You: You are finished
[PLAN END]
[STATEMENT] My goal is that in the end #GOAL#
My goal is that in the end #GOAL# I: My current initial situation is as follows:
My current initial situation is #OBJECTS + INITIAL STATE#
as follows: You:
#OBJECTS + INITIAL STATE# Think: #Thought 1#
o Let‘s think stept by step Instruction: #NL ACTION 1#
5 [PLaN] I: #OBSERVATION FROM ENVIRONMENT#
3 Think: #Thought 1# You:
€ Instruction: #NL ACTION 1# Think: #Thought 2#
Think: #Thought 2# Instruction: #NL ACTION 2#
Instruction: #NL ACTION 2# I: #OBSERVATION FROM ENVIRONMENT#
Think: #Thought N# You:
Instruction: You are finished Think: #Thought N#
[PLAN END] Instruction: You are finished

Figure 6. Structure of the few-shot examples for the four mechanisms.

prompt for the P-LLM is extended by all its previous outputs and ob-
servations from the history buffer (see part (7) in Figure 5 (right)).
This approach provides the LLM access to the history of the action
choice process as LLMs themselves do not include any memory, i.e.,
each call to an LLM is independent. Moreover, the process is not
stopped when the P-LLM outputs an inapplicable action as the ob-
servations provide information that can be exploited by the LLM in
subsequent steps. We also equip the P-LLM with an option to ask for
the current state which is then provided by the simulator in the form
of its NL description.

Action choice mechanisms. The action-choice instructions (part
(5) in Figure 5) and few-shot examples (4) demonstrating the content
and format expected from the P-LLM’s output are specific to the indi-
vidual LLM action-choice mechanisms. We focus on two LLM plan-
ning techniques (Basic and CoT) and two LLM policy techniques
(Act and ReAct), described in what follows.

Basic. For the Basic configuration we prompt the P-LLM to gener-
ate a complete plan of NL actions. We follow Valmeekam et al. [22]
and present each action of the example plan in a separate line and
include a special tag to signal the beginning and end of the plan as
shown in Figure 6 (top left).

CoT. Wei et al. [25] showed that prompting an LLM to generate
a chain of thoughts, i.e., a sequence of explicit reasoning steps, im-
proves the results on a range of reasoning tasks. The exact form and
content of a thought are flexible and can include explicit reasoning
over the current state, the next action or a goal fact to satisfy. For ex-
ample, a thought for a Logistics problem could be “Now, package_0
is at truck_1 and truck_1 is at location_2 in city_4. Package_0 needs



to be moved to location_3 in city_4.” The generation of thoughts by
the P-LLM is elicited by adding thoughts between the actions in the
few-shot example (see Figure 6, bottom left).

ReAct. ReAct combines CoT reasoning with information received
from an environment and was proposed for interactive decision-
making tasks. At each step, the P-LLM predicts a thought and an
action and receives an observation from the simulator. The complete
output of the P-LLM, i.e., including the thought, and the observation
are added to the history buffer. As the length of the input increases
with each step, the few-shot example does not demonstrate all indi-
vidual steps but the last input (including the complete history) and
output (see Figure 6, bottom right). In order to demonstrate which
parts the P-LLM is supposed to generate, LLM outputs are preceded
by the tag “You:” and parts provided by the simulator by “I:” in the
few-shot examples.

Act. The Act mechanism works in the same way as ReAct but does
not include reasoning thoughts (Figure 6, top right).

Note that all few-shot examples are generated automatically by
converting one small example problem and its optimal plan into
NL. For the LLM policy mechanisms, the simulator is used to gen-
erate the corresponding observations. For CoT and ReAct, reason-
ing thoughts are required. We use an LLM-based approach to ob-
tain them: first the few-shot example in the ReAct structure is cre-
ated (Figure 6, bottom right), but with placeholders instead of actual
thoughts. For Logistics and Blocksworld we manually replace the
placeholders by appropriate reasoning thoughts. We then use the one
for Logistics in order to prompt an LLM to come up with appropri-
ate thoughts to replace the placeholders for example problems from
other domains. For the CoT few-shot examples the observations get
removed afterwards (see Appendix E).

5 Experiments

The experimental evaluation aims at verifying that our automatically
generated NL descriptions yield comparable performance to manual
descriptions. Moreover, we demonstrate that our method allows us to
effortlessly extend the evaluation of LLM action choice methods to a
larger set of domains than used before. Lastly, we compare to several
symbolic planning baselines to get a sense how well the LLM action
choice methods work and scale with increasing size of tasks.

We use 12 classical planning domains. For each domain, we gen-
erate 21 solvable problems with optimal plan lengths between 3 and
20, select one of them as few-shot example and use the rest for evalu-
ation. When available, we select an example problem with an optimal
plan length of 4 or 5 and otherwise the one with the shortest plan (see
supplementary material Appendix B for more details).

We run all four action-choice methods from Section 4: Bas (Ba-
sic), CoT, ReAct and Act and focus on GPT-4 [15] as the P-LLM and
on few-shot prompting because previous work has shown these to
be among the strongest currently available models for planning [e.g.
22]. We also use GPT-4 as the T-LLM and APB-LLM. The LLM
policies Act and ReAct are not guaranteed to terminate and impos-
ing a time limit is not an option here because we use GPT-4 via its
API with high variability of response times. Therefore, we limit the
LLM policies to 24 steps instead (which is at least twice the average
of optimal length for all but one domain). Since we want to see how
well our automatic translations work in comparison to the manual
ones, we also evaluate all four LLM-based methods on the manual
descriptions for the Blocksworld, Logistics and Depot domains cre-
ated by Valmeekam et al. [22].

Table 2. Number of solved tasks. “Valm23” rows show results of the
manual encodings by Valmeekam et al. [21] in the respective domains. We
show in bold the best LLM-based method.

Domains LLM with NL PDDL Symbolic Baselines
" Bas CoT Act ReAct|Bas Act|| rnd BrFS 1lmc ff
Blocks. (20) 10 6 16 191 4 91 2.6 20 20 20
LValm23 (20) 9 11 18 18
Logistics (20) 2 6 11 15 1 51| 0.8 20 20 20
L, Valm23 (20) 3 6 16 16
Depot (20) 1 3 4 8 0 0 0 20 20 20
LValm23 (20) 1 1 4 8
Ferry (20) 3 10 12 19 4 10| 1.0 20 20 20
Floortile (20) 0 0 0 0 0 0 0 18 20 20
Goldminer (20) 2 4 6 8 3 51| 24 20 20 20
Grid (20) 3 4 14 16 1 5| 1.2 20 20 20
Grippers (20) 8§ 15 15 200 4 91| 04 20 20 20
Movie (20) 12 0 20 200 19 20| 3.8 20 20 20
Rovers (20) 0 2 11 12 1 411 2.2 20 20 20
Satellite (20) 2 10 18 18 0 0 0 20 20 20
Visitall (20) 17 17 20 20| 18 20(/144 20 20 20
37 (240) 60 77 147 1731 55 87][28.8 238 240 240

Additionally, following the prior work of Silver et al. [19], we
also conduct experiments with LLMs taking directly the PDDL in-
put instead of its NL descriptions. We use only Bas and Act as it
is not clear how to provide comparable thoughts for PDDL inputs.
In this case, the T-LLM is skipped and the output of the P-LLM is
passed directly to the simulator. Additionally, the observations are
simplified to “Action was successfully executed.” and “The action is
not applicable in the current state.” as the original observations rely
on the PDDL-to-NL conversions. For a fairer comparison, we keep
a slightly adapted task instruction as part of the prompts and only
replace the NL domain, goal and initial state descriptions by their
original PDDL input (see Appendix D for example prompts). This is
closer to the way in which Valmeekam et al. [22] test PDDL inputs
as they, in contrast to Silver et al. [19], include the PDDL domain
description and also a short task description in natural language.

Lastly, we use several symbolic planning baselines. Breadth-first
search (denoted as BrFS) is used to get a sense of hardness of tasks
and how LLM-based methods compare to a basic uninformed search.
We also compare to two basic state-of-the-art planners: optimal A*
with the LM-Cut heuristic [10] (1mc), and satisficing greedy best-first
search with FF heuristic [11] (££). Lastly, to test whether LLM-based
methods carry any information at all, we use a simple random search
(rnd) limited by 24 steps (same as LLM policies) that, in every step,
selects an applicable action uniformly at random. The results for rnd
are averaged over five runs with different random seeds. These base-
lines were run on a cluster of Intel Xeon E5-2687W processors with
30 minutes and 8 GB time and memory limits, respectively.

Comparison of LLM action choice methods. Table 2 shows the
number of solved tasks (coverage) per domain and overall. The com-
parison in Blocksworld, Logistics and Depot to manual descriptions
(see “Valm23” rows) shows that using our automatic translations re-
sults in comparable performance. Exceptions are CoT in Blocksworld
and Act in Logistics where manual descriptions work significantly
better. The reason might be that the hand-crafted descriptions by
Valmeekam et al. contain additional information that is not explicitly
stated in PDDL (e.g., in their Blocksworld description, it is stated
that a block is clear if no other block is on top of it) and that hence is
also not stated in the automatically generated descriptions. However,
when using the best-performing variant ReAct the results are on-par.

The results of Bas with the automatic translation over all domains
support previous findings that a basic prompting technique does not
work particularly well for plan generation [e.g., 21, 14]. Adding rea-
soning thoughts (CoT) improves performance substantially overall,



though the impact varies per domain and can also deteriorate perfor-
mance. Using the LLM as an action policy instead of a plan generator
in Act yields a major performance boost, dominating Bas and CoT
consistently in every domain, with major coverage improvements in
many of the domains. This shows that the use of LLMs, not for plan
generation, but as a part of plan generation works much better—in
the present case, the LLM being used for action choice only, with the
computation of states being done symbolically and fed back into the
LLM prompts. Adding reasoning thoughts to Act in ReAct yields
another performance boost, consistently dominating coverage across
all four LLM action choice mechanisms and achieving best LLM
performance by far.

The comparison to LLM action choice with PDDL input (middle
of Table 2) shows that the translation to NL is vastly superior overall,
and is almost consistently beneficial. (A notable exception is Bas in
Movie, where significantly more tasks are solved with PDDL input
than with NL input.) There might be superior ways of using Act on
PDDL inputs (e.g., using prompt engineering, different observations)
that are not explored here. Nevertheless, our results strongly indicate
that LLMs like GPT-4 tend to work better with NL inputs.

Our automatic PDDL-to-NL translation allows to assess the effect
of PDDL vs. NL input types at a larger scale; and it allows to gen-
erate the better-performing NL inputs in domain-independent plan-
ning, providing the basis for deeper combination with symbolic plan-
ning methods in future work (we list some thoughts in Section 6).

Comparison to symbolic baselines. The comparison to the ran-
dom baseline rnd clearly shows that LLM methods are able to extract
at least some useful information from the task descriptions (with ex-
ception of Floortile where all LLM methods failed). This is further
supported by the fact that the plans found by rnd were on average
more than twice as long as the plans found by any of LLM methods.

As can be seen from the BrFS results, the evaluated tasks are fairly
small, and yet LLM methods fail to solve them all. The performance
of LLM-based methods significantly lag behind symbolic methods:
1mc and ff solve all tasks, and even BrFS solves all tasks except
for two in Floortile (the average runtime of 1mc, £f and BrFS was
0.1, 0.7 and 1.7 seconds, respectively). This behaviour was already
observed before—here, we provide a more comprehensive evalua-
tion enabled by the automatic generation of NL descriptions. Nev-
ertheless, we can also see some encouraging results with ReAct in
Blocksworld, Ferry, Grippers, Movie and Visitall.

Scaling experiments. To see how far ReAct can scale in domains
where it solved all (or almost all) tasks, we conduct more experi-
ments with larger generated tasks. We focus on the Blocksworld,
Ferry, Grippers, and Visitall domains. We leave out the Movie do-
main for which it is impossible to generate tasks with longer plans
(scaling in this domain essentially only grows the initial state but the
length of plans stays the same). The scaled data for the four consid-
ered domains is created as follows.

For each domain, we randomly generate a set of tasks, always
varying only a single parameter: the number of blocks, cars, balls
and locations for Blocksworld, Ferry, Grippers and Visitall, respec-
tively (see Appendix B for more details). Then we run BrFS and 1mc
on each task with the same time and memory limit as in the previ-
ous experiments. For each domain, we identify the value N of the
varied parameter (e.g., number of balls in Grippers) at which either
BrFS or 1mc is unable to solve the task. For the final dataset we se-
lect 20 problems per domain for which the scaled parameter values
are around the identified threshold N. We use the same few-shot ex-
amples as in the first round of experiments. For the Grippers domain,

Table 3. Number of solved tasks for selected domains scaled to larger

instances.

Domains NL PDDL | Symbolic Baselines

ReAct |Bas Act|rnd BrFS 1lmc ff
Blocks. (20) 9 2 2] O 12 19 20
Ferry (20) 19 0 0] O 8 13 20
Grippers (11) 100 0 6| O 10 8 11
Visitall (20) 17| 15 17| O 10 17 20
> (71) 551 17 25 O 40 57 71

we use only 11 tasks with the largest one including 20 balls. The rea-
son is that the GPT-4 system has a limit on the number of tokens it
can process (8 192 tokens) which was already reached by ReAct on
the task with 20 balls.

Table 3 shows the coverage on the scaled benchmark set. We can,
again, see that NL descriptions usually lead to much better perfor-
mance than PDDL descriptions.

rnd cannot solve any benchmark instance at all here, confirming
the vast superiority of ReAct as a much more informed action policy.
BrFS is much better, but is also challenged by the size of these tasks.
It is outperformed by ReAct overall, which is on-par in Grippers and
much better in Ferry and Visitall. While BrFS is a very basic sym-
bolic baseline, this provides additional evidence of ReAct’s planning
abilities. Indeed, remarkably, ReAct is on-par with the state-of-the-
art optimal planner 1mc in Visitall, and it even solves more tasks than
1mc in Ferry and Grippers. This is remarkable given that ReAct, in
contrast to 1lmc, does not perform any search. On the other hand, it
should be noted that Ferry and Grippers are structurally simple do-
mains, and that ReAct—in contrast to lmc—does not give any plan-
optimality guarantee. The satisficing planner ££, which is compara-
ble to ReAct in that regard, still has perfect coverage also on these
scaled tasks, so the benchmarks are still not “hard enough” to be
challenging for satisficing planning.

Overall, while LLM action choice at this point lags far behind
symbolic planners, there are isolated islands of good performance,
and our results do show promise for LLM planning abilities, in par-
ticular if used as part of a larger symbolic planning machinery (of
which Act and ReAct are basic instances).

6 Conclusion

LLMs are rapidly gaining prominence in many sub-areas of Al,
and the question if and how they can be applied in Al Planning is
highly relevant. Following up on previous work in this direction, we
show how to automate the conversion of PDDL into natural language
prompts. Based on this, we contribute broad experiments, highlight-
ing that the automatic conversion does not result in a performance
loss relative to the previous hand-crafted prompts, and examining
performance relative to representative symbolic methods. The re-
sults enhance our knowledge of LLM action choice performance,
and demonstrate convincingly that LLMs do have some action-choice
ability, outperforming random action selection and, in a few cases,
even a state-of-the-art optimal planner. This performance is still far
from the state of the art in symbolic (satisficing) planning, yet it is
achieved without any search, pointing to the potential of more gen-
eral uses of LLMs in planning.

The most direct question for future work, in our view, is how to
combine LLMs with symbolic search methods. Our work lays the
basis for that through the automatic translation of PDDL into natural
language prompts, which as our results show boosts the LLM’s plan-
ning ability. The space of possible combinations is vast. One could
use the LLM to suggest preferred actions in search, one could search



around LLM-predicted plans or actions, one could apply plan repair
to the LLM’s suggestion (as suggested by [22] with LPG [3]), one
could use LLM-generated plans as the basis for heuristic functions,
etc. For further research on the question whether LLMSs on their own
(without search) can yield better planning performance, specialized
training or neurosymbolic methods may be interesting to look at.
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A Conversion prompts and examples

Figure 7 shows the template of the prompts used to derive the core
natural language descriptions for the predicates and the actions based
on which the overall domain and problem descriptions and the few-
shot examples for the P-LLM are generated. For the APB-LLM i.e.
for the conversion, we use the same few-shot examples for each input
domain. The few-shot examples for both the predicate and the action
conversion were created manually and are presented as part of the
entire prompts shown in Figure 8 and 9. The last few-shot example



for the action “move” in Figure 9 was designed specifically in order
to avoid that the LLM picks up the pattern that the order of parame-
ters in the NL descriptions needs to match the order of parameters in
PDDL.

Table 4 presents the NL descriptions generated by
AUTOPLANBENCH for all PDDL predicates and actions of the
Logistics domain as an example of the output of our conversion
approach.

B PDDL domains and problems

For our experiments we select 12 PDDL domains from classical plan-
ning. We only select STRIPS domains with only “not” and “and”
as operators and we remove the costs if the domain includes action
costs. For the Blocksworld, Logistics and Depot domain we use the
domain PDDL files and problems from the PlanBench repository’.
For all other domains we take the domain files from the PDDL-
Generators repository® [17] which offers a collection of planning
domains and the problem generators for the domains. We use the
available problem generators to generate the problems included in
our dataset and select rather small values for the parameters that can
be varied for the individual domains for creating the dataset for the
main experiment. The task set-ups of the different domains are de-
scribed in Table 5.

The Movie domain is the only domain to which we make changes
beyond removing costs. In particular, as described in Table 5, we
modify the domain such that the actions for buying snacks have ad-
ditional preconditions that do not allow buying them in all states. Ad-
ditionally, we introduce some variation to the planning task by gen-
erating not only problems where one object of each kind of snacks
needs to be bought but also problems were less (but at least one)
kinds of snacks must be bought.

Table 6 presents for each domain the optimal plan length, number
of goal conditions, number of predicates in the initial state and the
number of available objects averaged over the 21 problems used in
the main experiments (including the few-shot example) and over the
problems from the scaling experiments. Additionally, the last three
columns present the number of unique actions, predicates and types
for all of the domains. The optimal plans were generated by the Fast
Downward planner [8] with the A* algorithm [6] and the LM-Cut
heuristic [10].

Scaling experiments. For the scaling experiment, we focus
on scaling only one specific type of object per domain. In the
Blocksworld domain, the only parameter that can be scaled is the
number of available blocks. For Grippers, we only vary the number
of balls while fixing the number of robots to 1 and the number of
rooms to 2, hence essentially restricting the problems to problems of
the Gripper domain. For the Ferry domain, we fix the number of lo-
cations to 3 while varying the number of available cars. Finally, for
the Visitall problems we vary the x and y dimension of the grid and
restrict the problems to those where exactly the x*y locations need to
be visited. For the Blocksworld, Gripper and Visitall domains always
all objects of the varied type need to be part of a successful plan. For
the Ferry domain, we select only problems where more than 80% of
the cars need to be moved to achieve the goal.

7 https://github.com/karthikv792/LLMs-Planning/tree/main/plan-bench
8 https://github.com/Al-Planning/pddI- generators/tree/main

C Experimental set-up: Model parameters

All experiments with GPT-4 were conducted using the OpenAl API
and the gpt-4-0613 model. The main experiments were conducted
in the first half of November 2023 and the scaling experiments in
the first half of March 2024. The experiments on PDDL inputs were
conducted at the end of May and beginning of April 2024.

For all models and tasks we set the temperature to 0.0 and use
caching to reduce the cost: If the model has already received the same
input (including the prompt, the user message and the history) before,
the previously generated response text is retrieved from the cache.
This affects in the first place the T-LLM because all planning ap-
proaches and individual problems have different target initial states
and different few-shot examples in the initial prompt and therefore
the P-LLM never gets exactly the same input twice.

For all other parameters we keep the default values except for the
maximum number of tokens:

APB-LLM: 50

P-LLM: no limitation

T-LLM: 256

LLM to generate thoughts for few-shot example: 300

D P-LLM and T-LLM prompts

Figure 10 and 11 present the prompt templates for the P-LLM in
the LLM planning and LLM policy set-ups respectively. Figure 13
and Figure 14 show the complete prompts for running the Basic and
ReAct action choice mechanisms on one of the problems from the
Blocksworld domain. Additionally, Figure 12 presents the prompt
template used for the Act LLM policy on PDDL inputs and 15 and
16 present examples of the complete prompts used for PDDL inputs
for the Blocksworld domain.

The prompts for the T-LLM are automatically created by
AUTOPLANBENCH from the template in Figure 17. For each do-
main, the pairs of PDDL and NL encodings of all actions of the do-
main are included in the prompt. Additionally, AUTOPLANBENCH
creates few-shot examples for the translation from NL to PDDL by
randomly sampling up to five distinct actions with different number
of parameters if possible and sampling the required number of differ-
ent objects from a list of example object names. The example object
names were designed such that they are similar to object names from
the actual planning problems but unlikely to overlap with them. The
example objects are included in the list of available objects in the
prompt which is extended by the actual objects of the specific prob-
lem instance. Except for the objects list, the prompt is identical for
all problem instances of the same domain. In particular, there are no
differences between the different action choice mechanisms with re-
spect to the prompt for the T-LLM. Figure 18 shows an example of
the prompt for problems in the Blocksworld domain.

E Automatic thought generation

The few-shot examples for the ReAct and CoT approach require
the availability of appropriate reasoning thoughts for the steps in the
example problem. In order to automate the few-shot example gen-
eration, we let GPT-4 generate these thoughts in advance. Figure 19
shows the structure of the prompt that is used for the thoughts gen-
eration: first, the instructions for the task are given, then a few-shot
example for the task of generating thoughts is provided. The few-
shot example is always the same example from the Logistics domain
and consists of the NL domain description, the goal description, the



Your task is to generate templates for natural Tanguage descriptions for actions and predicates defined in the PDDL planning
language. Tokens starting with '?' are variables and serve as placeholders. They should always be surrounded by curly brackets
in your output. For actions, also include the type for each parameter in the brackets if this information is available.

Do not start your output with a capitalized word and do not include sentence final punctuation.

#FEW-SHOT EXAMPLES#

Input: #TARGET PDDL PREDICATE / ACTION#
output:

Figure 7. The prompt template for the APB-LLM used to generate the NL descriptions

Your task is to generate templates for natural language descriptions for actions and predicates defined in the PDDL planning
language. Tokens starting with '?' are variables and serve as placeholders. They should always be surrounded by curly brackets
in your output. For actions, also include the type for each parameter in the brackets if this information is available.

Do not start your output with a capitalized word and do not include sentence final punctuation.

original: (0BJ ?obj)
output: {?0bj} is an object

original: (planet ?ob)
output: {?o0b} is a planet

original: (in ?obj ?loc)
output: {?0bj} is in {?Toc}

original: (in-cottage ?obj ?cott)
output: {?0bj} is in the cottage {?cott}

original: (undertree ?obj)
output: {?0bj} is under the tree

original: (handempty)
output: the hand is empty

original: (washing ?car)
output: {?car} is being washed

Ooriginal: #PDDL PREDICATE#
Output:

Figure 8. The complete prompt for the APB-LLM, used to generate the NL descriptions for the PDDL predicates.

actions of the optimal plan, the observations from the simulator and
placeholders for the thoughts. The actual thoughts are included be-
low and were manually created by us.

Figure 20 shows the Logistics few-shot example in the same for-
mat in which it is included in the prompts of the P-LLM in the
ReAct approach. The overall example is generated automatically by
AUTOPLANBENCH except for the thoughts which we created manu-
ally. Figure 21 and 22 illustrate how the Logistics few-shot example
is presented in the prompt for generating the thoughts for other do-
mains (here the Blocksworld domain).

The problems selected as few-shot examples were shortened for
the CoT and ReAct mechanisms in order to reduce the financial
cost and the number of tokens. For each of the few-shot examples,
only the last three steps of the plan for the original problem were
kept. Additionally, we replaced the original initial state with the state
obtained by executing all actions from the original plan that were
removed for the example.



Your task is to generate templates for natural Tanguage descriptions for actions and predicates defined in the PDDL planning
language. Tokens starting with '?' are variables and serve as placeholders. They should always be surrounded by curly brackets
in your output. For actions, also include the type for each parameter in the brackets if this information is available.

Do not start your output with a capitalized word and do not include sentence final punctuation.

original: action: grasp

parameters: (?obj ?obj2)

preconditions of grasp: ?obj is a hand and ?0bj2 is a box and ?obj is empty and ?obj2 is on the table

effects of grasp: it becomes true that ?obj2 is being held by ?obj and it is not the case anymore that ?obj is empty
and ?obj2 is on the table

output: grasp {box ?obj2} with {hand ?obj}

original: action: RIDE-HORSE

parameters: (?h ?f1 7t1)

preconditions of RIDE-HORSE: 7h is a horse and ?f1 is a location and ?t1 is a location and ?h is at ?f1
effects of RIDE-HORSE: it becomes true that ?h is at ?t] and it is not the case anymore that ?h is at ?f1l
output: ride {horse ?h} from {location ?f1} to {location ?t1}

original: action: put-down

parameters: (?obj)

preconditions of put-down: ?obj is an object and ?obj is being held

effects of put-down: it becomes true that ?obj is clear and hand is empty and ?obj is on the table and it is
not the case anymore that ?obj is being held

output: put down {object ?obj}

original: action: move

parameters: (?d 7o ?s)

preconditions of move: ?d is a room and 70 is a chair and ?s is a room and 70 is in ?s

effects of move: it becomes true that 70 is in ?d and it is not the case anymore that 7o is in ?7s
output: move {chair 20} from {room ?s} to {room ?d}

original: #ACTION#

parameters of #ACTION#: #PARAMETERS#
preconditions of #ACTION#: #NL PRECONDITIONS#
effects of #ACTION#: #NL EFFECTS#

output:

Figure 9. The complete prompt for the APB-LLM, used to generate the NL descriptions for the PDDL actions.

Table 4. Natural language descriptions generated by AUTOPLANBENCH for the predicates and actions of the (untyped) Logistics domain.

PDDL NL description

(OBJ ?0bj) {?0bj} is an object
(TRUCK ?truck) {truck} is a truck
(LOCATION ?loc) {Moc} is a location
(AIRPLANE ?airplane) {?airplane} is an airplane
(AIRPORT ?airport) { 7airport} is an airport

(CITY ?city)

(at ?0bj ?oc)

(in ?0bj1 ?0bj2)
(in-city ?0bj ?city)

(load-truck ?obj ?truck ?loc)
(load-airplane ?obj ?airplane ?loc)
(unload-truck ?obj ?truck ?loc)
(unload-airplane ?obj ?airplane ?loc)
(drive-truck ?truck ?loc-from ?loc-to ?city)
(fly-airplane ?airplane ?loc-from ?loc-to)

{2city} is a city

{?0bj} is at {?loc}

{?0bj1} is in {?0bj2}
{?0bj} is in the city {?city}

load object {?0bj} into truck { ?truck} at location {?loc}

load object {?obj} into airplane {?airplane} at location {?loc}
unload object {?0bj} from truck ?truck at location { ?loc}

unload object {?0bj} from airplane {?airplane} at location {?loc}

drive truck {?truck} from location {?loc-from} in city {?city} to location {?loc-to} in the same city

fly airplane {?airplane} from airport { ?loc-from} to airport {?loc-to}




Table 5. Overview over the 12 different planning domains used in our experiments.

Domain Typed | Description
Blocksworld | no The task is to rearrange to a set of blocks into specified stacks

| Depot ~ ~ | yes | The task is to move crates between depots and distributors using a truck. In order to load and unload the crates a hoist at the ~ |
specific place must be used. All depots and distributors are connected.

| Ferry ~ = | no | The task is to transport cars using a ferry to their goal locations. The ferry can only transport one car at a time and only move |
between non-equal locations. Non-equality is specified by state predicate for all pairs of locations

| Floortile ~ | yes " A set of robots need to paint floortiles in a grid world using two colors. Robots can only paint floortiles that are located up or |
down the current position. There are four actions for moving, one for each direction and robots cannot move on painted tiles.

| Goldminer | yes ~ A robot needs to navigate a grid world to reach the location with gold. The locations are blocked by soft or hard rocks that |
need to be removed using a laser or a bomb (only soft rocks). Using the laser on the gold location destroys the gold.
Connectivity of locations is defined by a predicate.

| Grid~ = = | no | ATrobot needs to move in a grid world and move different types of keys to specific locations. Locations can be locked and ~ |
a matching key can be used to open them. Connectivity of locations is defined by a predicate.

| Grippers ~ | yes ~ A number of robots with two gripper hands need to transport bails between rooms. All rooms are connected. |

| Gripper ~ | yes | The same as Grippers but with only one robot and two rooms where all balls are in the same room and need to be transported |
to the other room.

| Logistics | no | The task is to transport packages either within cities using trucks or between cities using airplanes. All cities and locations are |
connected.

| Movie ~ | no | Adapted from the Movie domain where the task is to buy one of each of 5 kinds of snacks, rewind the movie and reset the |
counter to zero. The rewinding needs to happen before setting the counter but buying snack can happen at any state. In the
adapted domain the snacks need to be bought before rewinding the movie and resetting the counter. If snacks are still missing
afterwards the rewind action needs to be undone before buying again.

| Rovers | yes | A number of rovers need to navigate between waypoints, find substance samples, calibrate cameras, take pictures and |
communicate with a lander

| Satellite ~ ~ | yes | The task is to let sateflites take images of observations in specific modes. This involves turning on the instruments supporting |
the target mode, calibrate the satellite and instruments, adapting the direction and taking the images.

| Visitall . ~ " | yes | A robot needs to move in a grid world until having visited all specified goal locations. The robot can only move to connected |
locations and some locations in the grid are not available.

Table 6. Overview over the characteristics of the problem instances per domain used for our main experiments (including the few-shot example) and of the
problem instances from the scaling experiments. The right part of the table additionally shows some of the characteristics of the domains.

Domain N | Coverage Average Number of
ReAct || Optimal plan length | #Goal facts | #Initial facts | #Objects || Actions | Predicates | Types
Blocksworld | 21 19 7.05 2.10 6.90 4.00 4 7 1
scaled 20 9 22.40 6.05 13.60 9.80
| Depot ~ ~ |21~ 87|~ 7 122477~ 7271 " 2500 1800 (| S|~ " 8] 10
| Ferry ~ ~ 21|~ 1o\ "~ 89571~ T462| T T 2076 [ T 76T ([T 3T 91
scaled 20 19 44.95 16.55 44.10 19.55
| Floortile ~ [ 2T ]~~~ 07|~~~ " 7 410~ 576 |~ 3857 MO0 7| ] "4
| Goldminer [ 21 |~~~ 87|~~~ " 7 1062 ]~ " T00 |~ 3352 814 T 471" "2
| Grid” ~ ~ (21 ]~ " 16| " 1471~ T1337 T TsIU [ W29 S| T M1 1
| Grippers [ 21 ]~ ~ 20|~~~ " © 92477 T T 457 T T T ¢ 971 | "I343 [T T 3| T 6| "4
scaled 11 10 44.45 15.00 18.00 20.00
| Logisties |21~ " I5| ~~~~~~ 84371~ T195 T Tx»I6 | 38| 6| n]- 1
| Movie  ~ |21~ "20 | ~ "~ "~ 64871 " 5487 T Tniao | "Toa0 [T T 9| T T 5771
| Rovers” |21~ " I27| ~ 7 104377~ 3047 " "305 1BI9|| 9| T T 277778
| Satellite ~ |21~ 18|~~~ "~ 78171 " T2767 T T 1243 "T067 [T T 5| T T 0] "5
| Visitall T~ 21 20| T ¢ 457777 7 743377 T T T400 | 600 || 1| T 5] T2
scaled 20 17 30.70 31.45 99.20 31.45




You are an assistant for giving instructions to successfully complete small tasks.

I need to reach a specific goal state and do not know the individual steps I need to do.
Please instruct me how to complete my task.

I can only use objects that are observable in the situation.

G My task is to execute actions until reaching my goal. My goal is that in the end #GOAL#
A+ 7T #NL DOMAIN DESCRIPTION#

Here are some examples
#FEW SHOT EXAMPLE#

Please provide me a step-by-step instruction for how to complete my task. Remember: My
goal is that in the end #GOAL#.
Please provide each step in a new line.

[STATEMENT]
Z+0O My current initial situation is as follows:

Figure 10. Prompting template used for the LLM planning mechanisms. #GOAL# corresponds to the problem-specific goal description, #NL DOMAIN
DESCRIPTION# to the domain-specific description and the #fEW SHOT EXAMPLE# is the approach-specific planning example. At the bottom, the
beginning of the target problem description is shown.

You are an assistant for giving instructions to successfully complete small tasks.

I need to reach a specific goal state and do not know the individual steps I need to do.
Please instruct me how to complete my task.

I can only use objects that are observable in the situation.

g My task is to execute actions until reaching my goal. My goal is that in the end #GOAL#
A+7T #NL DOMAIN DESCRIPTION#

Here is an example of one complete round of providing me instructions.
#FEW SHOT EXAMPLE#

Please instruct me how to complete my task. Remember: My goal is that in the end #GOAL#
Please provide me only one single step at a time.

You can tell me to look around to get a description of what I see.

when I am finished with my task then please tell me: 'You are finished‘.

T+0 My current initial situation is as follows:

Figure 11. Prompting template used for the LLM policy mechanisms. #GOAL# corresponds to the problem-specific goal description, #NL DOMAIN
DESCRIPTION# to the domain-specific description and the #fFEW SHOT EXAMPLEH# is the approach-specific planning example. At the bottom, the
beginning of the target problem description is shown.



You are an assistant for providing a plan in the pddl language to successfully complete
small tasks.

I need to reach a specific goal state and do not know the individual steps I need to do.
Please instruct me how to complete my task.

My task is to execute actions until reaching the goal. The goal is:
g #PDDL GOAL#

A+ #PDDL DOMAIN DESCRIPTION#

Here is an example of one complete round of providing a plan:
#FEW SHOT EXAMPLE#

Please instruct me how to complete my task. Remember the goal is:
#PDDL GOAL#

Please provide only one single step at a time.

(:objects ...)
I+0 | init ..

Figure 12. Prompting template used for running the Act LLM policy mechanism on PDDL inputs.



You are an assistant for giving instructions to successfully complete small tasks.

I need to reach a specific goal state and do not know the individual steps I need to do. Please
instruct me how to complete my task.

I can only use objects that are observable in the situation.

My task is to execute actions until reaching my goal. My goal is that in the end object_0 is on

object_2
I can carry out the following actions:
pick up an object A from the table
put down an object A
stack an object A on top of an object B
unstack an object A from an object B
I have the following restrictions on my actions:
I can only pick up an object A from the table if it is the case that A is clear and the hand is
empty and A is on the table
I can only put down an object A if it is the case that A is being held
I can only stack an object A on top of an object B if it is the case that A is being held and B
is clear
I can only unstack an object A from an object B if it is the case that A is clear and A is on B
and the hand is empty
< , )
The actions have the following effects on the state:
once I pick up an object A from the table, it is the case that A is being held
once I pick up an object A from the table, it is not the case anymore that A is clear and it is
not the case anymore that the hand is empty and it is not the case anymore that A is on the
table
once I put down an object A, it is the case that A is on the table and A is clear and the hand
is empty
once I put down an object A, it is not the case anymore that A is being held
once I stack an object A on top of an object B, it is the case that A is clear and A is on B and
the hand is empty
once I stack an object A on top of an object B, it is not the case anymore that A is being held
and it is not the case anymore that B is clear
once I unstack an object A from an object B, it is the case that A is being held and B is clear
once I unstack an object A from an object B, it is not the case anymore that A is clear and it
is not the case anymore that A is on B and it is not the case anymore that the hand is empty
Here are some examples
[STATEMENT]
My goal 1is that in the end object_2 is on object_1
My current initial situation is as follows:
There are 4 objects: object_0, object_1l, object_2, object_3
currently, object_0 is clear, object_0 is on the table, object_1 is clear, object_1 1is on
object_2, object_2 is on the table, object_3 is clear, object_3 1is on the table, the hand is
empty
[PLAN]
unstack object object_1 from object object_2
Now, put down object object_1
Next, pick up object object_2 from the table
Next, stack object object_2 on top of object object_1
[PLAN END]
Please provide me a step-by-step instruction for how to complete my task. Remember: My goal is
that in the end object_0 is on object_2.
Please provide each step in a new line.
[STATEMENT]
Q [My current situation is as follows:
+ |There are 4 objects: object_0, object_1, object_2, object_3
N |currently, object_0 is clear, object_0 is on object_3, object_1 is on object_2, object_2 is on

the table, object_3 is on object_1, the hand is empty
[PLAN]

Figure 13. The complete input prompt for the Basic LLM planning mechanism for one of the Blocksworld problems. The prompt consists of the overall
instruction for the LLM, the goal description of the problem, the Blocksworld domain descriptions, one few-shot example, the final planning-specific
instructions and the initial state of the target problem.



You are an assistant for giving instructions to successfully complete small tasks.

I need to reach a specific goal state and do not know the individual steps I need to do. Please
instruct me how to complete my task.

I can only use objects that are observable in the situation.

¢ | My task is to execute actions until reaching my goal. My goal is that in the end object_0 is on
object_2

I can carry out the following actions:
pick up an object A from the table

put down an object A

stack an object A on top of an object B
unstack an object A from an object B

I have the following restrictions on my actions:

I can only pick up an object A from the table if it is the case that A is clear and the hand is
empty and A is on the table

I can only put down an object A if it is the case that A is being held

I can only stack an object A on top of an object B if it is the case that A is being held and B
is clear

I can only unstack an object A from an object B if it is the case that A is clear and A is on B
and the hand is empty

U | The actions have the following effects on the state:
once I pick up an object A from the table, it is the case that A is being held
once I pick up an object A from the table, it is not the case anymore that A is clear and it is
not the case anymore that the hand is empty and it is not the case anymore that A is on the
table
once I put down an object A, it is the case that A is on the table and A is clear and the hand
is empty
once I put down an object A, it is not the case anymore that A is being held
once I stack an object A on top of an object B, it is the case that A is clear and A is on B and
the hand 1is empty
once I stack an object A on top of an object B, it is not the case anymore that A is being held
and it is not the case anymore that B is clear
once I unstack an object A from an object B, it is the case that A is being held and B is clear
once I unstack an object A from an object B, it is not the case anymore that A is clear and it
is not the case anymore that A is on B and it is not the case anymore that the hand is empty

Here is an example of one complete round of providing me instructions.
My goal is that in the end object_1 is on the table, object_2 1is on object_1, object_3 is on
the table.
I: My current initial situation is as follows:
There are 3 objects: object_1l, object_2, object_3
currently, object_1 is on the table, object_2 1is on object_1, object_3 is on object_2, object_3
is clear, the hand is empty
You:
Think: Currently, object object_1 is on the table, object object_2
is on object object_1, object object_3 is on object object_2, object object_3 is
clear, the hand is empty. The object object_3 needs to be moved on the table.
Instruction: unstack object object_3 from object object_2
I: I unstack object object_3 from object object_2
You:
Think: Now, object object_3 is being held and object object_1 is
on the table, object object_2 is on object object_1, object_2 is clear.
Instruction: put down object object_3
I: I put down object object_3

You:
Think: object_1 is on the table, object_3 is on the table and
object_2 is on object_1.
Instruction: You are finished.
I: Great!

Please instruct me how to complete my task. Remember: My goal is that in the end object_0 is on
object_2.

Please provide me only one single step at a time.

You can tell me to look around to get a description of what I see.

when I am finished with my task then please tell me: 'You are finished‘.

o My current situation is as follows:

+ | There are 4 objects: object_0, object_1, object_2, object_3

N | currently, object_0 is clear, object_0 is on object_3, object_1 is on object_2, object_2 is on
the table, object_3 is on object_1, the hand is empty

Figure 14. The complete input prompt for the ReAct LLM planning mechanism for one of the Blocksworld problems. The prompt consists of the overall
instruction for the LLM, the goal description of the problem, the Blocksworld domain descriptions, one few-shot example, the final planning-specific
instructions and the initial state of the target problem.



You are an assistant for providing a plan in the pddl Tlanguage to successfully complete small tasks.
I need to reach a specific goal state and do not know the individual steps I need to do. Please
instruct me how to complete my task.

My task is to execute actions until reaching the goal. The goal is:
(:goal

O | (and
(on object_2 object_0)))

Here is the definition of the domain in PDDL including the possible actions I can execute:
(define (domain blocksworld-4ops)
(:requirements :strips)
(:predicates (clear ?x)
(ontable ?x)
(handempty)
(holding ?x)
(on ?x ?y))

(:action pick-up
:parameters (?ob)
:precondition (and (clear ?ob) (ontable ?ob) (handempty))
< :effect (and (holding ?ob) (not (clear ?ob)) (not (ontable ?o0b))
(not (handempty))))

(:action put-down
:parameters (?ob)
:precondition (holding ?ob)
:effect (and (clear ?ob) (handempty) (ontable ?ob)
(not (holding ?0b))))

(:action stack
:parameters (?ob ?underob)
:precondition (and (clear ?underob) (holding ?ob))
:effect (and (handempty) (clear ?ob) (on ?ob ?underob)
(not (clear ?underob)) (not Cholding ?0b))))

(:action unstack
:parameters (?ob ?underob)
:precondition (and (on ?ob ?underob) (clear ?ob) (handempty))
:effect (and (holding ?ob) (clear ?underob)
(not (on ?ob ?underob)) (not (clear ?ob)) (not (handempty)))))

Here are some examples
[STATEMENT]
(:goal
(and
(on object_2 object_1)))

(:objects object_0 object_1 object_2 object_3 )
(:init

(handempty)

(ontable object_0)

(on object_1 object_2)
(ontable object_2)

(ontable object_3)

(clear object_0)

(clear object_1)

(clear object_3))

[PLAN]

(unstack object_1 object_2)
(put-down object_1)
(pick-up object_2)

(stack object_2 object_1)
[PLAN END]

Please provide me a step-by-step instruction for how to complete my task. Remember the goal is:
(:goal

(and

(on object_2 object_0)))

Please provide each step in a new line.

SE (:objects ...)
N | Ginit L.

Figure 15. The complete input prompt for the Basic LLM planning approach for one of the Blocksworld problems using the PDDL descriptions and
consisting of the overall instruction for the LLM, the goal of the problem, the Blocksworld domain descriptions, one few-shot example and final task
instructions.



You are an assistant for providing a plan in the pddl language to successfully complete small tasks.
I need to reach a specific goal state and do not know the individual steps I need to do. Please
instruct me how to complete my task.

My task is to execute actions until reaching the goal. The goal is:
(:goal

> (and
(on object_2 object_0)))

Here is the definition of the domain in PDDL including the possible actions I can execute:
(define (domain blocksworld-4ops)
(:requirements :strips)
(:predicates (clear ?x)
(ontable ?x)
(handempty)
(holding 7x)
(on ?x ?y))

(:action pick-up
:parameters (?ob)
:precondition (and (clear ?ob) (ontable ?ob) (handempty))
:effect (and (holding ?ob) (not (clear ?0b)) (not (ontable ?ob))
(not (handempty))))

~

raction put-down

< :parameters (?ob)

:precondition (holding ?ob)

:effect (and (clear ?ob) (handempty) (ontable ?ob)
(not (holding ?0b))))

(:action stack
:parameters (?ob ?underob)
:precondition (and (clear ?underob) (holding ?ob))
:effect (and (handempty) (clear ?ob) (on ?ob ?underob)
(not (clear ?underob)) (not (holding ?0b))))

(:action unstack
:parameters (?ob ?underob)
:precondition (and (on ?ob ?underob) (clear ?ob) (handempty))
:effect (and (holding ?ob) (clear ?underob)
(not (on ?ob ?underob)) (not (clear ?ob)) (not Chandempty)))))

Here is an example of one complete round of providing a plan:
The goal is:

(:goal

(and

(on object_2 object_1)))

I: (:objects object_0 object_1 object_2 object_3 )
(:init

(handempty)

(ontable object_0)

(on object_1 object_2)

(ontable object_2)

(ontable object_3)

(clear object_0)

(clear object_1)

(clear object_3))

You: (unstack object_1 object_2)

I: Action was successfully executed.
You: (put-down object_1)

I: Action was successfully executed.
You: (pick-up object_2)

I: Action was successfully executed.
You: (stack object_2 object_1)

I: Action was successfully executed.

Please instruct me how to complete my task. Remember the goal is:
(:goal

(and

(on object_2 object_0)))

Please provide only one single step at a time.

(:objects ...)

)
@ CGinit ...)

Figure 16. The complete input prompt for the Act LLM planning approach for one of the Blocksworld problems using the PDDL descriptions and consisting
of the overall instruction for the LLM, the goal of the problem, the Blocksworld domain descriptions, one few-shot example and final task instructions.



Your task is to translate natural Tanguage instructions into a schematic planning language.

Each of the instructions should be converted to a tuple that matches any of the example templates below,
where the tokens starting with a question mark should be replaced by the actual object.

If none of the action templates below matches the original instruction then choose one with a similar
meaning if possible. Otherwise, keep the original one.

These are the action templates and their descriptions:
#DOMAIN-SPECIFIC ACTION DEFINITIONS IN PDDL AND NL#

If one of the following objects matches the objects in the original instruction then replace each of the
tokens with question marks by the appropriate object. Otherwise, replace it with the original object.

These are the available objects:
#EXAMPLE OBJECTS#

#OBJECTS FROM PROBLEM INSTANCE#

Here are some examples for your task:
#FEW-SHOT EXAMPLES#

Input: #ACTION PREDICTED BY P-LLM#
output:

Figure 17. The prompt template for the T-LLM to translate the predicted natural language actions back into PDDL. The prompt consists of the general task
instruction at the beginning followed by the domain-specific pairs of PDDL and NL action descriptions. All available objects are included in the prompt as well
as some example objects that are used in the few-shot examples provided.



Your task is to translate natural Tlanguage instructions into a schematic planning language.

Each of the instructions should be converted to a tuple that matches any of the example templates
below, where the tokens starting with a question mark should be replaced by the actual object.

If none of the action templates below matches the original instruction then choose one with a similar
meaning if possible. otherwise, keep the original one.

These are the action templates and their descriptions:
(pick-up ?0bj)
description: pick up object {?ob} from the table

(stack ?ob ?underob)
description: stack object {?ob} on top of object {?underob}

If one of the following objects matches the objects in the original instruction then replace each of
the tokens with question marks by the appropriate object. Otherwise, replace it with the original
object.

These are the available objects:
object_26

rain

star_23

object_0
object_1

Here are some examples for your task:
Input: Now, pick up object object_26 from the table.
Ooutput: (pick-up object_26)

Input: Once you are done, please stack object star_23 on top of object rain.
output: (stack star_23 rain)

Input: First, put down object object_26 and then unstack object object_50 from object socket.
output: (put-down object_26)

Input: The next step is to pick up object object_50 from the table.
output: (pick-up object_50)

Input: #ACTION PREDICTED BY P-LLM#
output:

Figure 18. The prompt for the T-LLM to translate the predicted natural language actions from the Blocksworld domain back into PDDL.



You are a brilliant and helpful assistant to provide reasoning thoughts for
an interaction where one agent instructs another agent to execute a task.

You will be shown the actions that can be carried out, their preconditions
and their effects.

Additionally, you will see one interaction between the instruction giver
and the instruction follower.

Your task is to come up with an appropriate and good reasoning thought with
which [TODO: ADD REASONING THOUGHT] should be replaced.

#LOGISTICS NL DOMAIN DESCRIPTION#

#DESCRIPTION OF LOGISTICS REACT EXAMPLE PROBLEM WITH PLACEHOLDERS FOR
REASONING THOUGHTS#

#MANUALLY CREATED REASONING THOUGHTS FOR LOGISTICS EXAMPLE#

#TARGET NL DOMAIN DESCRIPTION#

#DESCRIPTION OF REACT EXAMPLE PROBLEM FROM TARGET DOMAIN WITH PLACEHOLDERS
FOR REASONING THOUGHTS#

The following are good reasoning thoughts for the TODOs:

Figure 19. Prompt template for generating the thoughts for the ReAct and CoT few-shot examples using an LLM. The LLM is provided a general task
instruction followed by the manually created Logistics few-shot examples presented in Figure 20 and the domain description and gold plan trajectory of the
target problem.

My goal is that in the end object_0 is at object_3.
I: My current initial situation is as follows:
There are 5 entities: object_0, object_1, object_2, object_3, object_4
currently, object_0 is an object, object_0 is at object_1, object_1 is a truck, object_1
is at object_2, object_2 is a location, object_2 is in the city object_4, object_3 is a
location, object_3 is in the city object_4, object_4 is a city
You:
Think: The object object_0 is currently at the truck object_1 and the truck
object_1 is at location object_2 in city object_4. The object object_0 needs to be
moved to location object_3 in city object_4.
Instruction: drive the truck object_1 from the Tlocation object_2 to the location
object_3 in the city object_4
I: I drive the truck object_1 from the Tocation object_2 to
the Tocation object_3 in the city object_4
You:
Think: Now, the truck object_1 is at Tocation object_3 in city object_4 and the
object object_0 is still at the truck object_1.
Instruction: unload the object object_0 from the truck object_1 at the Tocation
object_3
I: I unload the object object_0 from the truck object_1 at the
location object_3

You:
Think: Now, the object object_0 is at Tocation object_3
Instruction: You are finished.

I: Great!

Figure 20. The manually created ReAct few-shot example for the Logistics domain encoded by AUTOPLANBENCH.



You are a brilliant and helpful assistant to provide reasoning thoughts for an interaction
where one agent instructs another agent to execute a task.

You will be shown the actions that can be carried out, their preconditions and their effects.

Additionally, you will see one interaction between the instruction giver and the instruction
follower.

Your task is to come up with an appropriate and good reasoning thought with which [TODO: ADD
REASONING THOUGHT] should be replaced.

I can carry out the following actions:

load an object A into a truck B at a location C

load an object A into an airplane B at a location C

unload an object A from a truck B at a Tocation C

unload an object A from an airplane B at a Tlocation C

drive a truck A from a location B in a city D to a location C in the same city
fly an airplane A from an airport B to an airport C

I have the following restrictions on my actions:

I can only load an object A into a truck B at a location C if it is the case that B is at C
and A is at C and B 1is a truck and A is an object and C is a location

I can only Toad an object A into an airplane B at a location C if it is the case that A is at
C and B 1is at C and A 1is an object and B 1is an airplane and C is a location

I can only unload an object A from a truck B at a Tocation C if it is the case that A is in B
and B is at C and B 1is a truck and A is an object and C is a location

I can only unload an object A from an airplane B at a location C if it is the case that B is
at C and A 1is an object and B is an airplane and A is in B and C is a Tlocation

I can only drive a truck A from a location B in a city D to a location C in the same city if
it is the case that B is a location and A is a truck and C is in the city D and A is at B and
C is a location and D is a city and B is in the city D

I can only fly an airplane A from an airport B to an airport C if it is the case that A is at
B and B is an airport and C is an airport and A is an airplane

The actions have the following effects on the state:

once I load an object A into a truck B at a location C, it is the case that A is in B

once I load an object A into a truck B at a location C, it is not the case anymore that A is
at C

once I load an object A into an airplane B at a location C, it is the case that A is in B
once I load an object A into an airplane B at a location C, it is not the case anymore that A
is at C

once I unload an object A from a truck B at a Tocation C, it is the case that A is at C

once I unload an object A from a truck B at a location C, it is not the case anymore that A is
in B

once I unload an object A from an airplane B at a location C, it is the case that A is at C
once I unload an object A from an airplane B at a location C, it is not the case anymore that
A is in B

once I drive a truck A from a location B in a city D to a location C in the same city, it is
the case that A is at C

once I drive a truck A from a location B in a city D to a location C in the same city, it is
not the case anymore that A is at B

once I fly an airplane A from an airport B to an airport C, it is the case that A is at C
once I fly an airplane A from an airport B to an airport C, it is not the case anymore that A
is at B

Figure 21. Example of the prompt for generating the thoughts for the ReAct and CoT few-shot examples based on an example from the Logistics domain.
The domain descriptions for the Logistics domain and for the target domain are those generated by AUTOPLANBENCH, the Logistics interaction example with
the placeholders is generated automatically as well and the example reasoning thoughts were created manually.



My goal is that in the end object_0 is at object_3.
I: My current initial situation is as follows:
There are 5 entities: object_0, object_1, object_2, object_3, object_4
Currently, object_0 is an object, object_0 is at object_1, object_1l is a truck, object_1l is at
object_2, object_2 is a Tocation, object_2 is in the city object_4, object_3 is a location,
object_3 is in the city object_4, object_4 is a city
You:

Think: [TODO: ADD REASONING THOUGHT]

Instruction: drive truck object_1 from location object_2 in city object_4 to location
object_3 in the same city
I: I drive truck object_1 from location object_2 in city object_4 to Tocation object_3 in the
same city
You:

Think: [TODO: ADD REASONING THOUGHT]

Instruction: unload object object_0 from truck object_1 at location object_3
I: I unload object object_0 from truck object_1 at location object_3

You:
Think: [TODO: ADD REASONING THOUGHT]
Instruction: You are finished.

I: Great!

The following are good reasoning thoughts for the TODOs:

0. Think: The object object_0 is currently at the truck object_1 and the truck object_1 is at
location object_2 in city object_4. The object object_0 needs to be moved to location object_3
in city object_4.

1. Think: Now, the truck object_1 is at Tocation object_3 in city object_4 and the object
object_0 is still at the truck object_1.

2. Think: Now, the object object_0 is at location object_3

I can carry out the following actions:
pick up an object A from the table

My goal is that
I:

The following are good reasoning thoughts for the TODOs:

Figure 22. Continuation of the prompt in Figure 21



