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Abstract

Artificial intelligence (AI) has been used to predict the out-
comes of chemical reactions. However, most of these reac-
tion predictors are designed to predict the major outcome of
overall transformations, skipping the chemical reactions at a
mechanistic level. Therefore, we are unable to identify inter-
mediates and byproducts of the reaction. Information on the
reaction mechanisms enable practitioners to validate the fea-
sibility of that reaction, identify intermediate molecules, im-
prove reaction efficiency, and anticipate the results of similar
reactions under various conditions. Despite recent efforts in
developing mechanistic reaction predictors, predicting the se-
quence of mechanistic reactions given the reactants and prod-
ucts is currently an open area of research in chemistry. To
address this issue, we use DeepCubeA with Hindsight Ex-
perience Replay to learn a heuristic function that generalizes
over start and goal states to guide A* search to predict the se-
quence of mechanistic reactions of an overall chemical trans-
formation, from reactants to products.

Introduction
A chemical reaction, as the overall transformation of re-
actant molecules into product molecules, can be broken
down into a series of smaller reaction steps called elemen-
tary steps. An elementary step reaction involves only a sin-
gle transition state (Figure 1). Knowledge of the reaction
mechanisms in a given chemical reaction allows practition-
ers to validate the feasibility of that reaction, identify inter-
mediate molecules, improve reaction efficiency, and predict
the outcome of similar reactions under different conditions.
This knowledge can directly improve reaction efficiency by
predicting the reaction impurity (Qiu and Norwood 2007).
Other applications range from chemical synthesis and drug
discovery to material design and industrial production.

However, the products of a chemical reaction given only
its reactants may often be difficult to determine from first
principles and expensive to perform in the real world. There-
fore, practitioners often rely on chemical reaction prediction
(Wei, Duvenaud, and Aspuru-Guzik 2016; Fooshee et al.
2018; Coley et al. 2017; Schwaller et al. 2019). Most chemi-
cal reaction prediction methods address a simplified version
of the reaction prediction problem which is to find a sin-
gle major final product given the reacting species, and do
not take reaction mechanisms into account. To address this

problem, we will pose finding a sequence of reaction mech-
anisms as a pathfinding problem where the start states are
reactants and the goal states are products. We will build on
the DeepCubeA (Agostinelli et al. 2019) algorithm to learn
a heuristic function represented as a deep neural network
(DNN) (Schmidhuber 2015) with deep reinforcement learn-
ing and use the learned heuristic function with A* search
(Hart, Nilsson, and Raphael 1968) to find paths.
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Figure 1: An overall transformation is broken down into a
sequence of three elementary steps where all the intermedi-
ates are preserved.

In order to perform heuristic search, we first have to de-
fine an expansion function that computes all possible reac-
tion mechanism steps for a chemical compound, which is
still an ongoing area of research. We build upon OrbChain
(Tavakoli et al. 2024a) as a standard model of elementary
steps (reaction mechanisms) to accomplish this. However,
this also presents a new challenge because the time it takes



to compute the expansion function for a single state can take
seconds. We address this by creating an offline dataset of
precomputed start states, goals, and expanded start states.
Given such a dataset, we can readily build on the Deep-
CubeA algorithm to learn a heuristic function. To the best of
our knowledge, declarative descriptions of reaction mecha-
nisms that can be written in PDDL (McDermott 2000) or
STRIPS (Fikes and Nilsson 1971) do not exist. This furthers
the need for planning methods that can be used with black-
box simulators (Frances et al. 2017).

While the DeepCubeA algorithm was able to learn a
heuristic function to solve puzzles, such as the Rubik’s cube,
it assumed a predefined goal corresponding to the solved
state of the puzzle. On the other hand, we would like to
train a heuristic function that generalizes over any pair of
reactants and products. Therefore, we take inspiration from
hindsight experience replay (Andrychowicz et al. 2017) to
allow DeepCubeA to learn a heuristic function that general-
izes over start and goal states.

Preliminaries
Reaction Mechanism Prediction
Chemical reactions are often represented as overall trans-
formations. This representation consists of a set of starting
reactant molecules that, when added together, result in the
major product molecule (i.e., the single molecule with the
highest yield). The United States Patent and Trademark Of-
fice (USPTO) dataset (Lowe 2017), as the primary source of
chemical reaction data for training machine learning mod-
els, uses this representation. Overall transformations contain
no information about intermediates and byproducts that can
potentially give rise to other interesting synthetic pathways.
Therefore, a predictive model trained on such representation
is not able to provide any information and explanation on
the intermediate materials and pathways.

On the other hand, the elementary step reactions as build-
ing blocks of overall transformations represent a balanced
reaction step that contains all product molecules with ar-
row codes that indicate the interaction of molecular orbitals
(MOs). An overall transformation can be broken down into a
sequence of these elementary steps, each involving a single
transition state. Recently developed datasets of such reaction
data (Tavakoli et al. 2023, 2024b) enable the development
of predictive models capable of providing reaction path-
ways with all possible intermediates and byproducts with ex-
plainability on the MO interactions (Tavakoli et al. 2024a).
However, a major bottleneck of utilizing these elementary
step reaction predictors is the expansion of a search tree
to identify the most promising reaction pathways. Due to
the large branching factor, finding reaction mechanism path-
ways quickly becomes infeasible with brute-force search.
Therefore, developing a more intelligent search method with
methods such as DeepCubeA can accelerate the pathway
predictions and broaden the search coverage.

Reaction Representations There are several methods to
represent a chemical reaction (overall or elementary step)
as the input to machine learning models. Schneider et al.
(2015) represents a chemical reaction as the weighted sum of

the molecular fingerprints of molecules involved in the reac-
tion. Fingerprints, such as circular fingerprints (Rogers and
Hahn 2010), are binary or count vectors where each bit in-
dicates the presence or absence of certain functional groups.
Fooshee et al. (2018) and Tavakoli et al. (2024a) developed
reaction fingerprints as continuous vectors of predefined
molecular features and reactive sites within a reaction. Other
representations use different modalities of chemical reac-
tion (e.g., text representation). DRFP (Probst, Schwaller, and
Reymond 2022) and rxnfp (Schwaller et al. 2021) are the
most successful representations based on the pre-trained lan-
guage models on text representations of reactions. In this
work, we deploy the simplest method to represent reac-
tions, the circular fingerprints (Rogers and Hahn 2010) of all
molecules involved in the reaction. The utilization of other
representations is left to future work.

DeepCubeA
DeepCubeA (Agostinelli et al. 2019) is an algorithm to learn
domain-specific heuristic functions in a largely domain-
independent fashion for use in A* search (Hart, Nilsson, and
Raphael 1968). The heuristic function is represented as a pa-
rameterized DNN and is trained using approximate value it-
eration (Puterman and Shin 1978). A batched and weighted
version of A* search is then used to find paths.

Approximate Value Iteration Value Iteration (Puterman
and Shin 1978) is a dynamic programming (Bellman 1966)
algorithm central to reinforcement learning (Sutton and
Barto 2018) which is used to find the cost-to-go of every
state in the state space. Value iteration updates the value of
each state using the Bellman optimality equation as an up-
date rule until convergence. In the context of pathfinding in a
graph, which can also be viewed as an undiscounted, deter-
ministic, Markov decision process (Puterman 2014), value
iteration update has the following form:

V ′(s) = min
a∈A

(ca(s) + V (T (s, a))) (1)

Here, V is a table that maps states to their cost-to-go esti-
mates, A is the set of all possible actions, ca(s) is the transi-
tion cost when taking action a in state s, T is the transition
function that returns the state that results from taking action
a in state s, and V’ is a table representing the updated cost-
to-go.

Although convergence is guaranteed in the tabular setting,
tabular value iteration is not feasible for domains with large
state spaces, such as domains involving molecules. There-
fore, we use approximate value iteration, which uses a pa-
rameterized function to approximate the value iteration up-
date (Bertsekas and Tsitsiklis 1996). In this case, the approx-
imation architecture is a DNN with parameters, θ, that rep-
resents the value function, vθ. It is trained to minimize the
following loss function:

L(θ) =
(
min
a

(ca(s) + vθ−(T (s, a)))− vθ(s)
)2

(2)

Where θ− is the parameters of target DNN. The parameters
of the target DNN are updated periodically to θ during train-
ing. This has been shown to make training more stable in the



presence of a non-stationary target (Mnih et al. 2015). If s
is a goal state, then the target is set to be zero. Approximate
value iteration with a DNN is referred to as deep approxi-
mate value iteration (DAVI).

A* Search A* search (Hart, Nilsson, and Raphael 1968)
is a widely used pathfinding algorithm in computer science
that finds the shortest path between nodes in a graph. It
maintains a priority queue of nodes whose priorities are de-
termined by the sum of path cost g(n), and heuristic value
h(n). Where g(n) is the cost to get from the start node to the
current node, and h(n) is the heuristic value that estimates
the cost to get from the current node to the goal node which
can be represented as

f(n) = g(n) + h(n) (3)

Here, each node carries the information of path cost g(n),
heuristic estimate h(n), a reference to parent node, action
the parent took to generate current node and depth of node.
Where parent node reference (parent pointer) refers to the
node from which the current node is generated and depth
of node indicates number of steps taken from start node to
reach the current node. Hence, the start node can be viewed
as the start state, and the goal node can be viewed as the
goal state. The heuristic function we use to determine h(n)
is obtained using DAVI.

We start by initializing the OPEN queue and adding a start
node. Then, we select the next node that has minimum f(n)
from OPEN. We then expand the selected node by generat-
ing its neighboring nodes. We also maintain another queue
CLOSED in which we add this currently expanded node if
it is not previously present in CLOSED. We calculate f(n),
g(n), and h(n) of each neighboring node. The neighboring
nodes are added to OPEN if not already in CLOSED. We
also update the value of nodes in CLOSED if any of these
neighboring child nodes have lesser g(n) for the same nodes
it had in CLOSED previously, indicating a shorter path from
start node to current node. In addition to updating the nodes
in CLOSED, we also add this node with a cheaper path cost
to OPEN. The algorithm continues until the OPEN queue
becomes empty or the goal node is reached. If a goal node is
reached, we follow the path of the parent pointer from this
goal node to the starting node to reconstruct the sequence of
actions taken to reach a goal.

The above process can be modified to be faster by using
a batched version of A* search, in which we calculate the
heuristic of multiple nodes in OPEN at once. We expand the
best N nodes at each iteration, allowing us to calculate the
values of more nodes per second.

Hindsight Experience Replay
Hindsight Experience Replay (HER) (Andrychowicz et al.
2017) leverages universal value function approximators
(Schaul et al. 2015) to train a value function that general-
izes over start states and goal states. They accomplish this
by denoting terminal states along paths that have failed to
reach a given goal state as the goal state in “hindsight”.
They then apply the reinforcement learning update with the
given start state and the goal state obtained in hindsight. This

helps overcome problems that arise in reinforcement learn-
ing when rewards are either sparse or dense, but uniform.

Approach
State Representation
We use a variant of molecular fingerprints called Extended-
connectivity Fingerprints (ECFPs) (Rogers and Hahn 2010),
which are circular fingerprints derived using the Morgan al-
gorithm (Morgan 1965) to represent states to the heuristic
function. Circular fingerprints are bit-vectors in which sub-
structures of a target molecule are encoded as 1. Substruc-
tures are generated based on a chosen radius, which de-
termines the maximum number of bonds from each atom
in a given molecule for which a substructure is generated.
For example, for a radius of 1, that atom and its immediate
neighbors are encoded for each atom, which can be shown
as a result of Iteration 1 in Figure 2. As a result, finger-
prints produced with greater radii encode larger substruc-
tures or more ‘global’ information rather than ‘local’. Fin-
gerprints can theoretically be generated for arbitrary lengths,
with most implementations ranging from 512 and 16K (Mar-
tin 2021). Fingerprints of greater length encode increas-
ingly sparse information. For example, the embedding cor-
responding to benzaldehyde has only 14 ‘on’ bits at a radius
of 2 (Figure 2).

To understand better how the fingerprint generation pro-
cess works, we outline the process step by step.

Initial Stage In this stage, each atom in a molecule is
assigned an integer identifier generated by hashing prop-
erties used in daylight atomic invariant rule (Weininger,
Weininger, and Weininger 1989), which we show as the ini-
tial identifier assignment in Figure 2. This stage is also re-
ferred to as iteration 0. If we generate a fingerprint at this
stage, the resulting embedding will represent only the pres-
ence or absence of individual atoms in the molecule.

Iterative Update Stage In this stage, the atom identifiers
generated in the initial stage are updated to use the informa-
tion from neighboring atoms for a predefined number of iter-
ations. So, in iteration 1, each atom uses information about
the number of bonds with its immediate neighbor and in-
formation about its neighboring atom identifiers generated
in iteration 0 to obtain a new hash value. This process re-
peats for a fixed number of iterations, which corresponds to
the radius selected by the practitioner. For Example, Atom
3 has a single bond with atoms 4 and 6 and a double bond
with atom 2. The value to be hashed at iteration 1 will be
(1, 3218693969), where 1 is the number of iterations, and
3218693969 is the identifier of atom 3 in iteration 0. Ad-
ditionally, we use the information of neighboring atoms for
hashing where the values to be hashed are (1, 3218693969),
(1, 2246703798), (2, 3218693969), where 1, 1, 2 is the
number of bonds with atom 4, 6 and 2 and 3218693969,
2246703798, 3218693969 is their identifier number in iter-
ation 0. This results in the final list being sent to the hash
function as [1, 3218693969, 1, 3218693969, 1, 2246703798,
2, 3218693969]. Here, iteration can be defined in terms of
radius, where radius 1 refers to iteration 1, and radius 2
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Figure 2: A diagrammatic representation of the ECFP/Circular Fingerprint generation process used to generate a molecular
fingerprint embedding.

refers to iteration 2, which we show as atom identifier up-
dates in Figure 2.

Removing Duplicate Identifier With the increase in the
number of iterations, it is possible that different atoms may
result in the same substructure. For Example, in Figure 2, in
initial atom mapping, we can see that different atoms have
the same identifier, 3218693969. So, we only keep a copy of
it to generate the final fingerprint. One may also choose not
to remove these duplicates in the final embedding, resulting
in a ‘count’ fingerprint that encodes not just the presence or
absence of a substructure, but also the number of times it
appears in the molecule.

Once these three steps are completed, we convert these
hashed identifiers to a bit array. In this process, we choose
the number of bits in our fingerprint array. In Figure 2, we
have chosen 1024 as the number of bits in a fingerprint. Then
we initialize an empty array with 0 having length 1024, per-
form the modulo operation with 1024, and use its remainder
to set the value in a bit array where the value of the remain-
der is equal to a corresponding number of indices in an array,
resulting in our fingerprint vector for the molecule.

Because each fingerprint attempts to encode every pos-
sible substructure for a given radius in the target molecule,
a lower fingerprint length incurs a risk of “collision” also
called bit-collision, whereby multiple substructures are en-
coded identically. Though uncommon due to the sparse na-
ture of ECFPs, lower fingerprint lengths may result in dif-
ferent molecules having identical embedding. For Example,

In Figure 2, if we have a fingerprint array of length 2, all the
identifiers with even numbers will be indexed to position 0
even though they are structurally different.

Lastly, it should be noted that the hashing mechanism
used in the ECFP is irreversible due to bit-collision, which
implies that different molecules may be mapped to the same
representation. By contrast, graph neural networks (Tavakoli
et al. 2022a,b) can be used to learn a representation that can
better differentiate molecules.

State Expansion
To perform value iteration, we need to obtain all possible
next states of a given state, s. We can obtain these states by
using the transition function T , which returns the state that
results from taking action a in state s. These next states are
required to train DAVI to learn the cost-to-go.

In the context of mechanistic reaction prediction, each
state represents a set of molecules. Consequently, we expand
one state by considering all possible mechanistic reactions
from the molecules of the current state. Therefore, the next
states represent intermediates or transitional configurations
of molecules that arise during the successive mechanistic
steps of the reaction. To expand a state, we used OrbChain,
the standard model of mechanistic reactions introduced by
Tavakoli et al. (2024a), which builds on OpenEye Scientific.
We modify OrbChain to process polar reactions instead of
radical reactions. This modification includes changing the
half-occupied MOs to fully-occupied and empty MOs. An



example of state expansion is shown in Figure 3.

Dataset
The dataset used for training comes from the United States
Patent and Trademark Office. We select 10 reactant and
product pairs that do not use any reagent and use them
to generate about 2 million reactant and product pairs. We
chose these 10 pairs based on the time needed to expand
and proceed to the next step. We are using the top 10 re-
actants that require minimal expansion time, which ranges
from 0.81 to 4.25 seconds.

Training
Once we select the initial reactants we want to work with,
we use HER to generate more data to train our reinforcement
learning algorithm. To achieve this, we start at a given state
from USPTO data and take a random walk to generate a start
state. We then randomly walk 0 to 6 steps from this start state
to generate a goal state. Next, we pass this updated (state,
goal) pair to train our heuristic function using DAVI. Since
our heuristic function now takes (state, goal) pair as input in
contrast to the state as input, mentioned in Equation 2, we
will modify the equation as

L(θ) =
(
min
a

(ca(s) + vθ−(T (s, a), sg))− vθ(s, sg)
)2

(4)
Where, sg is the goal state generated with random walk.

From a total of 2 million datasets we generate, we use 300K
datasets per epoch to train our neural network. We also keep
the record of number of states solved so far during training
using a greedy policy and update our target network θ− in
Equation 4 when the percentage of states solved so far is
greater than the percentage of steps solved previously. The
greedy policy can be represented using the equation

π(s) = argmina(c
a(s) + vθ(T (s, a), sg)) (5)

This policy at each state s selects the action a that minimizes
the sum of the transition cost and the approximated value of
the next state, as given by the value function vθ.

Testing
We generate the test dataset by performing random walks
from the USPTO data, similar to how we generate a start
state and goal state for training. Then, we use the heuris-
tics provided by the trained neural network using DAVI
along with the A* search algorithm to find a path from start
states to goal states. We also record the number of states
solved and their path cost from start states to goal states.
Additionally, we represent states during search using canon-
ical SMILES (Weininger 1988; Weininger, Weininger, and
Weininger 1989) and convert this representation to molecu-
lar fingerprints while training DNN, allowing us to extract
molecular pathways from a start state to a goal state if re-
quired.

Experiments
Architecture and Hyperparameter Search
To generate the data required for supervised learning used
for architecture search, we start with USPTO data and then
perform a random walk to generate a start state. Next, we
use the breadth-first search algorithm along with our state
expansion function to reach our goal state from this start
state. The depth of breadth first search we use varies from
0 to 2. Given the expanded states’ large branching factor, we
can only generate the states up to depth two. To ensure the
state we are using is exactly one step away from the goal,
we check that the state in depth zero is not appearing again
in depth one.

Similarly, to ensure it is exactly two steps away from the
goal, we check that none of the states in depth zero or one
is appearing again in depth two. We generate 1 million data
in total for our supervised learning that contains (start state,
goal state, path cost) triplet. Here, path cost is equivalent to a
depth of breadth-first search. Our supervised learning algo-
rithm takes the concatenation of the start state and goal state
as input and path cost as ground truth. We are concerned
with how our training curve changes over each epoch for
our architecture search.

To identify an optimal architecture, we conduct exper-
iments with different fingerprint lengths and hidden layer
sizes in a supervised learning setting. Our base architecture
takes a concatenation of start and goal state fingerprints as
input to a fully connected linear model along with four resid-
ual blocks (He et al. 2016). The results are shown in Figure
4. The figure shows that the architecture with a fingerprint
length of 4096 and a hidden dimension size of 10,000 per-
forms best, so we select this configuration for our reinforce-
ment learning setting.

Generating Offline Dataset
Since the expand function is slow (i.e., expansion of 1 state
takes around 0.8 to 4 seconds), it takes a long time to ex-
pand 300K states and then train our heuristic function. To
overcome this challenge, we save the result of the expand
function in a file and retrieve it whenever we need to expand
our state during training. It takes about 4-5 days to gener-
ate 2 million datasets with parallel processing that utilizes
48 CPUs. We use these offline expanded states for training
only. We expand states on the fly for testing.

Finding paths to the goal
We generate 15 start and goal state pairs using a random
walk for steps ranging from 0 to 6 steps (105 in total).
Next, we pass these state and goal pairs to our A* search
with DeepCubeA heuristics, A* search with Tanimoto coef-
ficient for similarity between molecules (Flower 1998; God-
den, Xue, and Bajorath 2000) as heuristics, and uniform cost
search algorithms. Since the Tanimoto coefficient is used as
a similarity measure, it is also called Tanimoto similarity.
Here, we subtract the result of Tanimoto similarity from 1
to ensure the heuristic is zero when we reach goal states.
To ensure that our search algorithm terminates and has an
equal time limit for all states, we set a time limit of 1 hour
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molecules (initial state). This generates all possible next states. Considering all possible mechanistic reactions results in some
implausible next states.

to search each state. Here, we do not make use of batch A*
search. Therefore, we use a batch size of 1 and a weight of
1. The search results for A* search with DeepCubeA heuris-
tics, uniform cost search, and A* search with Tanimoto sim-
ilarity heuristics are shown in Table 1.

Table 1 shows that DeepCubeA, uniform cost search, and
Tanimoto similarity can solve all the states for steps 0 and 1.
However, there is a significant difference in number of nodes
generated and time taken to solve the states for step 1. In the
case of steps 2 and 4, DeepCubeA can solve more states than
uniform cost search and Tanimoto similarity. For steps 3, 5,
and 6, uniform cost search and Tanimoto similarity cannot
solve any state within the time limit, whereas DeepCubeA
solves 86.67% , 33.33% , and 33.33% of states, respectively.

Discussion
The results in Table 1 show that the learned heuristic signif-
icantly outperforms uniform cost search and Tanimoto simi-
larity in terms of both the percentage of instances solved and
the time taken. This shows that reinforcement learning can
be used to obtain a domain-specific heuristic function with-
out the need for domain-specific heuristic knowledge. More
broadly, it may suggest that deep reinforcement learning can
be applied to solve other pathfinding problems in chemistry,
such as chemical synthesis and search for chemical reactions
that could lead to toxic chemicals. Examples of these would
be the automation of the screening phase of drug design via
drug degradation and mass spectrometry (Wu 2000). How-
ever, Table 1 also shows there is significant room for im-

provement. We discuss this further in the Future Work Sec-
tion.

The nodes per second metric shown in Table 1 is only
on the order of 101, which is due to the computationally
expensive expansion function. Even when given an accu-
rate heuristic function, such a slow expansion function could
make finding paths difficult for goals that are anything more
than a few steps away. While batch A* search could be used
to parallelize the expansion function, this speed-up is, at
most, linear in the number of CPUs used. We discuss meth-
ods to handle this in the Future Work Section.

Related Work
Tavakoli et al. (2024a) predict reaction mechanisms path-
ways by first training a DNN to predict the plausibility of
single reaction mechanisms steps. This is then used with a
beam search, where the top-K most plausible reaction mech-
anism steps are kept at each step of the search. However, un-
like A* search, beam search is not a complete search algo-
rithm. Furthermore, beam search does not take into account
the entire path cost, which will be important for predicting
entire pathways that are plausible. In future work, this plau-
sibility estimator could be combined with our approach to
compute transition costs. This could allow our method to
then learn to find the most plausible pathways.

On a higher level, machine learning and heuristic search
have been used to predict chemical reactions. Chen et al.
(2020) performs retrosynthesis (Corey 1988, 1991) with a
DNN and And-Or search. The DNN is trained to predict the
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Step/s Solver Path Cost % Solved Nodes Secs Nodes/Sec

Steps=0
DeepCubeA 0.00 100.00% 3.09E+2 3.87 79.97
Uniform Cost Search 0.00 100.00% 3.09E+2 4.61 67.13
Tanimoto Similarity 0.00 100.00% 3.09E+2 3.71 83.42

Steps=1
DeepCubeA 1.00 100.00% 7.49E+2 9.70 77.26
Uniform Cost Search 1.00 100.00% 4.26E+4 553.33 76.95
Tanimoto Similarity 1.00 100.00% 3.13E+4 429.29 72.97

Steps=2
DeepCubeA 2.07 100.00% 1.63E+4 267.16 60.87
Uniform Cost Search 1.67 20.00% 1.32E+5 1497.77 87.96
Tanimoto Similarity 1.75 26.67% 1.10E+5 1229.10 89.13

Steps=3
DeepCubeA 2.77 86.67% 4.14E+4 578.88 71.54
Uniform Cost Search - 0.00% - - -
Tanimoto Similarity - 0.00% - - -

Steps=4
DeepCubeA 3.33 60.00% 6.36E+4 821.64 77.36
Uniform Cost Search 3.00 6.67% 1.43E+5 1962.28 73.01
Tanimoto Similarity 3.00 6.67% 2.47E+4 272.15 90.64

Steps=5
DeepCubeA 3.40 33.33% 8.40E+4 968.49 86.69
Uniform Cost Search - 0.00% - - -
Tanimoto Similarity - 0.00% - - -

Steps=6
DeepCubeA 3.20 33.33% 6.14E+4 933.86 65.73
Uniform Cost Search - 0.00% - - -
Tanimoto Similarity - 0.00% - - -

Table 1: Comparative analysis of DeepCubeA with Uniform cost search and domain-dependent but not learned Tanimoto
similarity across dimensions including solution length, percentage of instances solved, number of nodes generated, time taken
to solve the problem (in seconds), and number of nodes generated per second. We report the result of search with start states 0
to 6 steps away from the goal.



promise of retrosynthetic steps using historical data. How-
ever, this method does not consider reaction mechanisms.
Furthermore, this method could possibly be improved by us-
ing reinforcement learning instead of learning from histori-
cal data.

Future Work
Representation of Molecules
The result of training depends on the state representation
provided to the neural networks. In this work, we use molec-
ular fingerprints, which are static representations predefined
based on molecular features that are extracted as substruc-
tures generated about each atom. We can improve the state
representation by using a learnable graph neural network
(Tavakoli et al. 2022a,b) that can learn from the graph struc-
ture of molecules, which closely matches how molecules are
structurally conceptualized in chemistry (atoms as nodes,
bonds as edges).

Handling Slow Expansion Times
The time it takes to do a single expansion significantly im-
pacted our ability to obtain training data as well as to do A*
search efficiently. Future work could instead learn an action-
value function in the form of a deep Q-network (DQN)
(Mnih et al. 2015) that predicts the cost-to-go when taking
a given action in a given state, where actions would be de-
termined by molecular orbital interactions. As a result, Q-
learning (Watkins and Dayan 1992) could be used to train a
DQN and, Q* search (Agostinelli et al. 2021) could be used
to find paths, neither of which require that a state be fully
expanded.

Generalizing Across Sets of Goal States
The USPTO dataset we use has a single product, also called
the major product. However, this major product does not
contain any by-products of the chemical reaction. There-
fore, product represents, not a single state, but a set of goal
states. Therefore, we need to train a heuristic function that
generalizes over states and sets of goal states. One poten-
tial approach could be to combine DeepCubeA with answer
set programming (Brewka, Eiter, and Truszczyński 2011) to
specify goals, as was done by Agostinelli, Panta, and Khan-
delwal (2024).

Predicting Feasibility of Reaction Mechanism
The transition costs we used in our experiments were one
for every action. However, in order to find the most feasible
real-world reaction mechanism path, we will need to take the
feasibility of each reaction mechanism step into account. If
transitions are independent, the most feasible path would be
the product of the probabilities of each transition. We could
then modify our transition cost such that the transition cost
is the negative log probability of that transition (Tavakoli
et al. 2022a). Therefore, minimizing the path cost will be
equivalent to maximizing the product of the probabilities of
transition costs.

Conclusion
Knowledge of the reaction mechanism pathway in a given
chemical reaction is important for validation, improving the
efficiency of a reaction, and predicting the outcome of a re-
action in new environments. We build on DeepCubeA and
HER to train a domain-specific heuristic function to pre-
dict the cost-to-go between two sets of molecules without
domain-specific heuristic knowledge. We can then use this
heuristic function with A* search to find a reaction mecha-
nism pathway between chemical reactants and products. We
also compared the results with uniform cost search and Tan-
imoto similarity and found that the learned heuristics per-
form better than uniform cost search and Tanimoto similarity
in terms of percentage solved and time. Future work lever-
aging better representations of molecules and search algo-
rithms that can handle slow expansion times could lead to
significant improvements in performance.
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