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Abstract

We present pyRDDLGym, a Python framework for the
auto-generation of OpenAI Gym environments from RDDL
declarative description. The discrete time step evolution of
variables in RDDL is described by conditional probability
functions, which fit naturally into the Gym step scheme. Fur-
thermore, since RDDL is a lifted description, the modifica-
tion and scaling up of environments to support multiple enti-
ties and different configurations becomes trivial rather than
a tedious process prone to errors. We hope that pyRDDL-
Gym will serve as a new wind in the reinforcement learn-
ing community by enabling easy and rapid development of
benchmarks due to the unique expressive power of RDDL.
By providing explicit access to the model in the RDDL de-
scription, pyRDDLGym can also facilitate research on hy-
brid approaches to learning from interaction while leveraging
model knowledge. We present the design and built-in exam-
ples of pyRDDLGym, and the additions made to the RDDL
language that were incorporated into the framework.

1 Introduction
Reinforcement Learning (RL) (Sutton and Barto 2018) and
Probabilistic planning (Puterman 2014) are two research
branches that address stochastic problems, often under the
Markov assumption for state dynamics. The planning ap-
proach requires a given model, while the learning approach
improves through repeated interaction with an environment,
which can be viewed as a black box. Thus, the tools and
the benchmarks for these two branches have grown apart.
Learning agents do not require to be able to simulate model-
based transitions, and thus frameworks such as OpenAI
Gym (Brockman et al. 2016) have become a standard, serv-
ing also as an interface for third-party benchmarks such as
Todorov, Erez, and Tassa (2012), Bellemare et al. (2013) and
more.

As the model is not necessary for solving the learning
problem, the environments are hard-coded in a program-
ming language. This has several downsides; if one does wish
to see the model describing the environment, it has to be
reverse-engineered from the environment framework, com-
plex problems can result in a significant development period,
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code bugs may make their way into the environment and fi-
nally, there is no clean way to verify the model or reuse it
directly. Thus, the creation of a verified acceptable bench-
mark is a challenging task.

Planning agents on the other hand can interact with an en-
vironment (Sanner 2010a), but in many cases simulate the
model within the planning agent in order to solve the prob-
lem (Keller and Eyerich 2012). The planning community has
also come up with formal description languages for vari-
ous types of problems; these include the Planning Domain
Definition Language (PDDL) (Aeronautiques et al. 1998)
for classical planning problems, PDDL2.1 (Fox and Long
2003) for problems involving time and continuous vari-
ables, PPDDL (Bryce and Buet 2008) for classical planning
problems with action probabilistic effects and rewards, and
Relational Dynamic Influence Diagram Language (RDDL)
(Sanner 2010b) for describing MDPs and POMDPs. While
agents can use the models described by these languages to
simulate transitions and compute plans, it is also natural to
leverage these description languages to auto-generate envi-
ronments by decoupling the mathematical problem descrip-
tion from the environment generation.

In recent years auto-generation tools have emerged for
specific description languages, allowing for both auto-
generation of environments, and access to the problem for-
mal model, serving as a bridge between planning and learn-
ing methods to interact with a single framework. RDDLSim
(Sanner 2010a) is a long-standing independent framework
that translates RDDL problems into an interactable environ-
ment. RDDLSim is a Java simulator, with a unique API,
that requires interacting agents to manage TCP/IP connec-
tions. Although this is suitable for International Planning
Competitions (IPC), the entry bar for rapid RL research
is high. A more recent Python version of RDDLSim was
developed to support mainly MDPs with continuous vari-
ables (Bueno 2020). As it had implemented the OpenAI
Gym interface this tool was named rddlgym. Following that
approach, PDDLGym (Silver and Chitnis 2020) was intro-
duced. A Python tool that generates Gym environments from
PDDL domain and problem files. Since PDDLGym works
on PDDL files it can generate classical planning problems,
i.e., deterministic problems. PDDLGym has some support
for PPDDL which allows it to simulate action probabilistic
effects, but state noise, concurrency, observations, and more



Figure 1: pyRDDLGym design concept.

components of the Markov model are not supported.
In order to be able to describe MDPs and POMDPs

in a general way, allowing for factored descriptions, we
present in this paper pyRDDLGym, a Python framework for
auto-generation of Gym environments from RDDL descrip-
tion. The library is available at https://github.com/ataitler/
pyRDDLGym. pyRDDLGym supports a Major subset of the
RDDL language and in addition, has extended it to support
for terminal states in MDPs. pyRDDLGym differs from rd-
dlgym as it allows for derived-fluents, observations, discrete
fluents, and more. It is also the only framework currently that
supports state exogenous and endogenous noise, action con-
currency, observations, and other blocks required for fully
describing MDPs. We hope that pyRDDLGym will encour-
age more collaboration between the RL and Planning com-
munities. This will allow hybrid methods leveraging both
model description and interactions to emerge. Moreover, we
aim to build a verified benchmark of stochastic domains for
the probabilistic planning and RL communities.

2 RDDL Support and Extensions
RDDL (Sanner 2010b) is a lifted declarative language
to describe MDPs, where states, actions, and observa-
tions (whether discrete or continuous) are parameterized
variables. RDDL leverages parameterized variables, which
helps with scaling up domains. These are simple templates
for ground variables that can be obtained when given a par-
ticular problem instance defining possible domain objects.
The evolution of a fully or partially observed stochastic pro-
cess is specified via conditional probability functions (CPFs)
over the next state variables conditioned on the current state
and action variables, with allowed concurrency. The objec-
tive function in RDDL is defined by the immediate rewards
and the discount factor one specifies. For a grounded model
(instance), RDDL is just a factored MDP, or POMDP, if par-
tially observed.

Thus, a grounded RDDL problem can be fitted into the
Gym scheme of interaction where an agent acts and receives
observation and reward from the environment. In this black
box scenario, the explicit structure of the problem is lost and
left for the agent to reason about. However, agents that can
leverage the information in the model have the potential to
boost their performance significantly.

Like all languages, RDDL also evolves in order to avoid
ambiguity and increase expressibility. Also, in order to fit
a Gym scheme additional features have been introduced.
The deviation from the original language description (San-
ner 2010b) is listed in the next section.

2.1 Language Variant
pyRDDLGym supports the majority of the original RDDL.
The following components are omitted (or marked as depre-
cated) from the language variant implemented in pyRDDL-
Gym:

• derived-fluent are supported by the framework as de-
scribed in the language description. However, they are
considered deprecated and will be removed from future
versions.

• fluent levels are deprecated and are reasoned automati-
cally by the framework as described in the next section.

• state-action-constraints are not implemented and con-
sidered deprecated in the language to avoid ambiguity.
Only the newer syntax of specifying state-invariants and
action-preconditions is supported.

Additional components and structures have been added to
the language to increase expressivity, and to accommodate
learning interaction type. These are listed here:

• Terminal state description has been added, described in
details in the following sections.

https://github.com/ataitler/pyRDDLGym
https://github.com/ataitler/pyRDDLGym


Figure 2: pyRDDLGym code examples. A pyRDDLGym environment is characterized by an RDDL domain file and an in-
stance & non-fluents file. (a) Fluents, CPFs, and reward for the game of life problem (b) A non-fluents block, defining a two
neighboring cell topology. (c) An instance block defining the parameters and init-state of the problem. (d) Using the domain
and instance files, an RDDLEnv can be initialized. Interaction is similar to that of any OpenAI Gym environment.

• action-preconditions are implemented according to San-
ner (2010b). However, they are subject to user prefer-
ence. By default the framework does not enforce the ex-
pressions in the action-preconditions block. Thus, upon
violation, a warning will be printed to the user and the
simulation will push the actions inside the legal space by
using the default value and the simulation will continue.
To ensure correct behavior it is expected from the do-
main designer to include the appropriate logic of how
to handle an invalid action within the CPFs block. In
the case where the user does choose to enforce action-
preconditions, the simulation will be interrupted and an
appropriate exception will be thrown.

• Direct inquiry of variable (states/action) domains is sup-
ported through the standard action space and state space
properties of the environment. For this functionality
to work correctly, the domain designer is required to

specify each (lifted-)variable bound within the action-
preconditions block in the format ”fluent OP BOUND”
where OP ∈ {<,>,>=, <=}, and BOUND is a deter-
ministic function of the problem parameter to be evalu-
ated at instantiation.

• Parameter inequality is supported for lifted types. I.e., the
following expression ?p ==?r can be evaluated to True
or False.

• Nested indexing is now supported, e.g.,
fluent′(?p, ?q) = NEXT (fluent(?p, ?q)).

• Vectorized distributions such as Multivariate normal,
Student, Dirichlet, and Multinomial are now supported.

• Basic matrix algebra such as determinant and inverse op-
eration are supported for two appropriate fluents.

• argmax and argmin are supported over enumerated
types (enums).



2.2 Level Reasoning
Formally in RDDL when a derived or an interm fluent is de-
clared, its level should also be stated to define its position in
the Dynamic Bayes Net (DBN) of the problem, which dic-
tates the fluents’ order of evaluation. While the level hierar-
chy declaration is not overly complicated from the domain
designer’s side, it is completely unnecessary. In pyRDDL-
Gym, following the implementation of Sanner (2010a), this
declaration is omitted, and ignored if supplied. The order of
fluent evaluation at any given time step is always as follows

st → dt → it → st+1, (1)
where st denotes the current state, dt denotes the derived flu-
ents, it denotes the interm fluents, and st+1 denotes the next
state. A requirement when designing a domain is that the flu-
ent order must form a directed acyclic graph (DAG). Thus,
we first generate a call graph from the CPFs, for all fluent
types. Then we use topological sorting to sort the fluents by
the order of evaluation. This has two merits, the first is the
reasoning over the over of fluent evaluation, and second, val-
idation that there are no cycles in the evaluation order, and
that the correct order of evaluation in (1) is conserved.

2.3 Terminal States
Another extension to RDDL is the addition of terminal states
to the language. An MDP may have a terminal state, which
can be in the form of a goal state or a state where there are no
available actions anymore. The key is that in both of these
cases, it is desired to end the simulation, e.g., an agent hits a
wall, a pendulum falls beyond a threshold, etc. RDDL cur-
rently does not support these cases, only fixed horizon prob-
lems. On the other hand, Gym can terminate an episode any-
time with the done flag.

Thus, an additional block has been introduced into RDDL
to support terminal states. The keyword denoting the termi-
nal states block is termination, and it supports a list of con-
ditions:

termination {cond1; cond1; ... condN}; (2)
where the condi, i ∈ {1, .., N} are Boolean conditions, and
the full termination condition is a disjunction over all the
inner conditions, i.e.,

termination = cond1 ∨ cond2 ∨ ... ∨ condN . (3)

3 Design and Implementation
In order to be compatible with the Gym API, five methods
need to be implemented. First, init (), which initializes
the environment, and in that method, all the parsing of the
RDDL, grounding, and fitting into the environment scheme
is done. reset() in which the environment is returned to the
initial state, and the initial state is returned or None in case
of a POMDP. step() in which the transition function is cal-
culated according to the CPFs in the RDDL file. render()
in which the visualization is implemented, and finally the
close() method in which resources are being freed so the
simulation can be terminated. Two more constructs to be
implemented are the properties action space and observa-
tion space, which inform the agent about the type and do-
main of the action and observation spaces respectively.

3.1 Instantiation of Gym Environments
The RDDL description contains three components. The first
is the domain block, in which information about the lifted
domain is provided, e.g., types, CPFs, fluent definitions, etc.
The second component is the instance block which specifies
a specific problem, i.e., all that is needed in order to ground
the lifted abstract domain. The third block is the non-fluents
block, which is being pointed at from the instance block as
it is also part of how to instantiate a specific problem. This
block is the constant of the instance, or more precisely it
defines the topology of the problem. To create an environ-
ment all three are required. Thus, the domain containing the
global problem definitions should be provided in a ”.rddl”
file, and the other two blocks, as they together define an in-
stance, should be placed in a second separate ”.rddl” file.
The init () method requires both these files in order to
generate a Gym environment.

The call to the init () method, invokes first the parsing
of the RDDL description provided in the domain, instance,
and non-fluents, then the grounder is invoked on the pars-
ing tree in order to generate a specific instance as required.
At this point, the transformation from RDDL types to Gym
spaces is done and the action and observation properties
are populated. The CPF sampler object is also instantiated
here for the grounded problem. In pyRDDLGym three ad-
ditional properties are provided. The first is horizon, which
informs the agent about the horizon of the problem, assum-
ing no terminal state is encountered. The value returned by
this property is the number of horizon steps as defined in
the RDDL horizon field in the instance block. The second
property is NumConcurrentActions which denotes the maxi-
mum number of concurrent actions the agent can send to the
framework in a single time step. In the case where the field
max-nondef-actions in the RDDL instance specify pos-inf,
the number of all available grounded actions in the problem
is returned, indicating that there is no limit on the number of
concurrent actions. The third and last property is discount,
which simply informs the discount factor the environment
will use to calculate the total reward.

3.2 Observation and Action Spaces
RDDL and Gym have different representations of the state
and action spaces. While RDDL always expects to receive
the full vector of actions even if max-nondef-actions indi-
cates a lower number than the available number of actions,
Gym interacting agents are requested to supply only the de-
sired actions without explicitly keeping track of all the ac-
tions in the problem and their default values. In order to
mitigate these issues pyRDDLGym implements actions and
states (and observations) in a Gym.Spaces.Dict object where
the keys are the action/state/observation grounded name, and
the value is the intended value to pass to the simulation in
case of actions, or the state/observation value in the current
time step. When an agent is requested to pass actions to the
environment, it is required to pass only the desired action,
and not the full list of actions, the environment will augment
the agent’s specified action with the remainder of the actions
with their default values before evaluation of the CPFs.



The conversion of RDDL types to Gym spaces is intuitive.
Real valued fluents are represented as Gym.Spaces.Box, in-
tegers are converted to Gym.Spaces.Discrete, and Booleans
are converted to Gym.Spaces.Discrete(2). The bounds
are according to the constraints specified in the action-
preconditions block, or Numpy.inf to denote that there is
no bounding value. The action space and observation space
will return the actions and observations respectively, where
the dictionary key is the action/state/observation grounded
name, and the value is the appropriate Gym.Spaces. Sam-
pling from the environment action space will always return
a valid value as the type is a two-way transformation be-
tween Gym.Spaces and RDDL types, and the bounds in-
formed by the environment property are also in accordance
with the action-preconditions specification. In any case, the
CPFs also serve as a last line of defense against values that
are out of bounds.

From Lifted to Grounded RDDL is a lifted description of
a problem, i.e., the domain block defines operator schemes
with parameters in contrast to explicit variables. Thus the
expression

fluent cpf ′(?type) = expr; (4)

is a template for all objects of type ?type. The objects are
a concrete realization of a problem and so defined in the in-
stance. E.g., for o1, o2 of type type the grounded realization
for the objects will be

fluent cpf ′(o1) = expr;

fluent cpf ′(o2) = expr;
(5)

For both state/observation and action fluents, a name con-
version takes place when grounding a lifted fluent with argu-
ments, to a grounded fluent. The conversion of lifted fluent
names to grounded fluent names is done with underscores.
As underscores are a valid character for naming in RDDL,
fluents are separated from parameters by triple underscore
( ), and parameters are separated from each other by dou-
ble underscore ( ). I.e., a lifted fluent with two arguments
will be grounded as follows

fluent(type1, type2)

→ fluent(o1, o2) → fluent o1 o2,
(6)

where o1 and o2 are objects of types type1 and
type2 respectively. fluent(type1, type2) is the lifted
template, fluent(o1, o2) is the grounded variable, and
fluent o1 o2 is the exposed variable name in pyRDDL-
Gym.

MDPs and POMDPs pyRDDLGym supports both MDPs
and POMDPs. If no observation fluent is declared in the
RDDL files, the framework will return the full state. In the
case where observation fluents are present in the RDDL,
only the observation fluents are returned by the framework.
An observation fluent should be defined for a state fluent if
it is observed; it is not possible to flag a state fluent as ob-
served. Although this might seem like an unnecessary dupli-
cation of fluents, it allows for increased flexibility in specify-
ing observations, e.g., deterministic observation, stochastic

observation, etc. Due to the conversion of defining observa-
tions over the transitioned state, there is no observation at
time zero, only the initial state in the case of MDPs.

3.3 Single Time-Step Evolution
In a standard MDP, variable values are computed at discrete
time steps, leading to the evolution of the process through re-
peated execution of the single-step transition function. Con-
sequently, the step() method in pyRDDLGym evaluates the
CPFs defined in the RDDL problem description for all flu-
ents in the instance. The step() method in pyRDDLGym un-
dergoes four main steps. It first verifies if the actions are
within the allowed range, raising a warning or exception ac-
cordingly. Then, it sorts the CPFs based on their level deter-
mined by dependency analysis. Next, it evaluates the CPF
expressions using the current states and actions. Finally, it
checks the state against the state invariants to ensure a legal
transition and identify terminal states. If any state invariants
are violated, indicating a design error, an exception is raised,
and the episode is terminated, indicating it should not be
used for learning.

3.4 Resetting the Environment
When reset() is called the simulation is simply reverted to
the initial state as specified in the instance block of the
RDDL. Note that there is no randomness in the reset()
method, if one desires to reset to a different initial state, a
new environment must be instantiated with a new instance.
Naturally, only the initial state will be identical between
episodes of the same environment, the rest of the steps will
be stochastic as per the dynamics specified in that RDDL
domain’s CPFs. In the case of MDP the reset() method will
return the initial values of the states, and in the case of
POMDP, a dictionary with the observations will be returned,
where all the values are set to the Python value None.

3.5 Visualization
pyRDDLGym also supports visualization through the
Gym’s render() method. By invoking the render() method,
a visualization of the current state is displayed on the
screen, and an image object is returned to the user. The
default built-in visualizer that is implemented in pyRD-
DLGym for every environment is called TextViz, which
generates an image with a textual description of the ob-
servations and their current values. In order to create a
user-defined visualizer, all is required is to implement the
pyRDDLGym.Visualizer.StateViz interface, and specify the
visualization object to the environment with the method
set visualizer(<VizObject>). Some samples of the built-in
visualizations provided with pyRDDLGym are shown in fig-
ure 3.

4 pyRDDLGym Beyond the Engine

4.1 Built-in Environments
pyRDDLGym offers advanced visualizations for all exam-
ple environments. Except for the Fire Fighting domain,



Figure 3: Examples of environments implemented in pyRDDLGym. From left to right: elevators, UAV, power unit commitment,
Mars rover and recommender systems.

Domain Name Action Space State Space Source

Cart-pole Continuous Continuous Continuous Barto, Sutton, and Anderson (1983)

Cart-pole Discrete Discrete Continuous Barto, Sutton, and Anderson (1983)

Elevators Discrete Discrete Ours

Mars Rover Mixed Mixed Taitler et al. (2019)

Mountain-car Continuous Continuous Moore (1990)

Power Unit Commitment Discrete Discrete Mixed Abdou and Tkiouat (2018)

Power Unit Commitment Continuous Continuous Continuous Abdou and Tkiouat (2018)

Racing Car Continuous Continuous Ours

Recommender Systems Discrete Continuous Mladenov et al. (2020)

Fire Fighting Discrete Discrete Karafyllidis and Thanailakis (1997)

UAV Continuous Continuous Continuous Ours

UAV Discrete Discrete Continuous Ours

UAV Mixed Mixed Continuous Ours

Supply Chain Discrete Discrete Kemmer et al. (2018)

Traffic Discrete Continuous Lin et al. (2009)

Table 1: List of domains currently included in pyRDDLGym. For each environment, we report the original source behind the
RDDL files and the type of action and state spaces, whether they are fully discrete, continuous, or mixed discrete-continuous.

which is a classical RDDL domain used in the pyRDDLGym
tutorial, all other examples involve continuous or hybrid
spaces. All the domains have well-defined internal structures
(factored spaces) that are explicitly specified in the RDDL
files. The initial goal of the framework was to promote
hybrid methods that combine reinforcement learning and
model-based planning. Thus, we believe it’s time to establish
a benchmark for problems that require more than just model-
free learning or combinatorial search. As pyRDDLGym is a

versatile framework, all RDDL domains from previous IPCs
can be easily imported by providing the relevant domain and
instance files (Sanner 2010a). It’s worth noting that all the
past IPC problems can be accessed and imported into pyRD-
DLGym through the ”rddlrepository” repository, which can
be found at: https://github.com/ataitler/rddlrepository.

Currently, there are 15 environments implemented in
pyRDDLGym. Adapted from the previous simulator (San-
ner 2010a), the Fire Fighting domain is a discrete domain.

https://github.com/ataitler/rddlrepository


(a) DBN generated for the UAV domain (b) xADD generated for the velocity state in the UAV domain

Figure 4: pyRDDLGym auxiliary tools

It was added to pyRDDLGym as an introduction domain for
learning pyRDDLGym and RDDL. Mars Rover domain is
a dynamic version of the standard MAPF problem (Stan-
dley 2010), with dynamic properties and inspiration from
Taitler et al. (2019) and Fernandez-Gonzalez, Williams, and
Karpas (2018). The Power Unit Commitment example has
two versions, a discrete action version which was taken as it
is from the previous 2014 IPC, and a continuous action ver-
sion. There are three original domains; elevators, which is
a discrete domain, Racing car is a continuous control do-
main, in which completely different racing tracks can be
constructed by playing with the non-fluents. The UAV do-
main is the third, and it has three versions as well. The three
versions differ by the type of action space. The first is fully
continuous, the second is fully discrete, and the third has
a mixed discrete-continuous action space. The dynamics in
the UAV are a slightly simplified version of the full model
described in Hull (2007). Two domains were adapted from
OpenAI Gym classic control domains, in order to have some
familiar domains and to show how simple the conversion
process into RDDL is. Mountain Car, and Cart-pole. Cart-
pole comes in two versions: one for continuous actions and
one for discrete actions. Another domain is a Recommander
System (Mladenov et al. 2020), which is not a classical con-
trol or Operation Research problem but has gained focus in
the last years, and in real life scales up to millions of objects,
which by itself is a challenge to decision-making algorithms.
The last domain is a traffic domain, modeled after the QT-
M/BLX models (Guilliard et al. 2016; Lin et al. 2009). It is a
macroscopic flow and traffic model that can be scaled from
a single isolated intersection to a large network of signalized
intersections. The list of environments with the details is pre-
sented in Table 1. Additionally, example of how to go from

problem definition to a working pyRDDLGym environment
is given in appendix A.

4.2 The Example Manager
In order to access the built-in examples in pyRDDLGym,
the unified interface of supplying domain and instance files,
and a visualizer object is used. The ExampleManager object
is where the domains, instances, and visualizers for all ex-
amples are registered. The ExampleManager is documented
in the pyRDDLGym documentation, but it has several key
methods. The first is a ListExamples(), a static method that
lists all the examples with a short description. The names of
the domains as listed in that method can be used to instanti-
ate the ExampleManager object and access the example de-
tails. Then the methods get domain(), get instance(#) can be
used to get the path to the domain and instance files. Finally
get visualizer() returns the dedicated visualization object for
the example.

4.3 Auxiliary Tools
XADDs XADD (eXtended Algebraic Decision Diagram)
(Sanner, Delgado, and de Barros 2011) enables compact
representation and operations with symbolic variables and
functions. In fact, this data structure can be used to repre-
sent CPFs defined in a RDDL domain once it is grounded
for a specific RDDL instance. pyRDDLGym can generate
XADDs for all states/observations in the grounded domain
for the use of planning agents.

Dynamic Bayes Nets Visualization With the XADD
compilation of a given domain instance, one can easily vi-
sualize the dependencies between different fluents. For this
purpose, a Dynamic Bayes Nets (DBNs) visualization tool
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Figure 5: JAXPlanner modes of operations.

is also provided in the framework. This tool provides a way
to produce diagrams similar to an influence diagram.

4.4 Model-Based Planner
While NumPy (Harris et al. 2020) serves as the default back-
end for pyRDDLGym, it also offers support for JAX (Brad-
bury et al. 2018) as an alternative that can handle gradients.
This capability enables planning using back-propagation ap-
proaches (Wu, Say, and Sanner 2017; Bueno et al. 2019).
Moreover, pyRDDLGym features an implemented JAX-
Planner, which encompasses the entire range of the RDDL
language, facilitates GPU execution, and addresses stochas-
tic problems. In practical terms, given model, a roll-out de-
scribed by an influence graph can be generated, and the to-
tal reward or other performance metrics, such as risk (Patton
et al. 2022), can be calculated and differentiated with respect
to the inputs.

One notable feature of JAXPlanner is its ability to han-
dle hybrid continuous-discrete state and action spaces. To
facilitate derivatives of CPFs with respect to action-fluents,
JAXPlanner replaces functional dependencies Fi with dif-
ferentiable relaxations, formalized as families of functions
{fi,τ : τ > 0} indexed by some hyper-parameter τ . The
variables X̃i = fi,τ (Pa(X̃i)) with X̃1 = X1 then define an
equivalent DAG G̃ = (X̃,Pa) with the same edges as G but
where nodes Xi are replaced by X̃i. Thus, a differentiable
model approximation is achieved.

Given that Boolean logic in RDDL lacks inherent differ-
entiability, it becomes essential to discover functions fi,τ
that effectively approximate Boolean logic. One approach is
to substitute Boolean operations with t-norms (Hájek 2013).
JAXPlanner incorporates t-norm approximations, but it also
provides support for operation overloading, allowing users
to define their own operators. This flexibility enables users
to tailor the implementation according to their specific re-
quirements. Specifically, a t-norm is a function T : [0, 1]2 →
[0, 1] which satisfy 4 properties: commutativity, monotonic-
ity, associativity, and inclusion of the identity element. For
Boolean-valued quantities a, b, JAXPlanner uses the follow-
ing approximations:
• a ∧ b ≈ T (a, b)

• ¬a ≈ 1− a,
from which the other RDDL operations can be derived, e.g.:

• a ∨ b ≡ ¬(¬a ∧ ¬b) ≈ 1− T (1− a, 1− b)

• a =⇒ b ≡ ¬a ∨ b ≈ 1− T (a, 1− b)

• ∀{x1, x2, . . . xm} ≡ x1 ∧ x2 · · · ∧ xm ≈
T (x1, T (x2, T (. . . )))

• ∃{x1, x2, . . . xm} ≡ ¬∀{¬x1,¬x2, . . .¬xm} ≈ 1 −
T (1− x1, T (1− x2, T (. . . ))).

The conditional branching statement such as

if (c) then a else b

is rewritten in our framework as

f(a, b, c) = c ∗ a+ (1− c) ∗ b,
which is a continuous function. A popular choice for approx-
imating relational operations such as a > b, a < b and a = b
as suggested in prior literature is to use sigmoid functions.
JAXPlanner opt to use the logistic sigmoid:

a > b ≈ f>(a, b, τ) = sigmoid((a− b)/τ)

a = b ≈ f=(a, b, τ) = sech2((b− a)/τ),

where τ refers to the temperature parameter.
JAXPlanner offers two operational modes, depicted in

Figure 5. The first mode involves generating a straight line
plan (SLP) by performing a complete horizon rollout of
the problem. It is worth noting that utilizing this method
with a fixed horizon at each step produces a solution resem-
bling model predictive control. The second mode involves
employing a neural network to train a deep reactive policy
(DRP), which is similar to the approach taken in Bueno et al.
(2019).

5 Conclusion and Future Work
We have presented pyRDDLGym, an open-source Python
framework that automatically creates OpenAI Gym environ-
ments from the RDDL domain and instance files. We hope
that the availability of such a framework will help foster col-
laboration between researchers in the learning and planning
communities. We also believe that by separating the process
of problem design and the no longer needed programming
task, a verified benchmark for RL and planning can be es-
tablished independently of a specific platform. Finally from
our own experience the generation of a brand-new environ-
ment has been accelerated significantly and the logic can be
formally verified, which so far has not been possible.
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A From Math to RDDL Domain Case Study
We take as a case study the classical Gym environment Cart-
pole, the physical realization of the system is given in figure
6.

Figure 6: The cart-pole balancing model

The horizontal position of the cart is represented as x,
while the angular position of the pole is denoted as θ. The
velocities or rates of change are appropriately indicated by
the dot notation, ẋ and θ̇. The force propelling the cart along
the horizontal axis is denoted as F , and all of these vari-
ables are time-dependent functions. The system parameters
include the cart’s mass (M ), the pole’s mass (m), the length
of the pole (l), and the gravitational constant (g). Additional
constants that can be incorporated are the allowable bounds
for the pole angle, track length, and force limits. The Gym
environment implements in python directly the system dy-
namics, thus, all the parameters are hard-coded within the
step() function. To implement the same environment with
the same behaviour in RDDL we should start with the dy-
namic equations. The state vector naturally is [x, vx, θ, vθ]T .
In continuous time the equations are given by (Barto, Sutton,
and Anderson 1983):

v̇θ =
g sin θ + cos θ

(−F−mlv2
θ sin θ

m+M

)
l
(
4
3 − m cos2 θ

m+M

)
v̇x =

F +ml(v2θ sin θ − v̇θ cos θ)

m+M

(7)

Using a first order discrete approximation with sampling
time T , and writing (7) as a system of first order linear sys-

tem yields:

x(k + 1) = x(k) + Tv(k)

v(k + 1) = v(k) + Tux(k)

θ(k + 1) = θ(k) + Tvθ(k)

vθ(k + 1) = vθ(k) + Tuθ(k)

(8)

where ux, uθ are virtual inputs to the cart and pole motion
appropriately, defined as:

uθ(k) =
g sin θ(k)− cos θ(k)t(k)

l
(
4
3 − m cos2 θ(k)

m+M

)
ux(k) = t(k)− lmuθ(k) cos θ(k)

m+M

(9)

and t(k) is an auxiliary definition to keep the math a little
cleaner:

t(k) =
F (k) + lmv2θ(k) sin θ(k)

m+M
(10)

Now, we are prepared to convert the mathematical repre-
sentation into RDDL. We commence by declaring the vari-
ables involved in the problem. The gravity constant is a non-
fluent with a default value of 9.8. Since the Gym environ-
ment features a discrete action space, where 1 represents a
constant force to the right and 0 represents a constant force
to the left, we define a non-fluent that represents the force.
All other changing constants, such as the masses of the cart
and pole, pole length, time step, and the limits on the cart
position and pole angle, are also non-fluents. The auxiliary
functions described in equations (9) and (10) are considered
interm-fluents. The four variables that define the state are
referred to as state-fluents, while the input force applied to
the cart’s side is an action-fluent. The functional definition is
presented within the ”cpfs” block, where the next time step’s
state variables are denoted with a prime symbol, e.g., x′

instead of x(k + 1). The ”cpfs” block directly implements
equations (8)-(10). An additional interm-fluent is defined for
the purpose of translating the action index to force value, im-
plemented in the first CPF at the ”cpfs” block.

The simulation terminates when the ”termination” block
evaluates to ”true,” indicating that either the cart has moved
outside the track or the pole angle has exceeded the an-
gle limit. The state-invariants serve as safeguards to ensure
that no instance places the cart or pole outside the feasi-
ble ranges at the initial state, and that the problem’s con-
stants are non-negative. It is permissible to define an in-
stance on the Moon, for example, with a gravity coefficient
of 1.64[m/s2]. The action-preconditions ensure that the only
acceptable actions are the integers 1 and 2. Lastly, the re-
ward function grants the agent a positive value of 1.0 for
every time step in which the cart remains on the track and
the pole does not fall outside the angle limits. Each aspect of
the domain is defined mathematically, without the need to
implement complex functionality or termination decisions.
Typically, an instance file would solely set the initial state
of the Cart-pole system, although one has the option to ad-
just the constants (input force, cart mass, pole length, etc.)
according to their requirements. The complete domain de-
scription can be found in Figure 7.



Figure 7: The Cart-pole problem depicted in RDDL format, featuring variable definitions (top left), mathematical functions and
state evolution (middle section), termination conditions and constraints (top right), and reward function definition (bottom).
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