
Preemptive Restraining Bolts
Giovanni Varricchione1, Natasha Alechina1, Mehdi Dastani1,
Giuseppe De Giacomo2, 3, Brian Logan1, 4, Giuseppe Perelli3

1 Utrecht University, The Netherlands
2 Oxford University, United Kingdom
3 Sapienza University of Rome, Italy

4 University of Aberdeen, United Kingdom
{g.varricchione, n.a.alechina, m.m.dastani, b.s.logan}@uu.nl, giuseppe.degiacomo@cs.ox.ac.uk, perelli@di.uniroma1.it

Introduction
Reinforcement learning (RL) has seen wide usage in safety-
critical applications, such as autonomous cars (Mirchevska
et al. 2018; Kendall et al. 2019), robotics (Ono et al. 2015;
Brunke et al. 2022) and chemical processes (Savage et al.
2021). In most of these scenarios, unconstrained exploration
can lead to catastrophic failure, both during and after train-
ing, hence they require alternative approaches that ensure
safety of humans and equipment.

In this work, we introduce preemptive restraining bolts
(PRBs), an approach to implement non-Markovian action
masking. Action masking approaches constrain agents by
allowing them to choose actions only from a subset of the
available ones (which can be seen as the safe ones), and
not the whole set (Krasowski et al. 2022). PRBs are de-
fined using Pure Past Linear-time Temporal Logic (PPLTL)
(De Giacomo et al. 2020b), a variant of Linear-time Tempo-
ral Logic in which formulas are evaluated over finite traces
and only past modalities are allowed. Many specifications
are easier and more natural to express when referring to the
past (Lichtenstein, Pnueli, and Zuck 1985), e.g., “if a person
was already served, do not serve them again”. Due to the
fact that PRBs are defined using PPLTL, they can implement
non-Markovian constraints. Moreover, due to the expressive
power of PPLTL, they can enforce safety properties speci-
fied in other logical languages, e.g., safety LTL (Geatti et al.
2022). This last feature enables PRBs to be as expressive as
shields (Alshiekh et al. 2018; ElSayed-Aly et al. 2021).

A PRB consists of a set of PPLTL formulas, one per
action; while the agent acts, at any timestep an action is
allowed if and only if its corresponding formula is satis-
fied given the current history. Conveniently, it turns out that
a PPLTL formula can be evaluated by just looking at the
truth values of propositions in the current timestep and of
its (proper) subformulas in the previous one, thus incurring,
with respect to the size of the PPLTL formulas, a linear over-
head in the size of states and single exponential overhead in
the size of the state space.

PRBs owe their name to restraining bolts (RBs) (De Gi-
acomo et al. 2019, 2020a), an approach which modifies the
agent’s reward so that it conforms as much as possible to a

Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

set of high-level formal specifications expressed in linear-
time temporal logic/linear dynamic logic on finite traces
(LTLf /LDLf). Like RBs, PRBs can use a different set of
fluents from that available to the agents, thus promoting sep-
aration of concerns between safety and policy optimization.
Crucially, there is no need to formally connect the two sets
through some labelling function, as this connection “natu-
rally” arises from the agent’s interaction with the environ-
ment. However, unlike PRBs, RBs only change the agent’s
reward, hence providing no safety guarantees.

We provide theoretical foundations for the use of PRBs in
the context of safe RL and complement these with an exper-
imental evaluation aimed at showing (empirically) how they
can improve sample efficiency.

Preliminaries
The learning agent and its environment are modelled as
a Markov Decision Process (MDP), i.e., a tuple M =
(S, s0, Act, A, Tr,R, γ) where S is the set of states, s0 is
the initial state, Act is the (finite) set of actions, A is the ac-
tion availability function (mapping each state of the MDP to
the set of actions available in it), Tr is the transition func-
tion, R is the reward function and γ ∈ [0, 1) is the discount
factor. A policy ρ : S → Pr(Act) is a function mapping
each state to a probability distribution over the action space.

Next, we present restraining bolts and shields. For a more
detailed presentation of these, we refer the reader to the ap-
pendix.

A restraining bolt (RB) is a pair RB = (L =
2F , {(φi, ri)}mi=1) where L is the set of states of the RB, F
is its set of fluents and {(φi, ri)}mi=1 are the specifications,
where φi is an LTLf / LDLf formula and ri the reward asso-
ciated to φi. The reward obtained by an agent trained with
an RB is the MDP’s original reward plus all the rewards ri
for each φi true at the current timestep.

A preemptive shield is a Mealy machine S =
(Q, q0,ΣI ,ΣO, δ, λ), where Q is the finite set of states, q0
is the initial state, ΣI and ΣO are the input and output al-
phabets, and δ and λ are the transition and output functions.
A preemptive shield restricts, at each timestep, the set of
valid actions available to the agents by specifying it through
the output function. Shields are synthesised from safety LTL
formulas.

Pure-Past Linear-time Temporal Logic
Given a set of propositional variables F , PPLTL syntax is
defined as follows:

φ ::= p | ¬φ | φ1 ∧ φ2 | ⊖φ | φ1Sφ2

where, given a finite trace τ = τ0 . . . τn of propositional
interpretations over F , ⊖φ (“yesterday φ”) is true at τi if φ
is true at τi−1, and φ1Sφ2 (“φ1 since φ2”) is true at τi if φ2

is true at some τj , j ≤ i and φ1 is true at τj′ , j < j′ ≤ i.
Proposition 1. Let φ be a PPLTL formula and Subf (φ) the
set of its proper subformulas. Moreover, let τ and τ ′ be two
finite traces of length n and n′, respectively, such that τn =
τ ′n′ and τ, n − 1 |= ψ iff τ ′, n′ − 1 |= ψ for each ψ ∈
Subf (φ). Then, it holds that τ, n |= φ iff τ ′, n′ |= φ.

Proposition 1 implies that any PPLTL formula φ can be
evaluated at timestep τi of a trace τ in time linear in |φ| and
constant in length(τ), given the truth values of Subf (φ) at
τi−1.

Preemptive Restraining Bolts
Given an MDP M with actions Act, a preemptive restrain-
ing bolt (PRB) is a pair PRB = (L = 2F , {φa : a ∈ Act}),
containing the powerset of a set of fluents (propositional
symbols) F — each set ℓ ∈ L intuitively representing a
“state” of the PRB — and a set of PPLTL formulas φa, one
per action a ∈ Act.

The PRB learning problem is a pair (Mag, PRB) consist-
ing of the agent’s MDP Mag and a PRB PRB. A solution
to the problem is a non-Markovian policy ρ : (S × L)+ →
Pr(Act). The agent’s goal is to learn an optimal policy ρ⋆,
i.e., one that optimizes the expected discounted future re-
ward and for any (s0, ℓ0) . . . (sn, ℓn) = τ ∈ (S × L)+ and
such that ρ⋆(τ)(a) > 0 only if a ∈ A(sn) and τ |= φa.

Although we have just defined the learning problem to
have non-Markovian policies as solutions, it turns out that,
by modifying each instance appropriately, Markovian poli-
cies can also be solutions. Given an instance (Mag, PRB),
we build the “product” MDP Mag×prb in which the state
space is S × V , where S is the state space of Mag and
V = 2{Subf (φa):a∈Act} is the powerset of the set of all
proper subformulas of the PRB formulas. For the transition
function, we assume that there is a probability distribution
Trag×prb : S × L× Act→ Pr(S × L) induced by the en-
vironment that also models how the PRB’s fluents change.
Then, by Proposition 1, we know that PPLTL formulas can
be evaluated by looking at only the current set of true flu-
ents and the set of proper subformulas true at the previous
timestep. We can lift this function to T ′ : S × V × Act ⇀
Pr(S×V) to model transitions in our new MDP, so that the
true (proper) subformulas of the PRB are always updated in
the second component of the state. Finally, the action avail-
ability function A′ is defined by taking, for each state (s, v),
the intersection A(s) ∩ {a : φa ∈ v}. For a more detailed
presentation of the construction, we refer the reader to the
appendix.

Given the construction of the product MDP Mag×prb

above, we can show the following result (proof in the ap-
pendix):

Theorem 1. RL with PPLTL restraining specifications
Mprb

ag = (Mag, PRB) can be reduced to RL over the MDP
Mag×prb such that optimal (non-Markovian) policies for
Mprb

ag can be learned by learning corresponding optimal
(Markovian) policies for Mag×prb.

Comparison of Restraining Bolts and Shields
We compare PRBs to RBs and shields by, (i) giving two ex-
amples of translating an RB/shield specification to a PRB,
and (ii) showing how in some cases PRBs can increase sam-
ple efficiency compared to RBs.

Translation to PRBs
We show how the “Cocktail Party” scenario for RBs (De Gi-
acomo et al. 2019) and the “Hot Water Tank” scenario for
shields (Alshiekh et al. 2018) can be translated to PRB spec-
ifications. In Cocktail Party, the agent must serve each guest
exactly one snack and one drink, and must not serve alco-
hol to children. In Hot Water Tank, the agent has to manage
the volume of water in a tank by either opening or closing
the intake valve, being careful not to empty or exceed the
maximum capacity of the tank, and with the constraint that
it can open/close the valve only if it was open/closed in the
previous timestep, or closed/open for at least the last three
timesteps. In the appendix, we provide more details on the
scenarios.

For Cocktail Party, we express the constraint that the
agent cannot serve food to a customer who was already
served food as follows:

φserve food G = holding food ∧ ¬3−served food G

where 3−φ := ⊤Sφ (“sometime in the past φ”) is true if φ is
true either at the current timestep or at a previous one.

For Hot Water Tank, we express the constraint that, if the
valve is closed, the agent can open it if it was closed for at
least the last three timesteps as follows:

φopen = close → ⊖close ∧ ⊖⊖ close

Sample Efficiency
We also compare the sample efficiency of PRBs and RBs in
the Cocktail Party task. The RB for the task is the one from
(De Giacomo et al. 2019). Results (see the appendix for the
plot) show how the agent trained with the PRB can converge
faster than the one trained with the RB. This is in line with
an hypothesis in the literature stating that action masking can
improve learning convergence, as the agent does not explore
unnecessary actions (Huang and Ontañón 2020).

Conclusions
We have proposed preemptive restraining bolts, a
lightweight approach to non-Markovian action mask-
ing. By using PPLTL to define PRBs, we can constrain
agents from taking actions based on the current history (and
not just the current state), with specifications as expressive
as the safety fragment of LTL. In future work, we plan
to extend PRBs to continuous action spaces, as has been
done with action masking in other work, and to multi-agent
domains, as has been done with shields (ElSayed-Aly et al.
2021).

References
Alshiekh, M.; Bloem, R.; Ehlers, R.; Könighofer, B.;
Niekum, S.; and Topcu, U. 2018. Safe Reinforcement Learn-
ing via Shielding. In Proceedings of the 32nd AAAI Con-
ference on Artificial Intelligence, (AAAI-18), 2669–2678.
AAAI Press.
Brunke, L.; Greeff, M.; Hall, A. W.; Yuan, Z.; Zhou, S.;
Panerati, J.; and Schoellig, A. P. 2022. Safe learning in
robotics: From learning-based control to safe reinforcement
learning. Annual Review of Control, Robotics, and Au-
tonomous Systems, 5: 411–444.
De Giacomo, G.; Favorito, M.; and Fuggitti, F. 2022. Plan-
ning for Temporally Extended Goals in Pure-Past Linear
Temporal Logic: A Polynomial Reduction to Standard Plan-
ning. CoRR, abs/2204.09960.
De Giacomo, G.; Favorito, M.; Iocchi, L.; and Patrizi, F.
2020a. Imitation Learning over Heterogeneous Agents with
Restraining Bolts. In Proceedings of the 30th International
Conference on Automated Planning and Scheduling (ICAPS
2020), 517–521. AAAI Press.
De Giacomo, G.; Iocchi, L.; Favorito, M.; and Patrizi, F.
2019. Foundations for Restraining Bolts: Reinforcement
Learning with LTLf/LDLf Restraining Specifications. In
Proceedings of the 29th International Conference on Au-
tomated Planning and Scheduling (ICAPS 2019), 128–136.
AAAI Press.
De Giacomo, G.; Stasio, A. D.; Fuggitti, F.; and Rubin, S.
2020b. Pure-Past Linear Temporal and Dynamic Logic on
Finite Traces. In Proceedings of the Twenty-Ninth Inter-
national Joint Conference on Artificial Intelligence, IJCAI
2020, 4959–4965. ijcai.org.
ElSayed-Aly, I.; Bharadwaj, S.; Amato, C.; Ehlers, R.;
Topcu, U.; and Feng, L. 2021. Safe Multi-Agent Reinforce-
ment Learning via Shielding. In Proceedings of the 20th
International Conference on Autonomous Agents and Multi-
agent Systems, 483–491. IFAAMAS.
Geatti, L.; Cimatti, A.; Montanari, A.; and Tonetta, S. 2022.
Temporal Logic Specifications: Expressiveness, Satisfiabil-
ity And Realizability. Ph.D. thesis, University of Udine.
Huang, S.; and Ontañón, S. 2020. A closer look at invalid
action masking in policy gradient algorithms. arXiv preprint
arXiv:2006.14171.
Kendall, A.; Hawke, J.; Janz, D.; Mazur, P.; Reda, D.; Allen,
J.-M.; Lam, V.-D.; Bewley, A.; and Shah, A. 2019. Learn-
ing to Drive in a Day. In 2019 International Conference on
Robotics and Automation (ICRA), 8248–8254.
Krasowski, H.; Thumm, J.; Müller, M.; Wang, X.; and Al-
thoff, M. 2022. Provably Safe Reinforcement Learning: A
Theoretical and Experimental Comparison.
Lichtenstein, O.; Pnueli, A.; and Zuck, L. 1985. The glory
of the past. In Logics of Programs, 196–218. Berlin, Heidel-
berg: Springer. ISBN 978-3-540-39527-0.
Mirchevska, B.; Pek, C.; Werling, M.; Althoff, M.; and
Boedecker, J. 2018. High-level Decision Making for Safe
and Reasonable Autonomous Lane Changing using Rein-
forcement Learning. In 2018 21st International Conference
on Intelligent Transportation Systems (ITSC), 2156–2162.

Ono, M.; Pavone, M.; Kuwata, Y.; and Balaram, J. 2015.
Chance-constrained dynamic programming with applica-
tion to risk-aware robotic space exploration. Autonomous
Robots, 39(4): 555–571.
Savage, T.; Zhang, D.; Mowbray, M.; and Chanona, E.
A. D. R. 2021. Model-free safe reinforcement learning
for chemical processes using Gaussian processes. IFAC-
PapersOnLine, 54(3): 504–509.

Appendix
Preliminaries on Restraining Bolts and Shields
Restraining Bolts Restraining bolts constrain learned be-
haviour to conform as much as possible to a high-level tem-
poral goal specified in either Linear-time Temporal Logic on
finite traces (LTLf) or Linear Dynamic Logic on finite traces
(LDLf).

Definition 1 (Restraining Bolt (De Giacomo et al. 2019)). A
restraining bolt RB = (L, {(φi, ri)}mi=1) is a pair where:

• L = 2F is the set of possible states that the restraining
bolt can be in, where F is the set of bolt fluents;

• (φi, ri)
m
i=1 is a restraining specification, where φi is an

LTLf / LDLf specification and ri is the associated re-
ward, given to the agent when φi is satisfied by the se-
quence of states ℓ1 . . . ℓn of the RB.

The restraining bolt modifies the reward obtained by the
agent at each timestep (during training or execution) by
adding the reward ri associated to each satisfied formula φi.

In (De Giacomo et al. 2019) it is shown that there exists
a Markovian optimal policy mapping pairs of states in the
product of the restraining bolt automaton and the MDP to
actions, similarly to what we show in Theorem 1 for PRBs.

For LTLf / LDLf specifications, the size of the state space
is double exponential in the size of the specification.

Preemptive Shields A preemptive shield is an automaton
that outputs, at each timestep, the set of actions that it con-
siders “safe”, from which the learning agent chooses an ac-
tion to execute.

Definition 2 (Shield (Alshiekh et al. 2018)). A shield S =
(Q, q0,ΣI ,ΣO, δ, λ) is a Mealy machine where:

• Q is the finite set of states;
• q0 is the initial state;
• ΣI is the input alphabet;
• ΣO is the output alphabet;
• δ : Q× ΣI → Q is the state transition function;
• λ : Q× ΣI → ΣO is the output function.

A shield is defined given a safety LTL specification and
an MDP which abstracts the environment dynamics of the
underlying MDP (in which the agent acts). The safety LTL
specification is translated into a safety automaton; the prod-
uct of the safety automaton and the abstract MDP can then
be seen as a game between the agent and the environment,
where the agent wins if only safe states (i.e., states in which
the safety LTL specification is satisfied) are visited. By com-
puting the winning region of the game, we know which
states the agent is allowed to reach. The shield is extracted
from the winning strategy in the game and is single expo-
nential in the size of the safety LTL specification. The shield
is able to enforce the reachable states property by restricting
the action space available to the agent (through its output
function λ) to the maximal one containing no action that
might lead to a state outside the winning region.

Proofs of Proposition 1 and Theorem 1
Proposition 1. Let φ be a PPLTL formula and Subf (φ) the
set of its subformulas. Moreover, let τ and τ ′ be two finite
traces of length n and n′, respectively, such that τn = τ ′n′

and τ, n− 1 |= ψ iff τ ′, n′ − 1 |= ψ for each ψ ∈ Subf (φ).
Then, it holds that τ, n |= φ iff τ ′, n′ |= φ.

It should be noted that a related result was shown inde-
pendently in (De Giacomo, Favorito, and Fuggitti 2022).

Proof. The proof proceeds by induction on the structure of
φ. We have the following.

• φ = p for some atomic proposition p. Then, τ, n |= p iff
p ∈ τn = τ ′n′ iff τ ′, n′ |= p.

• φ = ¬ψ. Then, τ, n |= ¬ψ iff τ, n ̸|= ψ iff, by induction
hypothesis τ ′, n′ ̸|= ψ iff τ ′, n′ |= ¬ψ.

• Similarly for the other boolean cases.
• φ = ⊖ψ. Then, τ, n |= ⊖ψ iff τ, n − 1 |= ψ iff, since
ψ ∈ Subf (¬ψ), τ ′, n′ − 1 |= ψ iff τ ′, n′ |= ⊖ψ.

• φ = ψ1Sψ2 and consider the one-step unfolding equiva-
lence ψ1Sψ2 ≡ ψ2 ∨ (ψ1 ∧ ⊖ψ1Sψ2).
– τ, n |= ψ2, then observe that Subf (ψ2) ⊆ Subf (φ)

and so, by induction hypothesis, we obtain that
τ ′, n′ |= ψ2, which in turns implies τ ′, n′ |= ψ1Sψ2

– τ, n |= ψ1 ∧ ⊖ψ1Sψ2 iff τ, n |= ψ1 and τ, n |=
⊖ψ1Sψ2. On the one hand, from τ, n |= ψ1 we eas-
ily obtain that τ ′, n′ |= ψ1. On the other hand, from
τ, n |= ⊖ψ1Sψ2 it follows that τ, n − 1 |= ψ1Sψ2.
Now, since ψ1Sψ2 ∈ Subf (φ), it holds that τ ′, n′ −
1 |= ψ1Sψ2 and so that τ ′, n′ |= ⊖ψ1Sψ2. We there-
fore obtain τ ′, n′ |= ψ1 ∧ ⊖ψ1Sψ2, which implies
τ ′, n′ |= ψ1Sψ2

Due to the fact that Subf (φ) is linear in φ itself, Proposi-
tion 1 implies the following.

Observation 1. Evaluating a PPLTL formula φ on a trace τ
can be done in time linear in |φ| and constant in length(τ),
given that the truth values of subformulas of φ in the pre-
ceding state are known.

Before giving the full proof of Theorem 1, we give the
formal construction for the product MDP Mag×prb.

Construction 1. Let Mprb
ag = (Mag, PRB) be an in-

stance for the PRB learning problem, with Mag =
(S, s0, Act, A, Tr,R, γ) and PRB = (L, {φa : a ∈
Act}). We define the product MDP Mag×prb =
(S′, s′0, Act

′, A′, T r′, R′, γ) as follows:

• S′ = S × V where V = 2{Subf (φa):a∈Act} (states are
pairs of a state in S and a set of bolt subformulas);

• s′0 = (s0, v0) where v0 contains the set ℓ0 of bolt fluents
true in the corresponding state of the world and {ψ ∈
Subf (φa) : a ∈ Act and ℓ0 |= ψ};

• Act′ = Act;
• A′((s, v)) = A(s) ∩ {a : φa ∈ v} (only safe actions are

available);

• Tr′ : S × V ×Act ⇀ Pr(S × V) is defined as follows.
As in (De Giacomo et al. 2019), we assume that there is
a probability distribution Trag×prb : S × L × Act ⇀
Pr(S ×L) induced by the world (since the bolt’s fluents
are caused by the agent acting in the world). This proba-
bility distribution is unknown to the agent, just as Tr is
unknown. We lift the probability distribution Trag×prb

to Tr′ : S × V × Act ⇀ Pr(S × V) as follows. The
probability of transiting from (s, v) to (s′, v′) on exe-
cuting action a is the same as the probability given by
Trag×prb of transiting from (s, ℓ) to (s′, ℓ′) by a, where
ℓ is the set of fluents in v, and v′ is the maximal subset
of {Subf (φa) : a ∈ Act} that is true given the set of
formulas true in (‘the previous set’) v and the ‘current’
set of fluents ℓ′. This set v′ is unique by Proposition 1;1

• R′((s, v), a, (s′, v′)) = R(s, a, s′).

Note that the size of each state (s, v) ∈ S′ is linear in the
size of s and the size of the bolt.

Theorem 1. RL with PPLTL restraining spec-
ifications Mprb

ag = (Mag, PRB) with Mag =
(S, s0, Act, A, Tr,R, γ) and PRB = (L, {φa : a ∈ Act})
can be reduced to RL over MDP Mag×prb such that optimal
policies for Mprb

ag can be learned by learning corresponding
optimal Markovian policies for Mag×prb.

Proof. First, observe that the actions available to the agent
in Mprb

ag after each (s0, ℓ0) . . . (sn, ℓn) (where ℓi are sets
of fluents at timestep i) are the same as the actions avail-
able to the agent in the MDP Mag×prb in (sn, vn) where
vn is the set of ψ ∈ {Subf (φa) : a ∈ Act} such that
ℓ0 . . . ℓn |= ψ. This is because the evaluation of formu-
las from {Subf (φa) : a ∈ Act} including φa for each
a ∈ Act is the same in (s0, ℓ0) . . . (sn, ℓn) and in (sn, vn).
Hence, instead of making the choice of actions dependent on
(s0, ℓ0) . . . (sn, ℓn), we can make it dependent on (sn, vn)
without loss of information. Note that the rewards are the
same in both MDPs. This means that the reward for perform-
ing a after (s0, ℓ0) . . . (sn, ℓn) is the same as the reward for
performing a in (s, vn). Since Tr′ : S×V ×Act ⇀ Pr(S×
V) corresponds to Trag×prb : S×L×Act ⇀ Pr(S×L), the
optimal non-Markovian policy ρ∗ : (S × L)+ → Pr(Act)
produces exactly the same reward as a Markovian policy
ρ : S × V → Pr(Act) obtained by replacing ℓ0, . . . , ℓn
with the corresponding vn.

Further Details on the Comparison
In this section we provide more detailed descriptions for the
Cocktail Party and Hot Water Tank environments, and a de-
scription of the code implementation used to conduct the ex-
periments.

Cocktail Party In Cocktail Party, the learning agent is a
robot which serves drinks (coke and beer) and snacks (bis-
cuits and chips) to patrons at a party. The environment is a

1Observe that the construction of the transition function in the
product MDP is the reason to include subformulas of φa in v, and
the transition function can be computed in linear time by Observa-
tion 1.

Figure 1: Cocktail Party environment.

2D grid, and the robot knows the locations of drinks and
snacks and the locations of people. Figure 1 provides a
visual representation of the environment. Actions include
moving, picking up and serving items2. The robot is able
to hold at most one item, and once it delivers something it
does not hold anything (i.e., it cannot hold multiple copies
of the same item). The robot gets a reward when a deliv-
ery task is completed. As the robot is unable to distinguish
different kinds of people and has no memory of who has
been served previously, it will simply learn to bring a drink
or snack to any person (choosing the shortest path). The re-
straining bolt has its own sensors (e.g., based on Microsoft’s
Cognitive Services Face API) and is able to determine the
identity and age of guests and items received. The restrain-
ing bolt specification is to “serve exactly one drink and snack
to each person, but do not serve alcoholic drinks to minors”.

For the PRB, we only constraint the agent for what con-
cerns the “serve” action, using the following PPLTL for-
mula:

φserve =
∨

g∈Guests

[at g ∧

((¬3−served food g ∧ holding food)∨
(¬3−served drink g ∧ holding drink∧

(¬minor g ∨ ¬holding alcohol)))]

where at g is true if the robot is in the cell occupied by guest
g, holding food is true if the agent is holding a snack in
the current timestep (and, analogously, holding drink and
holding alcohol), minor g is true if guest g is a minor and
served food g is true if guest g has been served food previ-
ously (and, analogously, served drink g).

Hot Water Tank In Hot Water Tank, the aim is to learn an
energy-efficient controller for a hot water storage tank with
a maximum capacity of 100 litres. The agent can either open
or close the tank intake valve. If the valve is already open/-
closed and the agent opens/closes it, nothing happens. The

2We do not make distinctions on items: “pick up” and “serve”
are the actions the agent can perform in the implementation. The
“serve food P” action mentioned in the extended abstract was
specific to the example, and is not a “real” action of the environ-
ment.

outflow from the tank is always between 0 and 1 litres per
second. The inflow is between 1 and 2 litres per second when
the valve is open. Whenever the value is opened or closed,
the setting has to be maintained for at least three seconds
to prevent the valve from wearing out. The safety specifi-
cation is that “the tank water level must always be greater
than 0 and less than 100, and if the valve is opened (closed)
it should remain open (closed) for at least three seconds”.

By analyzing the scenario, it is clear that the agent should
only be able to open the valve when there are 93 or less litres
of water in the tank, and that it should only be able to close
it when there are 4 or more litres . Thus, for the PRB, we
constrain both the open and close actions as follows:

φopen = level ≤ 93 ∧ (close → ⊖close ∧ ⊖⊖ close)

φclose = level ≥ 4 ∧ (open → ⊖open ∧ ⊖⊖ open)

Code Setup The code setup for Cocktail Party uses the
same software architecture, simulator environment and bolt
fluents as in (De Giacomo et al. 2019). However, the intro-
duction of PRBs necessitates some changes to the restrain-
ing bolt process and minor changes to the reinforcement
learning agent. An agent with a restraining bolt is free to
chose any action in a given state s of the environment (while
the choice of action will typically be conditioned on the state
of the bolt, a restraining bolt does not prohibit actions). Fol-
lowing execution of an action a, the state of the environment
and the bolt are updated, and the agent gets a reward from
both the environment and the restraining bolt. At the next
timestep, the agent decides which action to perform depend-
ing on the new state of the MDP and of the RB. On the other
hand, a preemptive restraining bolt restricts the set of actions
available to an agent in state s to those which are permitted
by the restraining specification given the truth assignment to
{Subf (φa) : a ∈ Act}. The agent chooses a permitted ac-
tion a, the state of the environment and the bolt are updated,
and the agent gets a reward from only the environment. At
the next timestep, the agent decides which action to perform
depending on the new state of the MDP and of the PRB.

To support PRB agents, we therefore created a new PRB
bolt process that implements the evaluation of PPLTL for-
mulas using the current and previous state of the history,
as suggested by Proposition 1 and Observation 1. We also
slightly modified the RL agent to allow the set of actions
available to the agent in the current state to be specified. In
the case of an RB agent, all actions are always available,
while for a PRB agent the actions are those permitted by the
bolt at the current timestep. We also modified the RB bolt
process to log the number of violations of the restraining
specification.

The restraining specification for the RB agent is as in
(De Giacomo et al. 2019). As in (De Giacomo et al. 2019),
both the RB and PRB agents are trained using n-step Sarsa,
configured with γ = 0.999, ϵ = 0.2 and n = 100, for 4000
iterations each lasting at most 1000 steps. (We use Sarsa to
allow comparison with (De Giacomo et al. 2019), however
any RL algorithm can be used for training, so long as it sup-
ports action masking.) All experiments were performed on a
quad-core Intel Core i5-8259U with an 8 GB RAM.

Experimental Result

Figure 2: Average reward (y-axis) every 100 iterations (x-
axis) in the “Cocktail Party” environment. Legend: red
line/shaded area represents the RB agent, blue line/shaded
area the PRB one. Lines represent the mean of the values
every 100 iterations. Shaded areas represent confidence in-
tervals within a standard deviation from the mean.

