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Abstract

In this position paper, we discuss policy refinement in rein-
forcement learning (RL), focusing on safety-critical appli-
cations. We propose an integrated approach that combines
Bayesian optimization, inverse RL, human feedback, and nat-
ural language processing to address challenges in policy re-
finement. We also examine the limitations of these methods
and provide an outlook for the future of policy refinement
in RL. Our aim is to contribute to the ongoing conversation
and foster collaboration in this crucial area, driving the de-
velopment of safe and responsible RL policies for real-world,
safety-critical applications.

Introduction
RL has emerged as a powerful paradigm in artificial intel-
ligence, empowering autonomous agents to learn optimal
strategies for complex tasks through trial-and-error (Sutton
and Barto 2018). The success of RL in diverse domains, in-
cluding robotics, autonomous driving, aviation, healthcare,
and gaming, underscores the importance of not only efficient
but also safe policies, especially in safety-critical applica-
tions (Kober, Bagnell, and Peters 2013; Kiran et al. 2021;
Razzaghi et al. 2022). In such contexts, policy refinement
becomes crucial, enabling RL agents to modify their policies
to satisfy safety constraints without compromising perfor-
mance. As RL policies are increasingly deployed in safety-
critical settings, guaranteeing safe and responsible behavior
in unknown and uncertain environments is essential (Tam-
bon et al. 2022). Effective policy refinement allows agents
to adapt to changing conditions and align with human val-
ues, paving the way for widespread adoption in applications
involving human lives and property. In this position paper,
we will discuss the current landscape of policy refinement
in RL, delving into a novel solution that integrates Bayesian
optimization, inverse RL, and the incorporation of human
feedback and natural language processing. We will also ex-
amine the limitations of these methods, highlighting their
computational complexity, scalability challenges, and de-
pendence on accurate environmental models. Moreover, we
will provide an outlook for the future of policy refinement in
RL, discussing anticipated advancements, integration within
the broader RL research community, growing awareness and
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adoption in industry applications, and the ethical consider-
ations and societal implications of refining RL policies. By
offering a comprehensive overview of policy refinement in
RL, we aim to contribute to the ongoing conversation and
foster collaboration in this crucial area, driving the devel-
opment of safe and responsible RL policies for real-world,
safety-critical applications.

Background
Policy refinement is a crucial aspect of RL research, espe-
cially in safety-critical applications. The primary objective
of policy refinement is to iteratively enhance an agent’s pol-
icy, ensuring safe and optimal behavior while complying
with environmental constraints and task requirements. This
process generally involves examining the agent’s current
policy, pinpointing suboptimal or unsafe actions, and updat-
ing the policy to rectify these issues. In the context of safety-
critical applications, safe RL has gained prominence as a vi-
tal research area (Garcıa and Fernández 2015; Baheri et al.
2020; Isele, Nakhaei, and Fujimura 2018; Baheri 2022). It
concentrates on developing algorithms and techniques that
guarantee RL agent safety during the learning process. Two
notable techniques, counterexample-guided abstraction re-
finement (CEGAR) and counterexample-guided inductive
synthesis (CEGIS), have emerged as promising approaches
to policy refinement in RL, focusing on refining policies us-
ing counterexamples to ensure safety and optimality.

CEGAR, initially developed for the formal verification
of finite-state systems, iteratively refines an abstract system
model based on counterexamples discovered during verifi-
cation (Clarke et al. 2000). Within the context of RL, CE-
GAR can be applied to policy refinement by generating an
abstract representation of the agent’s policy and iteratively
refining this abstraction using counterexamples found dur-
ing policy analysis (Jin et al. 2022). Similarly, CEGIS is an
approach focused on synthesizing a correct-by-construction
program or policy that satisfies a given specification (Solar-
Lezama et al. 2006). In CEGIS, the process commences
with an initial candidate policy or program, which is subse-
quently refined based on counterexamples encountered dur-
ing the verification phase. CEGIS has been successfully im-
plemented in various domains, such as program synthesis
(Solar-Lezama 2008; Alur et al. 2013) and controller syn-
thesis (Henzinger, Jhala, and Majumdar 2003; Ravanbakhsh
and Sankaranarayanan 2016). By leveraging the strengths of



CEGAR, CEGIS, and safe RL strategies, policy refinement
in RL can be rendered more efficient, ultimately resulting in
safer and more reliable learning-enabled systems for safety-
critical applications. These approaches demonstrate the im-
portance of counterexample-based techniques in improving
the safety and optimality of RL policies and highlight the
potential for further advancements in the field of policy re-
finement.

Proposed Solution
Formal methods offer a rigorous framework for verifying
and validating the safety and correctness of RL policies.
However, formal methods frequently face computational
complexity and scalability challenges, especially in high-
dimensional and continuous state spaces. To address these
challenges, our proposed solution integrates the strengths of
Bayesian optimization (BO) (Frazier 2018), inverse RL (Ng,
Russell et al. 2000), human feedback, and natural language
processing (NLP) (Chowdhary and Chowdhary 2020) in the
policy refinement process for safety-critical applications. In
essence, our proposed approach employs BO and inverse RL
to identify and eliminate failure trajectories from the policy
while preserving its performance. BO efficiently searches
for failure trajectories in the state-action space, while IRL
modifies the reward function to exclude these trajectories.
This integrated approach aims to deliver a more efficient pol-
icy refinement process, providing significant improvements
over existing techniques. The key components of our ap-
proach to RL policy refinement include:
Leveraging Bayesian Optimization: Integrating BO into
the policy refinement process allows for the identification of
promising regions for policy improvement while account-
ing for uncertainties. This strategy enables a more efficient
search and helps to overcome the computational complexity
and scalability issues often encountered in formal methods.
Inverse RL for Reward Function Estimation: Incorporat-
ing inverse RL into the policy refinement process facilitates
the estimation of the underlying reward function that guides
expert actions. This information can then be used to improve
the policy, allowing the refined policy to better align with ex-
pert preferences and safety considerations, leading to more
responsible and acceptable behavior in safety-critical appli-
cations.
Incorporating Human Feedback: Integrating human feed-
back into the policy refinement process allows the refined
policy to better align with human values and safety consider-
ations, resulting in more responsible and acceptable behav-
ior in safety-critical applications. This approach also offers a
more intuitive and accessible way for domain experts to par-
ticipate in the policy refinement process, bridging the gap
between domain knowledge and algorithmic refinement.
Utilizing Natural Language Processing: Employing NLP
techniques enables parsing and interpreting human feed-
back, transforming it into actionable information that can
be integrated into the policy refinement process. By leverag-
ing NLP, our approach can better understand and incorporate
expert guidance, leading to more effective policy improve-
ments and ultimately safer RL policies in safety-critical ap-
plications.

Limitations and Potential Strategies

While the proposed approach combining BO, inverse RL,
human feedback, and NLP offers several advantages, it also
has some limitations. The computational complexity of the
combined approach, dependence on the quality of human
feedback, and the accuracy of NLP interpretation are among
the challenges. To address these issues, we plan investigate
more efficient algorithms, develop guidelines for clearer
feedback, and utilize advanced NLP models specifically
trained for the domain. The performance of the approach
might also be sensitive to initial policy and reward function
estimates, and it may rely on certain assumptions about the
environment’s dynamics. To tackle these challenges, we can
explore adaptive strategies to escape local optima, investi-
gate methods that can adapt to non-stationary environments,
and develop rigorous validation methods such as worst-case
analysis or formal verification techniques. By addressing
these limitations, we can further enhance the safety of the
proposed policy refinement approach in RL.

Outlook and Conclusions

As policy refinement continues to gain traction in the field
of RL, several developments can be anticipated. Firstly, ad-
vancements in policy refinement techniques are expected,
including novel methods and improvements to existing tech-
niques, addressing current limitations and enabling more
scalable policy refinement processes. Secondly, the inte-
gration of policy refinement into the broader RL research
community is anticipated, with increased collaboration and
knowledge sharing between researchers in policy refinement
and other RL subfields leading to synergistic advancements
and the development of more holistic solutions. Thirdly, as
the importance of safety in RL applications becomes more
widely recognized, industry adoption of policy refinement
techniques is expected to grow, ensuring safe and respon-
sible operation of RL systems in safety-critical domains.
Lastly, ethical concerns and societal implications will arise
as policy refinement techniques become more advanced, ne-
cessitating thoughtful discussions and guidelines to ensure
that policy refinement aligns with human values and respects
societal norms.

In this position paper, we have discussed the importance
of policy refinement in RL, highlighting the proposed so-
lutions, their limitations, and potential strategies to address
these challenges. We have also provided an outlook for
the future of policy refinement, touching upon anticipated
advancements, integration within the broader RL research
community, growing awareness and adoption in industry ap-
plications, and the ethical considerations and societal impli-
cations of refining RL policies. We call upon the research
community to address the challenges and explore the poten-
tial of policy refinement in RL. Continued research in this
area is essential for ensuring the safe and responsible de-
ployment of RL policies in safety-critical applications, ul-
timately leading to more reliable RL systems that can be
trusted to act in the best interests of both humans and the
environment.
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