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Abstract

It is important for autonomous multi-agent teams to coor-
dinate actions so collaborative goals can be achieved effi-
ciently without conflicts. Without coordination, the goal may
be achieved inefficiently, or in the worst case, not at all. Prac-
tical issues in multi-agent, real-time systems are limited sens-
ing and communication capabilities. A significant number of
multi-agent algorithms rely on accurate state information for
all agents in order to effectively coordinate. In this paper,
we propose an approach called Reinforcement Learning with
Epistemic Priors (MARL-EP). MARL-EP uses epistemic es-
timation of the knowledge and actions of other agents from
planners to infer portions of the observation space which are
unobservable. We show that MARL-EP allows a very high
level of coordination to be achieved with severely impaired
sensing and zero communication between agents.

Introduction
In this paper, we seek solutions to multi-agent control prob-
lems, where autonomous agents must work together to
achieve goals. It is important to coordinate actions between
the agents in order to achieve a collaborative goal efficiently
and without conflicts. Without coordination, in the best case
a collective goal may be achieved inefficiently, in the worst
case the collective goal may not be achieved at all. Multi-
agent control has applications in warehouses, firefighting,
surveillance, transportation, games and more.

Due to the actions of other agents or the workings of na-
ture, the environment may change without an agent noticing.
Under normal circumstances, perceived changes to the envi-
ronment and intended actions may need to be communicated
to other agents in order to ensure that the collective goal can
still be achieved.

A practical issue which must be accounted for in the co-
ordination of multiple agents in real-time, distributed sys-
tems is the possibility of communication loss. The most
common communication paradigm is via radio signals. In
this paradigm, loss of communication can occur for a vari-
ety of reasons such as: equipment failure, network failure or
signal loss. Signal loss can occur for reasons such as sig-
nal range constraints, line of sight obstruction, signal jam-
ming or noise. Communications links may also have limited
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bandwidth, reducing the amount of data that can be transmit-
ted. Other constraints may limit the communications further,
such as clandestine operations where agents intentionally at-
tenuate or suppress the amplitude and/or volume (and hence
probability of detection) of their radio emissions. Sensing
may be impaired for a variety of similar reasons.

In all of these scenarios, a team of autonomous agents
may need to coordinate with little to no sensing or com-
munication. In this paper, we propose a system of coordi-
nation without communication called multi-agent reinforce-
ment learning with epistemic priors (MARL-EP) that incor-
porates theory of mind (Premack and Woodruff 1978) in
the form of epistemic logic (Bolander and Andersen 2011)
embodied as a deterministic planner to create a cohesive
multi-agent plan that incorporates the estimated knowledge
of other agents. This information is then leveraged for re-
inforcement learning (RL) (Sutton and Barto 2018). When
the state of teammates cannot be observed, observations
are augmented using inferred state information from epis-
temic logic. We show that MARL-EP performs comparable
to when agents have perfect information, even with severely
impaired sensing and zero communication between agents.

Problem Definition
Figure 1 illustrates a motivating example in which agents
must move from their respective start states (circles with
solid lines) to their respective goal states (circles with
dashed lines). This must be done without coming into con-
flict with other agents or obstacles (shown in brown).

This is similar to the cooperative navigation prob-
lem (Lowe et al. 2017), except everything in the environment
is partially observable, and actions are stochastic. Agents
have perfect knowledge of the start and goal states of all
agents and obstacles, but (unlike the cooperative naviga-
tion problem) agents cannot communicate and they have a
limited sensing range, meaning, during execution they may
never have opportunity to directly perceive other agents.

In Figure 1, we can see that if each agent plans to reach
its goal (using a shortest path) without taking the other agent
into account, both agents will take paths that pass through
v1, shown in Figure 1(a) and hence will collide. Given the
fact that both agents know the goal of the other agent, it is
possible for the agents to independently conclude (without
communication) that there is an (optimal) solution in which
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Figure 1: (a) An example instance of a cooperative naviga-
tion problem and (b) a solution for the problem instance.

agent 1 moves through label v0 and agent 2 moves through
label v1 as shown in Figure 1(b). Making agents coordinate
without any communication is the intent of MARL-EP.

Background
In this section, we cover the backgrounds of two disciplines:
Multi-Agent Reinforcement Learning (MARL), and Epis-
temic Logic.

Multi-Agent Reinforcement Learning
The example from Figure 1 is a specific instance of a
decentralized partially-observable Markov decision process
(DEC-POMDP) (Bernstein et al. 2002), which can be ex-
pressed as a multi-agent version of POMDP (Kaelbling,
Littman, and Cassandra 1998) represented by the tuple
⟨k, S,A, T,R,Ω, O⟩ where:
• k is the number of agents,
• S: {S1 × ...× Sk} is a set of joint states,
• A: {A1 × ...×Ak} is a set of joint actions,
• T : S×A → S is a stochastic transition function,
• R: S×A → R is the reward function.
• Ω is a set of observations and
• O: S×[1..k] → Ω is a stochastic observation function.

We seek a solution to the DEC-POMDP, a set of stochastic
policies for each agent πi: S×Ω → Ai which is a mapping
from state-observation pairs to actions where πi(ai|si, oi)
represents the probability of selecting an action ai∈Ai given
the current joint state si∈Si and observation oi∈Ω. The goal
of RL is to find π∗, an optimal policy that maximizes the
sum of expected rewards.

For DEC-POMDPs, , independent Q-learning (IQL) (Tan
1993), the practice of decomposing a multi-agent problem
into simultaneous single-agent problems, helps avoid is-
sues related to the curse of dimensionality. Because of non-
stationarity in simultaneously learned policies, distributed
value functions (DVF) are commonly used in order to guar-
antee convergence (Sunehag et al. 2017). While DVFs can

be used to train independent policies, even in limited com-
munication scenarios (Matignon, Jeanpierre, and Mouad-
dib 2012), a significant number of algorithms solve DEC-
POMDPs by training separate policies with a centralized
DVF. This is done by counter-factually providing a complete
action history to the centralized DVF at training time, though
the observation space may be limited to locally-observable
regions (Lowe et al. 2017; Rashid et al. 2018; Foerster et al.
2016). In (Lowe et al. 2017) the relative position of all agents
is assumed to be known, allowing for effective global collab-
oration, but violating our assumptions about limited com-
munication and sensing. In (Rashid et al. 2018), only the
locally-observable portion of state is known to each agent,
meaning macro-level collaboration between agents is not
fostered. This is because the local state provides no clues of
distinguishability from other global states which share the
same local state. We seek to compensate for this shortcom-
ing by using priors based on Epistemic Logic.

Epistemic Logic
Epistemic logic (Bolander and Andersen 2011), a type of
modal logic (Zalta, Nodelman, and Allen 1995), deals with
estimation of the knowledge of agents. This estimation of
other’s knowledge capitalizes on the notion of perspective
shifts (Engesser et al. 2017). That is, one agent looking at
the scenario from another agent’s perspective. Collaboration
without communication requires estimation of other agents’
state and perception (Faulk and Frey 2021) and what actions
they might take based on what they know (or what they do
not know) (Engesser et al. 2017). This has a parallel with
the theory of mind in which primates keep mental states of
themselves and others (Premack and Woodruff 1978).

We propose that epistemic logic be used in POMDPs
with limited sensing and communication, in order to allow
agents make decisions in a richer, more informed observa-
tion space. Using epistemic priors with MARL allows agents
to use what they know about other agents (e.g., their goals),
and what they know that other agents know in order to fos-
ter collaboration in situations where parts of the state space
cannot be observed and must be inferred.

Reinforcement Learning With Epistemic
Priors

Per our assumption of zero communication and limited sens-
ing, the content of an observation oi would normally be lim-
ited to locally observable information. This limits the ex-
pressiveness of a policy because many observations are in-
distinguishable due to lack of information about the global
state. To alleviate this, we propose a formulation of a pol-
icy π to include epistemic priors. Specifically, the action se-
lection policy is now conditioned on epistemic information:
πi(ai|si, oi, ei) where ei is the epistemic estimate. We refer
to ei generally as an epistemic prior. It was shown that esti-
mation of other agent’s actions results in improvement of the
global effectiveness of the learned policies (Nagayuki et al.
2000). MARL-EP uses epistemic priors in order to fill in
the gaps of local observations to more completely estimate
global state, and increase the global optimality of policies.



Convention of Operation
Consider the following illustration: Before Alice left to her
cottage for the week, she agreed to let Bob borrow her cot-
tage for the weekend. Bob, having no further communication
from Alice arrives at the cottage that weekend and finds the
door locked. Bob realizes that Alice knows that she did not
communicate anything about the key to the cottage. Bob also
knows that Alice intends for him to use the key. Bob realizes
that it is a common convention to leave a key under the door
mat. Bob checks under the door mat and finds the key. We
can now infer Alice’s portion of the story. Alice locks up the
cottage in preparation to leave. Alice knows that Bob intends
to use the cottage. Alice realizes that she did not communi-
cate about the key to Bob. Alice believes that Bob knows
about the convention of leaving the key under the mat. Alice
leaves the key under the mat and departs.

In both cases, the actors in the story understood the goal
of the other actor (common knowledge). In both cases, the
actor reasoned about what the other actor knows (epistemic
logic). Both actors assumed a convention of operation to
help determine their actions (epistemic planning).

The estimation of ei is made possible by instantiating
common knowledge of an a-priori convention of operation.
Examples of such conventions are ubiquitous in the real
world, for example protocols for transportation (e.g., driv-
ing on the right or left side of the road) collision avoidance
in aviation (e.g., vertical separation) (Administration 2022)
and playbooks in sports (Molineaux, Aha, and Sukthankar
2009). The conventions may differ depending on the spe-
cific problem setting. A convention of operation establishes
common knowledge of a set of rules which help agents co-
operate smoothly, with or without explicit communication.

Minimally, a convention of operation C: S,G→A is a
function, which given a current state S, and goal state G,
returns an action A. C must satisfy the following properties:

• comprehensive It must cover all possible states in the
multi-agent state space.

• deterministic Given an input, it will always produce the
same output.

• chainable It can be used to produce a trajectory.

For example, for the traffic convention “stay to the right”,
when two cars approach each other on a single-lane road
(the state) moving in opposite directions (the goal), both cars
move to the right (the action).

Manually developing a convention of operation (e.g., avi-
ation protocols) can be a tedious and error-prone process.
However, C is similar to an MDP-style (non-stochastic)
agent, and can be embodied using a multi-agent RL policy
or deterministic planner. In our experiments we use a search-
based, multi-agent planner (Walker, Sturtevant, and Felner
2020) for C, but an RL policy (Rashid et al. 2018) could
also be used to perform roll-outs in a deterministic way.

Assuming each agent has an identical copy of C, every-
thing is in place for us to perform epistemic estimation. Be-
cause C is deterministic, each agent can safely assume that
other agent’s “interpretation” of C is identical.
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Figure 2: MARL-EP System Architecture.

Epistemic Blueprints
In the MARL-EP architecture (Figure 2), we endow epis-
temic capabilities to each individual agent by equipping
them with a convention of operation in the form of a deter-
ministic multi-agent planner. Assuming each agent invokes
the planner on identical inputs, (by the definition of deter-
minism) each agent will independently compute an identical
multi-agent plan. We call this plan an epistemic blueprint (or
just blueprint). Referring again to Figure 1, all agents com-
pute the full multi-agent plan (i.e., blueprint) using their de-
terministic planner, then execute their own part of the multi-
agent plan. Assuming agents’ information about the world
does not diverge, agents can safely execute their own portion
of the plan from the blueprint and achieve implicit coordina-
tion without any communication.

Multi-Agent RL with Epistemic Priors
We use QMIX (Monotonic Value Function Factorisation for
Deep Multi-Agent Reinforcement Learning) (Rashid et al.
2018) as our learning algorithm. QMIX trains decentral-
ized policies in a centralized end-to-end fashion. The key
idea behind QMIX is to decompose the global value func-
tion (estimated over joint states and actions {S,A}) as a
non-linear combination of local value functions (estimated
over agent’s local states and actions {oi, ai}). The central Q-
network (Qtot) is trained using the entire observation, while
the policy networks (Qi) are trained using only local ob-
servations. The mixing network is learned via a monotonic
function that ensures that as the values of the local value
functions increase, the global value function also increases.
The monotonicity condition is represented by the expres-

sion:
∂Qtot

∂Qi
≥ 0,∀i ∈ I , where I represents all agents.

This factorized representation allows QMIX to capture in-
teractions between agents while avoiding the exponential
complexity growth that is typical in MARL. The QMIX
algorithm has been shown to perform well in a variety of
multi-agent environments, including StarCraft II microman-
agement tasks and cooperative navigation tasks.

In this work, QMIX is used to train agents using solely
local observations, but augmented with epistemic priors ei
from the blueprint generated by C, the deterministic plan-
ner. Pseudocode of our proposed approach is presented in



Algorithm 1: QMIX-EP, a modified version of the origi-
nal method. Compared to the original algorithm, the main
differences are in Line 6, in which we use the multi-agent
planner (Walker, Sturtevant, and Felner 2020) to generate ei
for the particular episode, and in Line 9 where these priors
are added to the agents’ local observation oi. For brevity, we
omit details of updating θ (Line 17).

Algorithm 1: QMIX with Epistemic Priors

1: Initialise θ: the parameters of mixing network, agent
networks and hypernetwork;

2: Set the learning rate α and replay buffer D = {};
3: step = θ, θ− = θ;
4: while step < stepmax do
5: t = 0, s0 = initial state;
6: Estimate the epistemic priors ei for each one of the

agents i for the entire episode;
7: while st ̸= terminal and t < episode limit do
8: for each agent i do
9: τ it = τ it−1 ∪ {(ot, et, at−1)};

10: ϵ = epsilon− schedule(step);
11: ait = argmaxai

t
Qi(τ

i
t−1, a

i
t) with p = 1−ϵ;

12: end for
13: Get reward rt and next state st+1;
14: D = D ∪ {(st, at, rt, st+1)};
15: t+ 1, step = step + 1;
16: end while
17: Update model parameters θ of mixing network,

agent networks Qi, and hypernetwork.
18: end while

Experimental Results
In order to validate the benefits of epistemic priors when
training MARL agents, we use a popular task in the Multi-
agent Particle Environment (MPE)1, known as Simple-
Spread. Given a particular number of agents and landmarks,
the goal in the Simple-Spread task is to reach the landmarks
as quickly as possible and avoid collision among the agents
(Figure 3). At each time-step, agents receive a penalty and
the episode is terminated when all landmarks are reached.
The global reward is given by the sum of distances of each
agent to all the landmarks. We train agents in the following
scenarios with varying levels of information:

1https://github.com/openai/multiagent-particle-envs

Figure 3: Simple-spread task. Agents cooperate to reach the
landmarks quickly while avoiding collisions.

Figure 4: Evaluation of trained QMIX agents for different
cases.

• Case 1: no sensing (baseline). Agents do not have access
to other agents location;

• Case 2: limited sensing. Agents have access to other
agents location when close;

• Case 3: perfect sensing. Agents know others’ locations;

• Case 4: limited sensing, with priors (QMIX-EP). Agents
have access to other agents location when close, and use
estimated location otherwise.

• Case 5: no sensing, with priors (QMIX-EP). Similar to
Case 1 but agents use estimated location of other agents;

In Figure 4, we depict the mean rewards for the different
cases. With the use of epistemic priors in QMIX-EP (Cases 4
and 5), significant improvements are achieved even with no
or limited sensing, compared to the standard QMIX (Cases 1
and 2). QMIX-EP (Cases 4 and 5) also have comparable per-
formance to the perfect information Case 3 even with limited
or no sensing. Finally, QMIX-EP also appears to increase the
rate of training.

Conclusions

We have shown how the coordination of multiple agents with
limited sensing and communication abilities can be done
effectively by encoding a convention of operation for all
agents and using it to produce comprehensive epistemic pri-
ors. We have shown that the use of epistemic priors is ef-
fective in fostering coordination among agents by allowing
them to infer the actions of agents that they cannot observe.
Using epistemic priors allows significant performance im-
provements versus without priors, and achieves performance
levels similar to having perfect information. Future work
includes online execution (real scenarios) and re-planning
(real-time updating of blueprints).
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