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Abstract

Minecraft is a sandbox game that offers a rich and complex
environment for AI research. Its design allows for defining
diverse tasks and challenges for AI agents, such as gather-
ing resources and crafting items. Previous works have applied
both Reinforcement Learning (RL) and Automated Planning
methods to accomplish different tasks in Minecraft. RL meth-
ods usually require a large number of interactions with the
environment, while planning methods requires a model of the
domain to be available. Creating planning domain models for
Minecraft tasks is arduous. Algorithms for learning a domain
model from observations exist, yet have mostly been used
on planning benchmarks. In this work, we explore the use
of such algorithms for solving Minecraft tasks. We focus on
the task of crafting a wooden pogo stick and explore differ-
ent ways to represent states in this domain. Then, propose an
agent that learns domain models from observations — either
generated by an expert or collected online — and uses them
with an off-the-shelf domain-independent planner.

Introduction
Minecraft is a widely popular sandbox game that offers a
rich and complex environment for AI research. Its design al-
lows for defining different tasks for Artificial Intelligence
(AI) agents to perform, such as gathering resources and
crafting items. Building AI agents that can play Minecraft
and accomplish such tasks has been acknowledged as a ma-
jor AI challenge and have received significant interest in the
academic community. This includes an annual competition
in NeurIPS (Guss et al. 2019a) and a dedicated game mod
and framework for evaluating AI agents (Goss et al. 2023).

The state-of-the-art approach to building AI agents for
solving Minecraft tasks is by applying Reinforcement
Learning (RL) methods (Tessler et al. 2017; Frazier and
Riedl 2019; Scheller, Schraner, and Vogel 2020). When us-
ing these methods, the AI agent learns to make decisions
by interacting with an environment and receiving feedback
through states and rewards (or penalties). The disadvantage
of applying RL methods is that the learning stage requires
heavy computations, many training hours, and many en-
vironmental interactions. The latter disadvantage is signif-
icant when designing agents for video games in general,
and Minecraft in particular, since interacting with the en-
vironment requires initializing and performing actions in

the game environment, which is often intentionally slowed
down to allow humans to play it.

An alternative to RL used in building automated agents
for video games is Automated Planning (Ghallab, Nau, and
Traverso 2004). Automated planning algorithms use a do-
main model that specifies the dynamics of the world to de-
termine which actions to perform to achieve a given set of
goals. Planning technology has been used successfully to
build AI agents for various video games (Duarte et al. 2020).
For example, Bartheye and Jacopin (2009) used real-time
planning methods to solve tasks in the Iceblox Virtual Bat-
tle Space 2 game. Planning has also been explicitly used in
Minecraft. For example, Wichlacz et al. (2019) used classi-
cal and hierarchical planning models to solve construction
tasks in Minecraft. One of the advantages of using planning
is that it does not require interacting with the environment
to decide which actions to perform to achieve desired goals.
Additionally, due to the symbolic nature of most planning al-
gorithms, the resulting plans for the planning tasks are more
explainable than the policies generated by RL agents (Hoff-
mann and Magazzeni 2019).

A significant limitation of automated planning is that it
requires a domain model, which includes defining how to
represent states in the domain, what actions are available to
the agent, and the action model of these actions, i.e., their
preconditions and effects. Each of these modeling tasks can
be difficult even for human experts. Prior work proposed au-
tomated methods for learning from observations state rep-
resentations (Konidaris, Kaelbling, and Lozano-Perez 2018)
and action models (Juba, Le, and Stern 2021; Wang 1994;
Aineto, Celorrio, and Onaindia 2019). While action model
learning methods have shown some promise, they have
rarely been used in domains that are not standard automated
planning benchmarks.

This work explores how automated planning can be used
to build a Minecraft-playing agent. We explore different rep-
resentations of states and actions in the domain. Unlike prior
work on planning-based Minecraft agents, we do not assume
that a Minecraft action model is given and instead learn it
from observations. Specifically, we use Numeric Safe Ac-
tion Model Learning (N-SAM) (Argaman Mordoch 2023), a
state-of-the-art action model learning algorithm, to learn a
numeric domain model from observations. Then, we pro-
vide the learned domain model to an off-the-shelf domain-



independent numeric planner, namely ENHSP (Scala et al.
2016), to select which actions our Minecraft-playing agent
should perform. This agent is designed to work in two set-
tings: offline and online. In the offline setting, it receives ob-
servations of an expert acting in the domain, and then it has
to generate a plan to perform some Minecraft task. In the
online setting, no observations are given apriori. The agent
must choose how to interact with the environment to learn
how to solve the desired Minecraft task.

We evaluated our agent in both settings in Polycraft, a
symbolic wrapper to Minecraft, and compared it with mul-
tiple RL-based agents. We considered three symbolic repre-
sentations of the domain and evaluated our agents in both
offline and online settings. Our results show that in the on-
line setting, the N-SAM-based agents outperform all baseline
agents. We also show that our N-SAM planning agent is the
only one to solve all the test set problems while the other
RL agents are too overfitted towards their training data and
cannot solve any test set problems.

Background and Related Work
In this section, we present the background and the previous
works related to this work.

Minecraft Learning Environments
MineRL (Guss et al. 2019b) is an OpenAI-Gym (Brockman
et al. 2016) compatible research environment that provides a
Minecraft-based platform for the development, testing, and
evaluation of RL algorithms. It offers various tasks and chal-
lenges commonly present in open-world games, such as nav-
igation, resource gathering, and combat. It’s large imitation
learning datasets that contain more than 60 million frames of
human player data enabling researchers to train and assess
their algorithms efficiently. As a result, MineRL is a signif-
icant resource for the RL research community. In this work,
we do not consider a visual, pixel-based, representation, and
thus we did not use the MineRL environment.

Instead, we used the Polycraft (Palucka 2017) Minecraft
mod Polycraft World. Polycraft provides an interface
to Minecraft, as part of the Polycraft World AI Lab
(PAL) (Goss et al. 2023)1. PAL allows AI agents to easily in-
teract with Minecraft’s environment by sending commands
to the API and awaiting a response. Each command has pre-
defined preconditions, effects, and costs. This mechanism
enables RL algorithms to use the API to train their agents
and easily solve various tasks. Compared to MineRL, PAL
supports symbolic observations, which is best suitable for
planning algorithms since they require a symbolic model of
the environment to solve problems.

Reinforcement Learning Algorithms
RL (Sutton and Barto 2018) is a field of AI in which agents
learn to make decisions by interacting with an environment
and receiving feedback in the form of rewards (or penal-
ties). RL and video games often go hand in hand (Justesen
et al. 2019), as many games provide rewards for success-
ful strategies. A prominent example of an RL algorithm is

1https://github.com/PolycraftWorld/PAL

DQN (Mnih et al. 2013, 2015). DQN is an implementation
of Q-Learning (Watkins 1989; Watkins and Dayan 1992)
that uses deep neural networks to solve RL problems when
the state-space is large. DQN agents can solve multiple Atari
games, and the algorithm was the first deep-learning model
to learn control policies from high-dimensional sensory in-
put. This method outperformed all previous approaches and
even surpassed human experts in some experiments. DQN is
more suitable for large domains, and in preliminary experi-
ments on our domain, it did not work well. Thus, we do not
report results for DQN in this work.

However, open-world games present a complex environ-
ment for RL algorithms due to their lack of a defined reward
structure, extensive exploration opportunities, and extensive
player autonomy. Imitation Learning (IL) (Pomerleau 1991)
offers a sound methodology to address these open-world
challenges. In IL, the agent acquires a policy by observ-
ing expert demonstrations, also known as expert trajecto-
ries. The objective is to learn a policy that effectively mir-
rors the expert’s performance in the game environment. The
simplest form of IL is Behavioral Cloning (BC) (Bratko, Ur-
bančič, and Sammut 1995), which focuses on learning the
expert’s policy using supervised learning. Inverse reinforce-
ment learning (IRL) (Abbeel and Ng 2004) refers to learn-
ing the agent’s objectives, values, or rewards by observing
its behavior. The agent aims to find a reward function from
the expert’s demonstrations that explain the expert behavior.
Generative Adversarial Imitation Learning (GAIL) (Ho and
Ermon 2016) learns a policy by simultaneously training it
with a discriminator that aims to distinguish expert observa-
tions against the observations from the learned policy.

Proximal Policy Optimization (PPO) (Schulman et al.
2017) is presently considered state-of-the-art in RL. The al-
gorithm, introduced by OpenAI in 2017, alternates between
sampling data through interaction with the environment and
optimizing a “surrogate” objective function using stochastic
gradient descent. PPO outperforms other online policy gradi-
ent methods This work focuses on the following algorithms:
Q-Learning, BC, GAIL, and PPO.

The most widely adopted method for playing Minecraft
is the Hierarchical Deep Reinforcement Learning Network
(H-DRLN) (Tessler et al. 2017). This approach enables the
agent to continuously learn multiple policies and adapt to
new challenges within the game. The H-DRLN leverages a
deep neural network to model the policy and value functions,
resulting in high effectiveness across a variety of Minecraft
tasks such as navigation, mining, and combat. Despite its
success, this approach requires intensive training time and
a less restrictive environment for it to be successful. Since
we limit the learning time and restrict the agents to specific
interactions with the environment, we determined that this
approach is not appropriate for the scope of this research.

Planning in Minecraft
Planning is a well-studied field in AI that involves determin-
ing the sequence of actions an agent can take to achieve a
specific goal. Planning algorithms are used in various AI ap-
plications, including robotics, natural language processing,
and computer games, enabling agents to make decisions and



act in complex environments.
Formal planning languages express the “physics” of the

world, i.e., what predicates define the state of the world,
the possible actions for the agents, and the actions’ pre-
conditions and effects. The Planning Domain Definition
Language (PDDL) (Aeronautiques et al. 1998) is a for-
mal planning language and an extension of STRIPS (Fikes
and Nilsson 1971) that includes conditional effects, univer-
sal quantification, domain axioms, and even object equal-
ity. Wichlacz et al. (Wichlacz, Torralba, and Hoffmann
2019) used PDDL modeling to solve complex construc-
tion tasks in Minecraft. The researchers modeled the house-
construction task as classical and Hierarchical Task Network
(HTN) (Georgievski and Aiello 2015) planning problems.
They observed that even simple tasks present difficulties to
current planners as the size of the world increases. The HTN
planner scaled well when the size of the world increased but
was too coupled with the specific task.

Action Model Learning
We focus on planning problems in domains where action
outcomes are deterministic, states are fully observable, and
the states are described with discrete and continuous state
variables. Such problems are commonly modeled using the
PDDL2.1 (Fox and Long 2003) language. We introduce the
following notation to define a numeric planning problem in
PDDL2.1. A domain is defined by a tuple D = ⟨F,X,A⟩
where F is a finite set of Boolean variables, X is a set of
numeric variables (fluents), and A is a set of actions. A state
is an assignment of values to all variables in F ∪ X . For a
state variable v ∈ F ∪ X , we denote by s(v) the value as-
signed to v in state s. Every action a ∈ A is defined by a tu-
ple ⟨name(a), pre(a), eff(a)⟩ representing the action’s name,
preconditions, and effects, respectively. The preconditions
of action a are a set of assignments over (possibly a subset
of) the Boolean variables and a set of conditions over (possi-
bly a subset of) the numeric variables. These conditions are
of the form (ξ,Rel, k) where ξ is an arithmetic expression
over X , Rel ∈ {≤, <,=, >,≥}, and k is a number. The ef-
fects of action a denoted eff(a), are a set of assignments over
F and X , representing how the state changes after applying
a. An assignment over a Boolean variable is either True or
False. An assignment over a numeric variable x ∈ X is a
tuple of the form ⟨x, op, ξ⟩ where ξ is a numeric expression
over X and op is either increase (“+=”), decrease (“-=”), or
assign (“:=”). The set of actions with their definitions is re-
ferred to as the action model of the domain. We say that an
action a is applicable in a state s if s satisfies pre(a). Apply-
ing a in s, denoted a(s), results in a state that differs from s
only according to the assignments in eff(a).

A planning problem is defined by ⟨D, s0, G⟩ where D is
a domain, s0 is the initial state, and G are the problem goals.
The problem goals G are assignments of values to a subset
of the Boolean variables and a set of conditions over the nu-
meric variables. A solution to a planning problem is a plan,
i.e., a sequence of actions applicable in s0 and resulting in a
state sG in which G is satisfied.

The Numeric Safe Action Model Learning
(N-SAM) (Argaman Mordoch 2023) algorithm learns

an action model that includes all actions observed in the
given trajectories T . First, it uses Safe Action Model
Learning (SAM) learning (Juba, Le, and Stern 2021) to
learn every observed action’s Boolean preconditions and
effects. Then, it creates numeric preconditions for every
observed action a by constructing a convex hull over the
relevant numeric variable values observed in states before a
was applied. Finally, it creates numeric effects by solving
a linear regression problem for every numeric variable
that is part of the effects of that action. N-SAM has several
attractive properties. First, it runs in time that is polynomial
in the input data. Second, it is guaranteed to return an action
model that is safe, i.e., the plans generated with it will also
work on the real, unknown, domain model.

Problem Definition

Figure 1: A plan to accomplish the Craft Wooden Pogo task.

This work focuses on solving the Craft Wooden Pogo
task, as defined in the PAL Minecraft environment. (Goss
et al. 2023). In this task, the Minecraft agent (often called
Steve) is located in a field comprising 30×30 blocks and sur-
rounded by unbreakable bedrock walls. The field includes
five trees and one crafting table placed in arbitrary loca-
tions in the environment. Steve is tasked with crafting a pogo
stick, which requires performing the following actions:

1. Harvest at least three wood blocks from trees.

2. Use the wood to craft planks.

3. Use planks to craft sticks.

4. Use some of the sticks and planks to craft a tree tap and
place the tree tap near a tree to collect rubber.



5. Use the remaining sticks, planks, and rubber to craft a
wooden Pogo stick.

This sequence of actions is illustrated in Figure 1. The PAL
environment supplies five different scenarios to solve this
task.

We consider the problem of accomplishing the Craft
Wooden Pogo task in two settings: offline with expert
demonstrations and online.

Offline Learning from Expert Demonstrations
In the offline with expert demonstrations setting, our agent
is given a set of trajectories created by observing an expert
solving the Craft Wooden Pogo task, i.e., successfully craft-
ing the wooden pogo stick. The PAL environment includes
a hard-coded implementation of an expert planning-based
agent that relies on a pre-defined PDDL domain model.2

The agent objective in this setting is to use the set of ex-
pert trajectories and output a plan or a policy specifying how
to act in order to accomplish the Craft Wooden Pogo task.
Both learning and planning in this setting are done offline,
that is, after processing the expert trajectories and outputting
a plan or a policy, the agent executes the actions in the plan
or the policy until either the task is accomplished or not.
Thus, this setting corresponds to the Offline RL setting (Sut-
ton and Barto 2018) and Imitation Learning (Bratko, Ur-
bančič, and Sammut 1995). The main measure we consider
in this setting is how many expert trajectories our agent
needs until it can output a successful plan or policy.

Online Learning
In the online setting, our agent no longer receives expert tra-
jectories as its input. Instead, it must perform actions in the
environment, actively exploring the environment and aim-
ing to accomplish the task of crafting a wooden Pogo stick.
Specifically, in the online setting the agent is allowed to in-
teract with the environment in a sequence of episodes. Every
episode starts from some initial state of the environment and
ends after either the agent crafted the wooden pogo stick or
the agent performed more than 64 actions.

A key difference between this setting and the previous one
is that here planning and learning are interleaved: in every
episode, the agent needs to plan which actions to perform,
and then learn how to perform better based on the outcomes
of performing these actions. This setting corresponds to the
standard RL setting. The main measure we consider in this
setting is how many episodes an agent performs until it can
output a successful plan or policy.

Modeling the Pogostick Task in Minecraft
Efficient modeling and knowledge representation are key
to solving hard learning and planning tasks. In this work,
we explored three alternative approaches to model the Craft
Wooden Pogo task.

2In our experiments, we implemented our own expert agent,
manually encoding our own PDDL domain for different modeling
of the Craft Wooden Pogo task.

• All Blocks. In this modeling, the field is represented as a
30×30 grid where each grid cell corresponds to a single
block in the field and defines the content of that block.

• Relevant Blocks. This modeling, which is significantly
smaller than All Blocks, ignores all blocks in the field
that are not relevant for constructing the wooden pogo
stick.

• Item Counts. This modeling is even more compact than
Relevant Blocks, and completely ignores the location of
different items in the field, storing only the number of
blocks of each item type that currently exists in the field.

All our modeling approaches mask some internal mecha-
nisms of PAL. Specifically, we do not store the wall blocks
and ignore the agent’s orientation. We also made collecting
ingredients transparent to the agent, e.g., logs are automati-
cally added to the inventory once a break action is executed
in front of a tree. In addition, to avoid navigation computa-
tions we utilize PAL actions to directly teleport to any de-
sired reachable block. Next, we describe in detail the differ-
ences between the proposed modeling approaches in detail,
specifying how a state is defined and what actions the agent
can perform.

All Blocks and Relevant Blocks

Figure 2: The vector representing the All Blocks modeling
of a state in the environment, including the map dimensions.
The agent is aware of the map and its own location in addi-
tion to its knowledge about the number of resources.

Figure 3: The vector representing the Relevant Blocks mod-
eling of a state in the environment. The agent receives a
smaller representation of the map and the information about
its inventory.

In the All Blocks modeling, the agent is aware of the
map’s size and the trees’ locations. A state corresponds to
a 30×30 grid, as described above, a 6-array vector speci-
fying the content of the agent’s inventory, and an extra two
state variables specifying the location of the agent and the
content of the block in front of the agent. Figure 2 illustrates
this state representation. In the Relevant Blocks modeling,
we ignore all blocks in the field except those that contain
a tree or the crafting table. That is, we consider a reduced
version of the field in which there are only six cells, one for



each tree and one for the crafting table. The crafting table
can change its location as well as the trees on the map. Fig-
ure 3 illustrates how a state in the Relevant Blocks model-
ing is represented. This modeling is, of course, significantly
smaller than All Blocks, but it is also more specific as it as-
sumes at most 5 trees in the map.

The actions the agent can perform in the All Blocks and
the Relevant Blocks modeling are:

1. TP TO - teleport from the current location to another cell
on the map.

2. BREAK- breaks a tree to extract and add the logs to the
inventory.

3. CRAFT PLANK - craft planks from the logs in the in-
ventory.

4. CRAFT STICK - craft sticks from the planks in the in-
ventory.

5. CRAFT TREE TAP - teleport to the crafting table,
craft one tree tap, and add it to the inventory.

6. PLACE TREE TAP - when in front of a tree, move left,
place the tree tap on it, collect the polyisoprene sack, and
add it to the inventory.

7. CRAFT WOODEN POGO - teleport to the crafting ta-
ble, craft a wooden pogo stick, and add it to the inventory.

Item Counts

Figure 4: The vector representing the Item Counts modeling
of a state in the environment. Each cell represents the num-
ber of resources of each type.

The Item Counts modeling of the environment relies on
the understanding that the agent does not need to differenti-
ate between the different trees in the domain. This allows us
to define higher level macro actions for the agent to choose
from, and correspondingly define a more compact state rep-
resentation. Macro actions (also known as options (Sutton,
Precup, and Singh 1999)) allow agents to optimize their
gameplay and reduce the amount of time spent on repetitive
tasks. It allows the agent to make more strategic decisions
and react quickly to changing circumstances. OpenAI’s use
of macro actions in Starcraft (Vinyals et al. 2019) is an ex-
cellent example of how this approach can lead to more com-
petitive and engaging gameplay.

In our context, we define the following macro actions that
encapsulate multiple lower-level PAL actions:

1. GET LOG - executes teleportation to a tree, breaking it,
collecting the logs, add them to the inventory.

2. CRAFT PLANK - craft planks from the logs in the in-
ventory.

3. CRAFT STICK - craft sticks from the planks in the in-
ventory.

4. CRAFT TREE TAP - teleport to the crafting table,
craft one tree tap, and add it to the inventory.

5. PLACE TREE TAP - teleport to a tree, move left, place
the tree tap on it, collect the sack of polyisoprene, and
add it to the inventory.

6. CRAFT WOODEN POGO - teleport to the crafting ta-
ble, craft a wooden Pogo stick and add it to the inventory.

Problem analysis: the Item Counts map branching factor
is 6 and state space is 116.
When using these macro actions, the agents do not need to
know about the dimensionality of the map and to the place-
ment of the trees. The agents are only aware of the quantity
of each resource available in their inventory and the map it-
self. Thus, in the Item Counts modeling a state is composed
of a (7 × 1) vector, representing the number of resources
of each type, as well as the number of trees available in the
map. Figure 4 illustrates a state in this modeling. In the ini-
tial state, five trees are available on the map, and the rest of
the resources are all set to zeros. An example of a state dur-
ing the agents’ execution can be the vector [1, 4, 0, 0, 0, 0, 3]
that represents the state in which there is one log, and four
planks in the inventory, three trees available in the map, and
the rest of the ingredients are all zeros. We note that if an
agent cuts all five trees in the map before using one to place
a tree tap on it, then the problem becomes unsolvable.

Solving the Craft Wooden Pogo Task
Given the chosen modeling approach, we now describe two
main approaches for the agent’s decision-making process:
based on RL techniques or based on domain model learn-
ing and planning techniques. We describe each of these ap-
proaches for offline learning from the expert observation set-
ting and for the online learning setting.

Offline Learning from Expert Observations
The offline learning from expert observations setting can be
viewed as an Offline RL problem (Kumar et al. 2020). Thus,
one way to solve it is by using appropriate offline RL algo-
rithms such as Q learning.3 A different RL-based approach
is to view our offline setting as an Imitation Learning prob-
lem and solve it with appropriate RL imitation learning algo-
rithms such as BC and GAIL.

For the planning-based approach, we propose to provide
the expert observations as input trajectories to the domain
model learning algorithm N-SAM. The output of N-SAM is
a PDDL domain model representing the environment. This
PDDL domain is used as input to an off-the-shelf domain-
independent numeric planner, which solves the resulting
planning problem and outputs a plan for crafting the wooden
pogo task. While any domain-independent numeric planner
can be used to solve the resulting planning problem, we used
in this work ENHSP (Scala et al. 2016), which is a state-of-
the-art numeric planner.

3Q learning can also be applied in the online setting when cou-
pled with an action selection method such as ϵ-greedy.



Note that N-SAM was designed to only return safe do-
main models, and avoids actions that were not sufficiently
learned to guarantee safety. This is useful in domains where
the safety requirement is needed but comes at the cost of
slower learning. Since we do not need this requirement in
our context and the number of expert observations may be
limited, we modified N-SAM slightly to allow the agent to
use unsafe actions.

In more detail, if there are n numeric state variables rel-
evant to a certain action a, N-SAM requires that there are at
least n+ 1 linearly independent observations of that action.
These independent observations are then used to compute a
single solution to the set of polynomial equations that com-
pose the action’s effects. Otherwise, the action is considered
to be unsafe and is not learned. We removed this requirement
and allowed the linear regression algorithm to learn actions’
effects even when the input data is insufficient to learn a safe
domain model.

Online
Our online learning setting is the classical RL setting: an
agent performs actions in the environment, receives obser-
vations, and adapts its behavior accordingly over time. Thus,
we can use any off-the-shelf RL algorithm to solve it. In our
experiments, we used PPO and Q learning. Since the rewards
in our domain are only received at the end of an episode, we
modified Q learning to only perform Bellman updates after
it completed an episode.4

For the planning-based approach, we required an online
algorithm to select which actions to perform when collect-
ing trajectories. Here, we propose a hybrid of RL and plan-
ning approach in which an online RL algorithm is used to
choose actions and generate trajectories, and N-SAM is used
to learn a domain model from these set of trajectories. At
some stage, N-SAM will have received enough observations
to learn a sufficiently useful domain model that enables the
planner to find a plan to accomplish the Craft Wooden Pogo
task. In this work, we allow our planning-based agent to con-
tinue with the exploration process to try and improve the
resulting domain model until it is halted externally. Future
work may explore choosing to halt the exploration process
earlier if cumulative regret considerations are relevant.

Note that since the agent in the online setting is exploring
the environment while executing actions, it may attempt to
perform an action in a state where it cannot. For example,
attempting to break a tree when the agent is not near a tree
block. This inconsistency is not supported by N-SAM, which
is designed to learn from only valid trajectories. To address
such cases, we assume that the result of applying an action
in such a non-valid state is nothing, i.e., no change occurs
to the state. This assumption is valid in Minecraft. Based on
this assumption, we modified N-SAM to only consider transi-
tions in which there is a difference between the pre-and post-
states. This approach might be restrictive and there might be
cases in which an action was correctly performed and still,
the post-state has not changed.

4We also experimented with Vanilla Q learning without this en-
hancement and observed it performed poorly.

Experimental Results
In this section, we evaluated the RL-based approaches and
the planning-based approach over the three proposed mod-
els — All Blocks, Relevant Blocks, and Item Counts— and
the two considered settings — offline learning from expert
observations and online learning.

RL Learning Configurations
We used the standard models from the python library
stable baselines3 and imitation.5 6 The PPO and
GAIL network architecture is a fully connected neural net-
work of size 512×256×256, i.e., three layers in which the
first is composed of 512 units, and the second and third have
256 units, and the selected activation function for each layer
is tanh. The architecture of the BC agent’s network is a
fully connected neural network with two layers with 32 units
each. We selected the tanh activation in each layer to match
the previous algorithms. Finally, we trained the Q-Learning
agent with the following configuration: a learning rate of
0.01 and a discount factor of 0.99. Additionally, since we
used Q-Learning as an online learning approach, we config-
ured its random exploration parameter to start with maximal
exploration, i.e., 1, and to decay with a factor of 0.02.

Evaluation Measures
The primary evaluation measure we consider is the success
rate, which is the ratio of problems solved by the evaluated
agent with the given amount of expert observations (for the
offline learning setting) or episodes (for the online learning
setting).

We divided our dataset into a single training problem and
five test problems, and we measured the success rate on both
the training problem and the test set problems. For the
Item Counts modeling approach, this division has no mean-
ing since the train and test problems are not sufficiently dif-
ferent. Thus, in this setting, we measured the success rate on
the map that the agents trained on. In the online setting, we
also measured the number of steps until the agent reaches
the goal. Recall that an episode ends after at most 64 steps.

All Blocks and Relevant Blocks Modeling Results

Algorithm # Trajectories - Train # Solved - Test
GAIL NA 0/5
BC 2000 0/5
Q-Learning 1 0/5
N-SAM 1 5/5

Table 1: The learning statistics of the offline setting on the
All Blocks and Relevant Blocks modeling approaches.

The results for All Blocks and Relevant Blocks were prac-
tically the same. Consider first the results for the offline
learning with expert observations setting. Table 1 show the
number of iterations until the evaluated agent could solve the

5https://stable-baselines3.readthedocs.io/en/master/
6https://imitation.readthedocs.io/en/latest/algorithms/bc.html



train set problems perfectly (the “#Trajectories - Train” col-
umn), and the number of test set problems solved (out of 5)
using the learned model (the “#Solved - Test”). The results
show that GAIL could not learn even how to solve the train
set problems even after 100,000 iterations. The BC algorithm
was able to learn the policy for the train set problems but re-
quired 2,000 expert trajectories. In contrast, N-SAM and Q-
Learning learned a model that correctly solves the training
problem much faster, requiring only one expert trajectory.
However, only N-SAM’s model was able to generalize so that
it could be used to solve the test set problems. Thus we can
deduce that the RL algorithms overfitted to the training set
while the action model learned by N-SAM allowed easy gen-
eralization to solve other problems in the domain.

Unfortunately, none of the evaluated online learning al-
gorithms were able to solve the given task with the restric-
tion of 100,000 iterations. The reason for this is that finding
a sequence of actions that accomplishes the task in the All
Blocks and Relevant Blocks representations is difficult. We
also experimented with several reward-shaping techniques
to help it converge but were not able to do so. This highlights
the difficulty of this task and the importance of choosing ef-
fective state representation.

Item Counts Modeling Results
Next, we discuss the results for the Item Counts modeling
approach. For the offline learning setting, we observed that
GAIL required more than 1000 iterations to start improving.
We also observed that both N-SAM and the Q-Learning al-
gorithms learned their model after a single iteration. On the
other hand, the success rate of the BC algorithm was lower
until it learned the correct policy after 180 iterations. Since
these trends present no difference in the learning rate be-
tween the Q-Learning and N-SAM, and the difference be-
tween these algorithms and the rest is vast, we decided to
not present the data graphically.

In Figure 5, we present the moving average of the rewards
the learning algorithms gained as a function of the number
of iterations on the input trajectory for the online learning
setting. In this setting, we averaged the values the same way
as the previous experiment, i.e., we averaged over ten sam-
ples. When we experimented with the online algorithms, we
observed that the N-SAM-based algorithms outperformed the
RL algorithms. PPO based N-SAM presented the best results
in terms of success rate. After three trajectories, the algo-
rithm learned the model perfectly and the planning task was
always solved. We also observed that the Q-Learning based
N-SAM behaves unexpectedly. It starts with an average suc-
cess rate of 0.4, and it declines after six trajectories, after
which it stabilizes on a perfect score.

To understand the reason for this behavior, we exam-
ined the PDDL domains that N-SAM had output. We ob-
served that N-SAM learned complex inequalities for the
CRAFT WOODEN POGO whereas after fewer trajectories,
the preconditions for the actions were disjunctions of nu-
meric equalities. This fits the assumption that N-SAM can
learn restrictive inequalities that become more relaxed once
the algorithm receives more trajectories.

Figure 6 presents the average number of steps the agents

had taken until they reached the goal as a function of the
number of iterations. We note that the expert agent com-
pleted the task in eleven steps. Additionally, we set the maxi-
mum number of steps the agents can use to roam the environ-
ment to 64. Thus, any agent performing 64 steps is consid-
ered to not have solved the task. We observe that the fastest
algorithm to reach the expert’s number of steps is the PPO
based N-SAM when on average, after 26 using 26 trajecto-
ries, its model was accurate enough for the solver to solve
the planning task with the optimal number of steps. Follow-
ing this algorithm is the Q-Learning based N-SAM that con-
verged to 15 steps. The RL algorithms, on the other hand, did
not converge and, at best, solved the problem in the same
number of steps as the Q Learning N-SAM did.

This shows another advantage of using N-SAM as a part of
the modeling framework. While the RL algorithms did not
converge, and on occasion even failed to solve the input task,
the N-SAM based improved over time and even provided the
optimal solution to the problem.

In summary, we observe that in all modeling approaches,
the N-SAM-based approach was either the same or signifi-
cantly better than the RL-based approach. In addition, we
observed that only with the more compact Item Counts state
representation, were we able to solve the problem without
expert observations.

Conclusions and Future Work
In this work, we explored a new approach to solving the
wooden Pogo crafting task. We proposed three ways to rep-
resent states and actions in this domain, namely All Blocks,
Relevant Blocks, and Item Counts. Then, we presented our
approach that learns an action model of the environment us-
ing N-SAM and then uses a state-of-the-art planning algo-
rithm to solve the planning task. We compared our approach
to several RL algorithms in two settings: offline learning with
expert observations and online learning. Experimental eval-
uation showed the benefit of a planning-based approach cou-
pled with an action model learning algorithm, outperform-
ing all RL-based approaches. Also, we showed that online
learning was only possible with the most compact modeling
(Item Counts), which emphasizes the importance of finding
the right domain representation. In future work, we intend
to explore solving the complete task without masking any
internal functionality. This setting will present challenges
since actions can have conditional effects depending on the
states they are executed on. In addition, we intend to ex-
plore improving the action selection process for the online
learning approach so action generation will focus on model
improvement rather than the goal-oriented approach used in
this research.
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