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Abstract

We introduce a simple but effective method for managing
risk in model-based reinforcement learning with trajectory
sampling that involves probabilistic safety constraints and
balancing of optimism in the face of epistemic uncertainty and
pessimism in the face of aleatoric uncertainty of an ensemble
of stochastic neural networks. Various experiments indicate
that the separation of uncertainties is essential to performing
well with data-driven MPC approaches in uncertain and safety-
critical control environments.

Introduction
Data-driven approaches to sequential decision-making are
becoming increasingly popular (Yang et al. 2019; Hussein
et al. 2017; Polydoros and Nalpantidis 2017; Schrittwieser
et al. 2020). They hold the promise of reducing the number
of prior assumptions about the system that are imposed by
traditional approaches that are based on nominal models.
Such approaches come in several different flavors (Kober,
Bagnell, and Peters 2013). Model-free approaches attempt
to extract closed-loop control policies directly from data,
while model-based approaches rely on a learned model of the
dynamics to either generate novel data to extract a policy or
to be used in a model-predictive control fashion (MPC). This
study belongs to the latter line of work.
Model-based methods have several advantages over pure
model-free approaches. Firstly, humans tend to have a better
intuition on how to incorporate prior knowledge into a model
rather than into a policy or value function. Secondly, most
model-free policies are bounded to a specific task, while
models are task-agnostic and can be applied for optimizing
arbitrary cost functions, given sufficient exploration.
Nevertheless, learning models for control come with certain
caveats. Traditional MPC methods require the model and
cost function to permit a closed-form solution which restricts
the function class prohibitively. Alternatively, gradient-based
iterative optimization can be employed, which allows for
a larger class of functions but typically fails to yield sat-
isfactory solutions for complicated function approximators
such as deep neural network models. In addition, calculating
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first-order or even second-order information for trajectory op-
timization tends to be computationally costly, which makes it
hard to meet the time constraints of real-world settings. This
motivates the usage of zero-order, i.e gradient-free or sample-
based methods, such as the Cross-entropy Method (CEM)
that do not rely on gradient information but are efficiently
parallelizable.
Many methods relying on a learned model and zero-order
trajectory optimizers have been proposed (Chua et al. 2018;
Wang and Ba 2020; Williams, Aldrich, and Theodorou 2015),
but all share the same problem: compounding of errors
through auto-regressive model prediction. This naturally
brings us to the question of how can we effectively man-
age model errors and uncertainty to be more data-efficient
and safe. Arguably, this is one of the main obstacles to apply-
ing data-driven model-based methods to the real world, e.g.
to robotics settings.
In this work, we introduce a risk-averse zero-order trajec-
tory optimization method (RAZER) for managing errors and
uncertainty in zero-order MPC and test it on challenging sce-
narios (Fig. 1). We argue that it is essential to differentiate
between the two types of uncertainty in the model-predictive
setting: the aleatoric uncertainty arising from inherent noise
in the system and epistemic uncertainty arising from the lack
of knowledge (Hora 1996; Kiureghian and Ditlevsen 2009).
We measure these uncertainties by making use of probabilis-
tic ensembles with trajectory sampling (Chua et al. 2018)
(PETS). Our contributions can be summarized as follows:
(i) method for separation of uncertainties in probabilistic en-
sembles (termed PETSUS); (ii) efficient use of aleatoric and
epistemic uncertainty in model-based zero-order trajectory
optimizers; (iii) an simple but practical approach to proba-
bilistic safety constraints in zero-order MPC.

Related Work
Uncertainty Estimation. In the typical model-based rein-
forcement learning (MBRL) setting, the true transition dy-
namics function is modeled through an approximator. Im-
pressive results have been achieved by both parametric mod-
els (Lenz, Knepper, and Saxena 2015; Fu, Levine, and Abbeel
2016; Gal, McAllister, and Rasmussen 2016; Hafner et al.
2019), such as neural networks, and nonparametric mod-
els (Kocijan et al. 2004; Nguyen-Tuong, Peters, and Seeger
2008; Grancharova, Kocijan, and Johansen 2008; Deisen-
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Figure 1: Environments considered for uncertainty-aware planning.

roth, Fox, and Rasmussen 2013), such as Gaussian Processes
(GP). The latter inspired seminal work on the incorporation
of the dynamics model’s uncertainty for long-term planning
(Deisenroth, Fox, and Rasmussen 2013; Kamthe and Deisen-
roth 2018). However, their usability is limited to low-data,
low-dimensional regimes with smooth dynamics (Rasmussen
and Kuss 2003; Rasmussen and Williams 2006), which is
not ideal for robotics applications. Alternative parametric
approaches include ensembling of deep neural networks,
used both in the MBRL community (Chua et al. 2018; Ku-
rutach et al. 2018), and outside (Osband et al. 2016; Lak-
shminarayanan, Pritzel, and Blundell 2017). In particular,
ensembles of probabilistic neural networks established state-
of-the-art results in the MBRL community (Chua et al. 2018),
but focus mainly on estimating the expected cost and disre-
gard the underlying uncertainties. In comparison, we propose
a treatment of the resulting uncertainties of the ensemble
model.
Zero-order MPC. The learned model can be used for pol-
icy search like in PILCO (Deisenroth and Rasmussen 2011;
Deisenroth, Fox, and Rasmussen 2013; Kamthe and Deisen-
roth 2018; Curi, Berkenkamp, and Krause 2020) or for on-
line model-predictive control (MPC) (Morari and Lee 1999;
Williams et al. 2017; Chua et al. 2018). In this work, we
do planning in an MPC fashion and employ a zero-order
method as a trajectory optimizer, since less sensitive to hy-
perparameter tuning and less likely to get stuck in local min-
ima of complex objective functions. Specifically, we con-
sider a sample-efficient implementation of the Cross-Entropy
method (Rubinstein and Davidson 1999; Botev et al. 2013)
introduced in (Pinneri et al. 2020).
Safe MPC. Separating the sources of uncertainty is of partic-
ular importance for AI applications directly affecting humans’
safety, as self-driving cars, elderly care systems, or in general
any application that involves a physical interaction between
the AI system and humans. Disentangling epistemic from
aleatoric uncertainty allows for separate optimization of the
two, as they represent semantically different objectives: ef-
ficient exploration and risk-awareness. Extensive research
on uncertainty decomposition has been done in the Bayesian
setting and the context of safe policy search (Mihatsch and

Neuneier 2002; Garcıa and Fernández 2015; Depeweg et al.
2017, 2018), MPC planning (Arruda et al. 2017; Lee et al.
2020; Abraham et al. 2020), and distributional RL (Clements
et al. 2020; Zhang and Weng 2021). On the other side, a state-
of-the-art baseline for ensemble learning like PETS (Chua
et al. 2018), despite estimating both uncertainties, only op-
timizes for the expected cost during action evaluation. Our
work aims at filling this gap by explicitly integrating the
propagated uncertainty information in the zero-order MPC
planner.

Method
Our approach concerns itself with the efficient usage of
uncertainties in zero-order trajectory optimization and is
therefore generally applicable to such optimizers. We are
interested in modeling noisy system dynamics xt+1 =
f(xt, ut, w(xt, ut)) where f is a nonlinear function, xt the
observation vector, ut applied control input and w(xt, ut) a
noise term sampled from an arbitrary distribution.
Consequently, in the absence of prior knowledge about the
function f , the system needs to be modeled by a complex
function approximator such as a neural network. Further-
more, we are interested in managing uncertainties based on
our fitted model, which is erroneous. To this end, we use
stochastic ensembles of size K, where the output of each
model ϑk(xt, ut) are parameters of a normal distribution
depending on input observation xt and control ut. As a by-
product, our auto-regressive model prediction based on con-
trols u becomes a predictive distribution over trajectories τ ;
ψτ (xt,u) := p(τ |xt,u; θ) where θ denotes the parameters
of the ensemble. For convenience, from this point onward we
will differentiate between multiple usages of ψτ . We denote
with ψx∆t the distribution p(xt+∆t|xt,ut:t+h; θ) over states
at time step t+∆t and ψϑ

∆t the distribution over the Gaussian
parameter outputs p(ϑt+∆t|xt,ut:t+h; θ) at time step t+ ∆t
of the planner.

Planning and Control
To validate our hypothesis that accounting for uncertainty
in the environment and model prediction is essential to de-
velop risk-averse policies, we use the Cross-Entropy Method



(CEM) with improvements suggested in Pinneri et al. (2020).
Accordingly, at each time step t we sample a finite num-
ber of control sequences u for a finite horizon H from an
isotropic Gaussian prior distribution which we evaluate from
the state xt using an auto-regressive forward-model and the
cost function. The sampling distribution is refitted in multiple
rounds based on good-performing (elite) trajectories. After
this optimization step, the first action of the mean of the fitted
Gaussian distribution is executed. Since this approach utilizes
a predictive model for a finite horizon at each time step, it
naturally falls into the category of Model Predictive Control
(MPC) methods.
Although we use CEM, our approach of managing uncer-
tainty can generically be applied to other zero-order trajec-
tory optimizers such as MPPI (Williams et al. 2017), by a
modification of the trajectory cost function.

The Problem of Uncertainty Estimation
Since we have a stochastic model of the dynamics, at the
model prediction time step t we observe a distribution over
potential outcomes. Indeed, since our model outputs are pa-
rameters of a Gaussian distribution, with auto-regressive pre-
dictions we end up with a distribution over possible Gaussians
for a certain time step t.
Given a sampled action sequence u and the initial state xt we
observe a distribution over trajectories ψτ . To efficiently sam-
ple from the trajectory distribution ψτ we use the technique
introduced by Chua et al. (2018) (PETS) which involves
prediction particles that are sampled from the probabilistic
models and randomly mixed between ensemble members at
each prediction step. In this way, the sampled trajectories
are used to perform a Monte Carlo estimate of the expected
trajectory cost Eτ∼ψτ [c(τ)]. However, this does not take the
properties of ψτ into account, which might be a high-entropy
distribution and may lead to very risky and unsafe behavior.
In this work, we alleviate this by looking at the properties
of ψτ , i.e. different kinds of uncertainties arising from the
predictive distribution.

Learned Dynamics Model
We learn a dynamics model fθ that approximates the true sys-
tem dynamics xt+1 = f(xt, ut, w(xt, ut)). As a model class,
we use an ensemble of neural networks with stochastic out-
puts as in Chua et al. (2018). Each model k, parameterizes a
multivariate Gaussian distribution with diagonal covariance,
fkθ (xt, ut) = N (xt+1;xt + µkθ(xt, ut),Σ

k
θ(xt, ut)) where

µkθ(·, ·) and Σkθ(·, ·) are model functions outputting the re-
spective parameters.
Iteratively, while interacting with the environment, we collect
a dataset of transitions D and train each model k in the
ensemble by the following negative log-likelihood loss on
the Gaussian outputs:

L(θ, k) = ED
[
− logN (xt+1;xt + µkθ(xt, ut),Σ

k
θ(xt, ut))

]
(1)

In addition, we use several regularization terms to make the
model training more stable. We provide more details on this
in Suppl. .

Separation of Uncertainties
In the realm of parametric estimators, two uncertainties are
of particular interest. Aleatoric uncertainty is the kind that is
irreducible and results from inherent noise of the system, e.g.
sensor noises in robots. On the other hand, we have epistemic
uncertainty resulting from lack of data or knowledge which
is reducible. This begs the question, how can we separate
these uncertainties given an auto-regressive dynamics model
fθ? The way that we efficiently sample from ψτ is by mixing
sampled prediction particles, similarly as in PETS(Chua et al.
2018). This process is illustrated by the red lines in Fig. 2.
Simple model prediction disagreement is not a good measure
for aleatoric uncertainty since it can be entangled with epis-
temic uncertainty. Given our assumptions about the system
dynamics, we measure aleatoric uncertainty as the entropy
of the predicted normal distributions of the ensemble models.
More concretely, given a sampled particle state x̃t, we de-
fine the estimated aleatoric uncertainty for ensemble model
associated to particle b at time step t as:

Ab(x|x̃t, ut) = Hx∼ψx∆t,b(x) (2)

Where ψx∆t,b is the output distribution of ensemble model
based on inputs x̃t, ut. Since in the end we are interested in
the aleatoric uncertainty incurred from applying the action
sequence u from initial state xt, the quantity of interest for
us is the expected aleatoric uncertainty for time slice t:

A(x|ut) = Ex̃b∼ψx∆t
[
Ab(x|x̃b, ut)

]
(3)

Intuitively, because we only have access to the ensemble for
sampling, we take a time-slice in the sampled trajectories
from ψτ and compute the output entropies. Moreover, since
we assume a Gaussian 1-step predictive distribution this is an
expectation over differential Gaussian entropy. An alternative
way of computation which we also explore in this work is
calculating the expected particle variance for time slice t of
the prediction horizon:

VarAt+1 =
1

B

B∑
b=1

Σkθ(x̃t,b, ut) (4)

For estimating the epistemic uncertainty, one would be
tempted to look at the disagreement between ensemble mod-
els in parameter space Var[θ], but this is not completely sat-
isfying, since neural networks tend to be over-parametrized
and variance within the ensemble still may exist albeit the
optimum has been reached by all ensemble models. An al-
ternative would be to calculate the Fisher information metric
I := Var[∇θ logL(xt+1|xt, ut)] where L denotes the likeli-
hood function, but this tends to be expensive to compute.
Given the assumption of local Gaussianity, the true epistemic
uncertainty for this case is the predictive entropy over the
Gaussian parameters ϑ at time step t+ h.

E(xt,ut:t+h) = Hψϑ
∆t

(ϑ | xt,ut:t+h) (5)

It is easy to verify that this quantity is 0 given perfect pre-
dictions of the model. Note that, because of auto-regressive
predictions of a nonlinear model, this is a very difficult ob-
ject to handle. Nevertheless, since our predictive distribution
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Figure 2: Probabilistic Ensembles with Trajectory Sampling and Uncertainty Separation (PETSUS)

p(x | xt, ut;ϑ) is parametrized by model outputs, we may
utilize disagreement in ϑt to approximate E. To get correct
estimations, we need to propagate mean predictions x̄ in addi-
tion to the particles as illustrated as the yellow lines in Fig. 2.
We quantify epistemic uncertainty as ensemble disagreement
at time step t:

VarE(xt+1) = Vare[µkθ(x̄t, ut)] + Vare[Σkθ(x̄t, ut)] (6)

where Vare is the empirical variance over the k = 1 . . .K
ensembles.

Probabilistic Safety Constraints
When applying data-driven control algorithms to real systems,
safety is of utmost importance. In the realm of zero-order
optimization, safety constraints can be easily introduced
by putting an infinite cost on constraint-violating trajecto-
ries. Nevertheless, we are dealing with erroneous stochastic
nonlinear models which lead to nontrivial predictive distri-
butions of future states, based on the control sequence u.
For this reason, we want to control the risk of violating the
safety constraints that we, as practitioners, are willing to
tolerate. If we denote the observation space as X, given a
violation set C ⊂ X, we define the probability of the con-
trol sequence u to enter the violation set at time t + ∆t as
p(x ∈ C | xt,u) =

∫
x∈C ψ

x
∆t(x | xt,u). In practice, it is

hard to compute this integral efficiently, since our distribu-
tion ψx∆t is nontrivial as a result of nonlinear propagation of
uncertainty. Furthermore, the violation set C might not have
the structure necessary to allow an efficient solution to the
integral, in which case one needs to resort to Monte Carlo
estimation.
To simplify computation and gain speed, we consider box
violation sets resulting in each dimension of x being con-
strained to be outside of [a, b] ∈ {a, b | a, b ∈ R2, a < b}.
By performing moment matching by a Gaussian in each time-
slice ψx∆t, the probability of ending up in state x at time step
t+ ∆t is given by integratingN (x;µt+∆t,Σt+∆t), where µ
and Σ are estimated by Monte Carlo sampling. If we further

assume a diagonal covariance Σ, this integral can be decon-
structed into d univariate Gaussian integrals, which can be
computed fast and in closed form (error function). Hence, the
probability of a constraint violation happening at time step t
is defined by:

p(x ∈ C | xt,u) =

d∏
i=0

∫
x∈C
N (xi;µit+∆t, σ

i
t+∆t) (7)

Implementing Risk-Averse ZERo-Order
Trajectory Optimization (RAZER)
We assume the task definition is provided by the cost c(xt,u).
For trajectory optimization, we start from a state xt and
predict with an action sequence u the future development of
the trajectory τ . Along this trajectory, we want to compute a
single cost term which is conveniently defined as the expected
cost of all particles x̃ summed over the planning horizon H:

c(xt,u) =

H∑
∆t=1

1

B

B∑
b=1

c(x̃bt+∆t, ut+∆t). (8)

The optimizer, in our case CEM, will optimize the action
sequence u to minimize the cost in a probabilistic sense, i.e.
p(u | x) ∝ exp(−β c(x,u)) where β reflects the strength of
the optimizer (the higher the more likely it finds the global
optimum). To make the planner uncertainty-aware, we need
to make sure it avoids unpredictable parts of the state space
by making them less likely. Using the aleatoric uncertainty
provided by PETSUS Eq. 4, we define the aleatoric penalty
as

cA(xt,u) = wA ·
H∑

∆t=1

√
VarAt+∆t, (9)

where wA > 0 is a weighting constant. The larger the
aleatoric uncertainty, the higher the cost.
To guide the exploration to states where the model has epis-
temic uncertainty Eq. 6 (due to lack of data), we use an



epistemic bonus:

cE(xt,u) = −wE ·
H∑

∆t=1

√
VarEt+∆t, (10)

where wE > 0 is a weighting constant. To be able to operate
on a real system, the most important part is to adhere to
safety constraints. As formulated in Eq. 7, the predicted safety
violations need to be uncertainty aware, independent of the
source of uncertainty. We integrate this into the planning
method by adding:

cS(xt,u) = wS ·
H∑

∆t=1

q
p(x̂t+∆t ∈ C) > δ

y
(11)

where J·K is Iverson bracket and wS is either a large penalty
cmax or 0 to disable safety. An alternative for implementing
safety constraints into CEM is by changing the ranking func-
tion (Wen and Topcu 2018). The overall algorithm used in a
model-predictive control fashion is outlined in Suppl. .

Experiments
We study our uncertainty-aware planner in 4 continuous state
and action space environments and compare to naively opti-
mizing the particle-based estimate of the expected cost simi-
larly to Chua et al. (2018). We start by giving a description
of the environments.
BridgeMaze This toy environment (see Fig. 1c) was specif-
ically designed to study the different aspects of uncertainty
independently. The agent (blue cube) starts on the left plat-
form and has to reach the goal platform on the right. To reach
the goal platform, the agent has to move over one of three
bridges without falling into the lava. The upper bridge is safe-
guarded by walls; hence, it is the safest path to the goal but
also the longest. The lower bridge has no walls and therefore
is more dangerous for an unskilled agent to cross but the path
is shorter. The middle bridge is the shortest path to the goal.
However, randomly appearing strong winds perpendicular to
the bridge might cause the agent to fall off the bridge with
some probability, making this bridge dangerous.
Noisy-HalfCheetah This environment is based on
HalfCheetah-v3 from the OpenAI Gym toolkit. We introduce
aleatoric uncertainty to the system by adding Gaussian noise
ξ ∼ N (µ, σ2) to the actions when the forward velocity is
above 6. The action noise translates into a non-Gaussian and
potentially very complicated state space noise distribution
that makes the control problem very challenging.
Noisy-FetchPickAndPlace Based on the
FetchPickAndPlace-v1 gym environment. Additive ac-
tion noise is applied to the gripper so that its grip on the
box might become tighter or looser. The noise is applied for
x-positions < 0.8 which is illustrated in Fig. 1a by a blue
line causing the agent to drop the box with high probability
if it tries to lift the box too early.
Solo8-LeanOverObject In this robotic environment, the task
of a quadrupedal robot (Grimminger et al. 2020) is to stand
up and lean forward to reach a target position (purple markers
need to reach green dots in Fig. 1b) without hitting an object
visualized by the red cube representing the unsafe zone. The

robot starts in a laying position as shown in the inset of
Fig. 1b. As in the Noisy-HalfCheetah environment, Gaussian
action noise is applied to mimic real-world perturbances.

Algorithmic Choices and Training Details
For model-predictive planning we use the CEM implementa-
tion from Pinneri et al. (2020). Further details about hyperpa-
rameters can be found in Suppl. . For planning, we use the
same architecture for the ensemble of probabilistic models,
both in RAZER and in PETS. The only difference is that in
RAZER we also forward propagate the mean state predic-
tions in addition to the sampled state predictions. Further
details can be found in Suppl. .
For training the predictive model, we alternate between two
phases: data collection and model fitting. In the BridgeMaze
environment, we collect 5 rollouts of length 80 steps and
append them to the previous rollouts. Afterwards, we fit the
model for 25 epochs. For Noisy-HalfCheetah, we collect 1
rollout and fit for 50 epochs. For Noisy-FetchPickAndPlace
and Solo8-LeanOverObject we replace the f̂ in Fig. 2 with
independent instances of noisy ground truth simulators.
Next, we will present RAZER’s exploration and safety be-
havior in the BridgeMaze environment. Afterwards, we are
going to discuss planning with external safety constraints
in the Solo8-LeanOverObject environment. We complete
this section with results on Noisy-HalfCheetah and Noisy-
FetchPickAndPlace.

Active Learning for Model Improvement
If model uncertainties are used for risk-averse planning, they
are only meaningful if the model has the right training data.
Only from good data can the parameters of the approximate
noise model be learned correctly. In case of too little data,
the agent might avoid parts of the state space due to an over-
estimation of the model uncertainties. On the other hand, the
agent might enter unsafe regions for which the uncertainties
are underestimated. By adding the epistemic bonus to our
domain-specific cost, the planner can actively seek states
with high epistemic uncertainty, i.e. for which no or only
little training data exists.
Figure 4a shows this active data gathering process for the
BridgeMaze environment. PETS finds one particular solution
to the problem of reaching the goal platform. It chooses the
path over the safer, lower bridge rather than the dangerous
middle path and the longer path via the upper bridge (Fig. 3b).
Once, one solution is found, the model overfits to it without
exploring any other parts of the state space. This is also
reflected in the plateauing of the red curve in Fig. 3a.
In comparison, RAZER actively explores larger and larger
parts of the state space with an increasing weight of the
epistemic bonus (Fig. 3a). RAZER not only finds the easy
solution found by PETS but also extensively explores other
parts of the state space (Fig. 3c). To not get stuck at the
middle bridge during exploration due to the inherent noise,
it is important to separate between epistemic and aleatoric
uncertainties. Only the former should be used for exploration.
With enough data, our model can correctly capture the uncer-
tainties of these states resulting in the epistemic uncertainty
approaching zero.
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Figure 3: Active learning setting: The epistemic bonus allows RAZER to seek states for which no or only little training data
exists (a,c). Means and standard deviations for (a) were computed over 5 runs. PETS overfits to a particular solution (b). In (b)
and (c), the brightness of the dots is proportional to the time when they were first encountered.

Risk-Averse Planning
Once a good model is learned, it can be used for safe plan-
ning. What differentiates RAZER from PETS is that it makes
explicit use of uncertainty estimates while in the latter uncer-
tainties only enter planning by taking the mean over the par-
ticle costs and not differentiating between different sources
of uncertainty.
BridgeMaze. Figure 4a shows the success rate of PETS
and RAZER in the BridgeMaze. In both cases, we use the
same model that was trained from data collected during a
training run with wE = 0.05. Hence, the model saw enough
training data from all parts of the state space. The noise in the
environment is tuned such that there is a chance to cross the
bridge without falling. While in Fig. 3b PETS avoided this
path because of an overestimation of the state’s value due to
a lack of training data and sometimes sees a chance to cross
the bridge. However, these attempts are very likely to fail
because of stronger winds that occur randomly, resulting in a
success rate of only 58%. RAZER does not rely on sampling
for the aleatoric part and can thus avoid risk. With a higher
penalty constant the success rate increases up to 96% but
only as long as the agent is willing to take a risk at all. For
large values of wA the agent becomes so conservative that it
only moves slowly (decreasing reward in Fig. 4a).
Noisy-HalfCheetah. How does RAZER perform on the
Noisy-HalfCheetah environment when models are learned
from scratch? Without aleatoric penalty, the planner is opti-
mistic. Risky situations are only detected if a failing particle
is sampled. Thus, the noise is mostly neglected and the robot
increases its velocity, gets destabilized, and ends up slower
than with the aleatoric penalty (Fig. 5a).
Noisy-FetchPickAndPlace. In this environment, a 7-DoF
robot arm should bring the box to a target position – starting
and target positions are at the opposite sides of the table. The
shortest path is to lift the box and move in a straight line to
the target. However, with noise applied to the gripper action,
there is a certain probability to drop the box along the way.
When penalizing aleatoric uncertainty, this is avoided and
also fewer trajectory samples are “wasted” in high-entropic
regions, as presented in Fig. 1a. Figure 4b shows the number
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Figure 4: Risk-averse planning in the face of aleatoric uncer-
tainty yields higher success rates in noisy environments. For
(b) we use ground truth models and a fixed aleatoric penalty
weight wA.
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Figure 5: Noisy-HalfCheetah environment (task lengths 300 steps) with learning models from scratch. At 150 iterations we
have seen only 45k points. (a) Performance under noisy actions. By applying the aleatoric penalty, RAZER can navigate the
uncertainties better – leading to higher returns faster. (b) Safety violations above a certain body height (simulating a low ceiling)
for different values of δ. With increasing δ, RAZER is seldomly violating constraints in stark contrast to PETS. In (c) the number
of violations is averaged over the last 50 iterations (summed over 10 rollouts).

of times the box is dropped on the table depending on the
aleatoric penalty. RAZER adopts a cautious behavior, prefer-
ring to slide the box on the table and lifting it only in the area
without action noise, achieving a dropping rate lower than
20%, even when considerable noise is applied.

Planning with External Safety Constraints

Noisy-HalfCheetah:. We consider a safety constraint on the
height of the body above ground simulating a narrow passage.
Figure 5b shows the number of safety violations. Note that
PETS has the same penalty cost for hard violations.
Solo8-LeanOverObject:. In this experiment, the robot has
to move to two target points with its front and rear of the
trunk while avoiding entering a specified rectangular area
(fragile object). The front feet are fixed. To track the points,
the robot has to lean forward, such that it can lose balance due
to noisy actions. In contrast to PETS, RAZER successfully
manages to satisfy the safety constraints almost always as
shown in Fig. 6. However, satisfying the safety constraint
comes with the cost of reduced tracking accuracy.

Conclusion

In this work, we have provided a methodology to separate un-
certainties in stochastic ensemble models (PETSUS) which
can be used as a tool to build risk-averse model-based plan-
ners that are also data-efficient and enforce safety through
probabilistic safety constraints (RAZER). This type of risk-
averseness can be achieved by a simple modification of the
cost function in form of uncertainty penalties in zero-order
trajectory optimizers.
Furthermore, the separation of uncertainties allows us to do
proper exploration via epistemic bonus which benefits gen-
eralization of the model and therefore makes it applicable
to more settings. As future work, it would be of interest to
see this approach applied to a proper transfer learning set-
ting from simulations to real systems, where risk-averseness
combined with exploratory behavior is crucial for efficient
learning and safe operation.
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Figure 6: Safe planning vs. task-oriented planning in the
Solo8-LeanOverObject environment with noisy actions. Left:
number of safety violations for different values of δ (Eq. 11).
Right: enforcing safety constraints causes slight reduction in
tracking accuracy due to the fixed planning budget and the
competing objectives of task and safety costs.
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Supplementary Material for Mind the Uncertainty: Risk-Aware and Actively
Exploring Model-Based Reinforcement Learning

In this supplementary we provide additional details for our
method.
Our research suffered from pandemic impacts on lab access
which is detailed in Sec. 12.

Implementation Details
Model Learning
Parameters used for model learning in the BridgeMaze exper-
iments.
We bound the predicted log variance by applying (as in (Chua
et al. 2018, A.1))

logvar = max_logvar - softplus(max_logvar - logvar)

logvar = min_logvar + softplus(logvar - min_logvar)}

to the output of the network that predicts the log variance,
logvar. In principle, we could differentiate through this
bound to automatically adjust the bounds max_logvar and
min_logvar. However, we decided to not make these pa-
rameters learnable.
Parameters used for model learning in the Noisy-HalfCheetah
environment (only differences to BridgeMaze environment).

Controller Parameters
Parameters used in the CEM controller. For an explanation of
the different parameters, we refer the reader to(Pinneri et al.
2020).

Timings
While our code is not tuned for speed specifically, in this
section we provide some timings for a single step in the
environment (hyper-parameters are set as specified in Suppl.
and Suppl. , with num_simulated_trajectories = 128 and
op_iterations = 3) in Table S6.

Uncertainty Separation
In our method, we separate the epistemic uncertainty, denoted
as E and aleatoric uncertainty, denoted as A, the details of
which are explained in Sec. with the resulting costs that arise.
Since we are using a variant of the CEM algorithm that needs
to sort the sampled action sequences u according to their
cost, the cost of an action sequence is a single floating point
number.
The stochastic NN ensemble that we are using samples tra-
jectories from the predictive distribution ψτ for each action
sequence u. In addition, our variant (PETSUS), also propa-
gates the mean prediction x̄t for each ensemble member for
an action sequence u. The auto-regressive prediction follows
a recursive relation:

[x̄t+1,Σt+1] = ϑ(x̄t, ut)

We make use of this in order to estimate the epistemic un-
certainty E. At each time point of the predicted sequence of
observations, we take the empirical variance of the outputted
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Figure S7: Exploration over time.

Gaussian parameters ϑ(x̄t, ut), predicted from the previous
mean prediction x̄t and control ut, across the ensembles
for that time slice in the predicted trajectories. This is then
summed up across horizon H to obtain the epistemic bonus
for action sequence u.
Fig. S7 shows that scaling wE results in better state-coverage.
This is of particular interest if we want to learn models that
are able to generalize to different task settings, e.g. when
changing the cost function. While the naive PETS algorithm
overfits the model to the task at hand, RAZER learns a truly
task-agnostic model and is able to reap the benefits of model-
based approaches to control.
For the aleatoric penalty we rely on the actual predictions of
the covariance Σ(xt, ut) and average them across the time
slice, following with the sum across horizon H . Alternatively
to this, we also use the entropy of the Gaussian as the A
uncertainty measurement. In Sec. we argue how these terms
are interchangeable.
Note that, for the safety term ideally we want to use the
full distribution ψτ and separation in aleatoric and epistemic
uncertainty is neither required nor desirable.

Entropy vs. Variance as Uncertainty Measurement
We use entropy of Gaussian and variance interchangebly as
uncertainty estimates. Indeed, since the Gaussian distribution
is the maximum entropy distribution for certain variance σ2,
the entropy scales linearly with log σ2. We have found that
utilizing the variance directly causes RAZER to be much
more risk-averse, which can be explained by the variance not
being suppressed by the log term in the entropy. Moreover,
using the variance directly is much more interpretable and
easier to tune because it’s of the same scale as the observation
space.

Observation Space vs. Cost Space Uncertainty
A natural question to ask when attempting to make efficient
use of uncertainties in MPC is where to measure these uncer-
tainties. As an alternative to observation space uncertainties,



Table S1: Model parameters

Ensemble parameters

Name Value

num_layers 6
size 400
activation silu
ensemble_size (n) 5
output_activation None
l1_reg 0
weight_initializer truncated_normal
bias_initializer 0
use_spectral_normalization False

Stochastic NN parameters

Name Value

var_clipping_low −10.0
var_clipping_high 4
state_dependent_var True
regularize_automatic_var_scaling False

Remaining parameters

Name Value

lr 0.002
grad_norm 2.0
batch_size 512
weight_decay 1e−5

use_input_normalization True
use_output_normalization False
epochs 25
predict_deltas True
train_epochs_only_with_latest_data False
iterations 0
optimizer Adam
propagation_method TS1
sampling_method sample

Table S2: Model parameters

Ensemble parameters

Name Value

num_layers 4
size 200

Stochastic NN parameters

Name Value

var_clipping_low −6.0
state_dependent_var True

Remaining parameters

Name Value

lr 0.0002
grad_norm None
batch_size 256
weight_decay 3e−5

epochs 50

one could measure uncertainty in cost space. Here we ar-
gue why this is not a reasonable thing to do for each of the
individual cost terms.
Epistemic Bonus. Since we operate under the desiderata that
the benefit of model-based methods is in task-agnosticism,
we shouldn’t measure epistemic uncertainty in the cost space,
since this would decouple the task definition through the
cost from the observation space and would lead to learning
models that are not task-agnostic.
Aleatoric Penalty. This is perhaps the most questionable
case for using observation space uncertainty instead of
cost space uncertainty. Nevertheless, we assume that high-
aleatoric uncertainty translates to control difficulty, and we
want to avoid parts of the observation space that are difficult
to control. Moreover, the uncertainty measurements become
completely invalidated in the case of a task switch, which
plays against the task-agnosticism desiderata.
Safety Penalty. Safety is something that is enforced by
infusing the algorithm with prior knowledge through a set of
constraints which mostly manifest themselves as subsets of
the observation space X or action space U .

Table S3: Controller parameters, BridgeMaze environment.

Action sampler parameters

Name Value

alpha 0.1
colored_noise true
elite_size 10
execute_best_elite true
finetune_first_action false
fraction_elites_reused 0.3
init_std 0.5
keep_previous_elites true
noise_beta 2.0
opt_iterations 3
relative_init true
shift_elites_over_time true
use_mean_actions true

Remaining parameters

Name Value

cost_along_trajectory sum
delta 0.0
factor_decrease_num 1
horizon 30
num_simulated_trajectories 128

Algorithm
In Algo. 1 we provide an overview of the CEM algorithm
that we utilize for implementing RAZER. Concretely, we use
an improved sample efficient version of CEM as proposed by
Pinneri et al. (2020) that involves shift-initialization of the
distribution mean, sampling time-correlated noise and further
improvements.

Environments
All environments are based on the MuJoCo physics
engine (Todorov, Erez, and Tassa 2012). The Noisy-
Halfcheetah and Noisy-FetchPickAndPlace environments
are based on HalfCheetah-v3 and FetchPickAndPlace-v1, re-
spectively.
BridgeMaze. We designed the BridgeMaze environment to
show the different aspects of uncertainty, namely the epis-
temic and aleatoric uncertainty, in isolation. The agent is
a simple cube with only a free joint attached to it. The



Table S4: Controller parameters, Noisy-HalfCheetah environ-
ment (only difference to BridgeMaze environment).

Action sampler parameters

Name Value

noise_beta 0.25
opt_iterations 4

Remaining parameters

Name Value

num_simulated_trajectories 120

Table S5: Controller parameters, Solo8-LeanOverObject en-
vironment (only difference to BridgeMaze environment).

Action sampler parameters

Name Value

init_std 0.3
noise_beta 3.0

state-space x = [x0, x1, x2, a, b, c, d, vx0
, vx1

, vx2
] is 10-

dimensional, consisting of 3 positional (x0 to x2), 4 rotational
(a to d) and 3 velocity-based (vx0

to vx2
), agent-centric co-

ordinates. The action-space u = [τx0
, τx1

] is 2-dimensional.
The torque τ applied to the agent in x0- and x1-direction.
The task in the environment is to reach a goal platform at
x?0 ≥ 12 by crossing one of three bridges that go over deadly
lava.
The domain reward is defined as in (S12).
where x? is the goal state. We define the cost for planning as
ct(xt, ut, xt+1) = −rt(st, ut, st+1).
We designed the environments such that the agent is able to
accelerate fast and also comes to a full stop relatively fast if
no torque is applied. This makes the control problem and the
task of learning the model relatively easy.
Noise is added in form of an external force in x1-direction
injected through the xfrc_applied attribute of the model.
The sign of the force, as well as the force amplitude, sampled
from fext ∈ U(0, fmax

ext ), are randomly changing every 5 simu-
lation steps. The external force is added only if−8 ≤ x0 ≤ 8
and −3.6 ≤ x1 ≤ 3.6. Otherwise the external force is zero.
Noisy-HalfCheetah. We utilize a modified HalfCheetah en-
vironment where we apply a normally distributed noise term
ξ ∼ N (µ,Σ) to the simulator state in the case when the
velocity of the cheetah is greater than 6. More concretely, let
st denote the simulator state at time step t, then the modified
state is calculated as follows:

s′t = st + ξt (S13)

In our case, Σ is a diagonal covariance matrix with the diago-
nal terms equal to 0.2. In addition, for the safety experiments
with the Noisy-HalfCheetah we create a virtual ceiling at
height h = 0.3. In the case that the body height crosses

Table S6: Timings per one environment step in ms. We mea-
sured the timings on a system with 1 GeForce GTX 1050 Ti,
an Intel Core i7-6800K and 31GB of memory.

Environment Timing [ms]

BridgeMaze 0.25
Noisy-HalfCheetah 0.14

Algorithm 1: RAZER: Risk-aware and safe CEM-
MPC

1 Parameters:
2 N : number of samples; B: Number of particles, H:

planning horizon; wA, wE, wS CEM-iterations
3 for t = 1 to T // loop over episode length
4 do
5 for i = 1 to CEM-iterations do
6 (samplesp)

P
p=1← N samples from

CEM(µit,Σ
i
t), with P particles per sample

7 c, cA, cE, cS ← compute cost functions over
particles

8 ctot = c+ cA + cE + cS // compute total cost
9 elite-sett← best K samples according to total

cost
10 µi+1

t , Σi+1
t ← fit Gaussian distribution to

elite-sett
11 execute first action of best elite sequence
12 shift-initialize µ1

t+1

this threshold, the agent incurs a large penalty. When the
safety-constraint is violated, we don’t end the episode.

Noisy-FetchPickAndPlace. We modified the
FetchPickAndPlace-v1 environment to show the ef-
fect of the aleatoric penalty on the CEM action plan. Given
the difficulty of the task, we performed the experiments
without the learned model, using instead an ensemble of
noisy ground truth dynamics. In this way, we could more
easily understand the role of the aleatoric uncertainty during
planning.

The noise term ξ ∼ N (µ,Σ) is applied to the action con-
trolling the gripper state: a positive additive noise forces
the robot to open the grip with a force proportional to the
noise magnitude. This noise is applied to all the ground truth
models of the ensemble, and to the environment as well.

In particular, the box position is centered at y-coordinate -1.5
while the target is at y = 2.0. The gripper state is noisy until
y = 1.67, right before the target.

Solo8-LeanOverObject. The state space of the this envi-
ronment is 47-dimensional. It contains the absolute position,
rotation, velocity and angular velocity of the robot as well
as the positions and velocities of all the joints. In addition,
the state contains the positions of the end-effectors and of the
sites at the front and back of the robot. The actions space is
8-dimensional and controls the relative position of the joints.
We fixed the two front legs of the robot with a soft-constraint
to the ground to prevent the robot from uncontrollable jump-
ing. We apply Gaussian noise to the action with a mean of 0
and a diagonal covariance matrix with the diagonal elements
all being 0.3. The noise is uniformly applied over the entire
state-action-space.

The experiments for the Solo8-LeanOverObject environment
use the ground truth model during planning. The same noise
were applied in the ’mental’ as well as the ’real’ environment.



rt(xt, ut, xt+1) =


|(x0)t − x?0| − |(x0)t+1 − x?0| , if (x1)t+1 ≥ −1.5

0 , if (x0)t+1 ≥ x?0 and (x1)t+1 ≥ −1.5

−1 , otherwise
(S12)

Computing State-Space Coverage
For computing the state coverage in Fig. 3a we divided the
continues state-space in 50 equally spaced bins in the range
−20 ≤ x0 ≤ 20 and −10 ≤ x1 ≤ 15. The state space-
coverage is the fractions between states visited at least once
and the total number of states.

Application to Transfer Learning
In this work we have demonstrated that an approach such
as PETS(Chua et al. 2018) to data-driven MPC that relies
on zero-order trajectory optimization of the expected cost
is not enough to manage uncertain environments and safety
constraints. These problems need to be addressed when deal-
ing with sim-to-real. The separation of uncertainties allows
us to effectively manage epistemic uncertainty in the real
system, which is important for improving the model once
distribution shift to the real system happens. This can be done
in a way of combining the epistemic bonus and probabilistic
safety constraints, such that the policy explores parts of the
state space where there is knowledge to be obtained while
avoiding high-cost regions as a consequence of the incurred
safety and aleatoric penalties.
In comparison to standard approaches for sim-to-real which
involve domain randomization at training time, this approach
incurs lower computational overhead and relies on learning
on the real system.

Pandemic Impact
In our department the lab access during the last 1.5 years
was heavily restricted, such that we could not perform the
planned experiments with the real Solo8 quadruped. Instead,
we decided to focus on simulations of the real robot and
consider what is important for transfer to the real world:
uncertainty estimation and safe model-based reinforcement
learning.
In Sec. 12 we provide motivation for why uncertainty sep-
aration is in particular important for the sim-to-real setting.
In this work, we have provided fundamental methodology
for separating uncertainties and using them for more robust
control and exploration. Therefore, this work is a stepping
stone towards application to the real robots which we plan on
exploring once the lab restrictions due to the pandemic are
lifted.


