
Meta-operators for Enabling Parallel Planning
Using Deep Reinforcement Learning

Ángel Aso-Mollar1, Eva Onaindia1

1 Valencian Research Institute for Artificial Intelligence (VRAIN),
Universitat Politècnica de València (UPV)
aaso@vrain.upv.es, onaindia@dsic.upv.es

Abstract

There is a growing interest in the application of Reinforce-
ment Learning (RL) techniques to AI planning with the aim to
come up with general policies. Typically, the mapping of the
transition model of AI planning to the state transition system
of a Markov Decision Process is established by assuming a
one-to-one correspondence of the respective action spaces. In
this paper, we introduce the concept of meta-operator as the
result of simultaneously applying multiple planning opera-
tors, and we show that including meta-operators in the RL ac-
tion space enables new planning perspectives to be addressed
using RL, such as parallel planning. Our research aims to
analyze the performance and complexity of including meta-
operators in the RL process, concretely in domains where sat-
isfactory outcomes have not been previously achieved using
usual generalized planning models. The main objective of this
article is thus to pave the way towards a redefinition of the RL
action space in a manner that is more closely aligned with the
planning perspective.

Introduction
Integrating AI planning and Machine Learning algorithms
is a hot research topic that has reported significant advances
in many different scenarios, such as training general poli-
cies with supervised or unsupervised Learning, (Ståhlberg,
Bonet, and Geffner 2022a), (Ståhlberg, Bonet, and Geffner
2022b), Generalized Planning using Reinforcement Learn-
ing (RL), (Gehring et al. 2022), (Rivlin, Hazan, and Karpas
2020), (Francès et al. 2019), learning Action Models using
Reinforcement Learning (Ng and Petrick 2019), and many
others.

Specifically, strands of this discipline have integrated AI
Planning with RL usually to train, with synthesized experi-
ence, heuristics that guide the search process of a planning
agent, through rectification of domain-independent heuris-
tics (Gehring et al. 2022) or through direct policy training
(Rivlin, Hazan, and Karpas 2020), for example. The training
process is usually based on giving the agent a reward of 1
when it reaches the goal of the planning problem and 0 oth-
erwise. This introduces the so-called sparse reward problem
wherein we observe that the agent rarely receives rewards
from the environment, thus hindering its ability to learn. It

Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

is also known that some works attempt to overcome these
problems using, for instance, Reward Machines (Icarte et al.
2022).

In addition, it is common for papers that use RL with AI
planning to make use of the very action definition in plan-
ning by applying it directly into Reinforcement Learning:
to establish the mapping between the transition model of
AI planning and the state transition system of a Markov
Decision Process, it is assumed that there is a one-to-one
correspondence between their respective action spaces. This
is what we refer to as the 1-1 mapping between planning
and RL actions. In this paper, we propose a new perspec-
tive based on the concept of meta-operator, with which we
decouple this 1-1 mapping often seen in the literature, there-
fore allowing to apply several actions at the same time (in
parallel) in a concrete time step. Parallel plans increase the
efficiency of planning because increased parallelism leads to
a reduction of the plan length or the number of time points.
In this paper, we also investigate if general parallel policies
can be obtained with a generalized planning framework and
if such policies improve general sequential policies.

By defining the concept of meta-operator as the applica-
tion of several planning actions at the same time, we can
force the RL training process to simulate parallelism. In ad-
dition, we can also use meta-operators to further guide the
training process, alleviating the sparse reward problem by
establishing a small reward when the meta-operator contains
more than one atomic action.

We incorporate meta-operators in the context of Gener-
alized Planning and to this aim our approach is based on
a modified version of the architecture proposed in (Rivlin,
Hazan, and Karpas 2020), where Graph Neural Networks
are used to generate a compact representation of the plan-
ning states. We will report results showing that the inclusion
of meta-actions allows almost a 100% coverage in domains
where it is difficult to reach generalization with traditional
learning methods such as logistics or depots, as stated in
(Ståhlberg, Bonet, and Geffner 2022a).

We tested our models in problem instances from the In-
ternational Planning Competitions1 (IPC) and in randomly
generated ones, and we observed that the coverage using
meta-operators improves with respect to not using them. It

1https://www.icaps-conference.org/competitions/

is also observed that the length of the plan, as expected, is
also reduced when we include meta-operators.

This paper is structured as follows: several basic concepts
with which we rely our work on are going to be defined,
such as Planning, RL and their integration, including Gener-
alized Planning. Next, the core element of this article will be
defined: the meta-operator, and then will be integrated into
the RL structure. Finally, several different experiments that
justify the use of meta-operators in RL will be conducted,
followed by a discussion of whether to use this mechanism
and the benefits against other models that do not include this
approach.

Background
Planning
Classical planning is the problem of finding a sequence
of actions that when applied to an initial state lead to the
achievement of a goal or set of goals. The two main compo-
nents of a planning task are the domain and the problem.

A planning domain is defined as D = ⟨F ,A⟩, where
F is a set of fluents that describe lifted properties of the
domain objects and their relations, and A is a set of ac-
tion schemas in which every a ∈ A is defined by a triplet
⟨Pre(a),Add(a),Del(a)⟩, Pre(a),Add(a),Del(a) ⊆ F .

A planning problem instance linked to a domain D =
⟨F ,A⟩ is defined as a tuple P = ⟨F,O, I,G⟩ where F is
the set of facts that result from grounding the fluents F to
the objects of the problem P , and O, called operators, is the
result of grounding the action schemas A. A state s ⊆ F is
a set of facts, and I,G ⊆ F are, respectively, the initial and
the goal state of the problem.

Every operator o ∈ O has its corresponding grounded
triplet defined by ⟨Pre(o), Add(o), Del(o)⟩. Pre(o) ⊆ F
are the preconditions that must be true in a state for the op-
erator to be applicable; that is, an operator o is applicable in
a state s ⊆ F if Pre(o) ⊆ s. Add(o) ⊆ F are the effects
of the operator that assert a positive literal after the appli-
cation of o; and Del(o) ⊆ F is the set of negative effects,
i.e., the set of literals which become false after the opera-
tor is applied. Applying o ∈ O in s leads to a new state
s′ = (s \Del(o)) ∪Add(o)).

A solution to a planning problem P = ⟨F,O, I,G⟩ is a
sequence of operators or plan ρ = ⟨o1, o2, . . . , ok⟩, oi ∈
O ∀i, such that the result of applying the operator sequence
⟨o1, o2, . . . , ok⟩ to the initial state I leads to a state s ⊆ F
that satisfies G ⊆ s, that is to say, that the state s contains
every goal in G.

Reinforcement Learning
Reinforcement Learning (RL) is a computational approach
to learning from environmental interaction (Sutton and
Barto 1998). The main objective of RL is to learn a policy,
or behaviour, that maximizes the positive interaction that an
agent gets through time.

RL scenarios are often modeled as finite Markov Decision
Processes (MDP) (Puterman 1990). An MDP is a control
process that stochastically models decision-making scenar-
ios; an agent continuously interacts with an environment by

executing actions that change its internal state, and these ac-
tions are rewarded consequently. The main objective of the
agent is to improve its performance so that it can progres-
sively maximize the received reward.

Formally, an MDP is defined as M = ⟨S,A,R, Pr⟩,
where S is a set of states, A is a set of actions, R : S ×
A × S → R is a reward function that values how good or
bad it is to take an action at at a certain state st that leads
to another state st+1, R(st, at, st+1) = rt, and Pr is a tran-
sition probability function such as Pr(s′, s, a) = p(s′|s, a),
which is usually unknown.

At each time step t, an agent takes an action in the cur-
rent state st among a set of applicable actions At ⊆ A in
st following a probability distribution called policy, repre-
sented by π : S → p(·| S = st). The objective of RL is to
reward decisions that reach the target as quickly as possible,
by prioritizing immediate rewards.

The RL optimization problem is formally defined as
max
π

EπGt (1)

where Gt =
∑∞

k=0 γ
krt+k+1 is the sum of the discounted

reward of a trajectory sampled from the policy π from the
current state t to the infinite. Thus, formula (1) measures the
reward received by all possible trajectories multiplied by the
probability of taking the decisions of the trajectories under
the policy π, where γ ∈ [0, 1] is the discount factor of future
rewards.

Integrating RL on top of planning
The integration of Planning and RL is a promising approach
for solving control problems. Planning is effective to reason
over a long horizon but assumes access to a local schema; in
contrast, RL is effective at learning policies and relative val-
ues of states but fails to plan over long horizons (Eysenbach,
Salakhutdinov, and Levine 2019). Combining planning and
RL can thus be regarded as learning a control policy for the
planner in lieu of using a planning heuristic function.

Combining Planning and RL enables addressing a vari-
ety of tasks like learning generalist policies to solve a large
number of problems (Celorrio, Aguas, and Jonsson 2019),
learning action models based on interaction (Moerland et al.
2023), training intelligent heuristics that guide the agent in
the control task (Gehring et al. 2022), or even training the
agent to solve concrete planning problems. Generally, the
RL module is integrated inside the planning agent to help it
make a decision, although other approaches use it the oppo-
site way (Lee et al. 2022). In this work, we will follow the
first approach.

As the formulation of both RL and Planning use the con-
cept of state and action, we must establish the equivalence
between RL actions and planning operators, so that the plan-
ning and RL modules can communicate with each other.

It is usually assumed in the literature that for a planning
problem P = ⟨F,O, I,G⟩ the equivalence is established by
simply considering the planning operators O as the RL ac-
tions A (A = O). States in RL (S) are abstract concepts that
simply represent situations that occur in the environment, so
we can inherit the concept of planning state and apply it di-
rectly to RL by making every s ∈ S as s ⊆ F ; i.e., we can

assume RL states as planning states. Hence, the notion of an
action being applicable to a state s in RL follows directly
from the above considerations and uses the same principle
of applicability of an operator in the planning state s.

Since this one-to-one correspondence between actions
and operators yields huge action spaces, some researchers
adopt certain considerations to reduce the number of possi-
ble actions. For example, in PDDLGym (Silver and Chitnis
2020), authors consider only a partial grounding of the ac-
tion schema in order to reduce the number of possible ac-
tions. Particularly, they claim that certain operators contain
parameters that correspond to free objects (in terms of con-
trolling the agent), that is, objects whose properties can po-
tentially change, leaving ungrounded the non-free agents.
For example, in a transport domain in which we want to
transport packages between cities using trucks, the pack-
ages and trucks would be free objects because their loca-
tion changes, but the cities would not. In this scenario, an
action schema like (move ?t - truck ?c1 - city
?c2 - city) will only bound the parameter truck to a
concrete object as the two parameters city refer to static
objects that only denote the structure of the movement net-
work.

We can think of this consideration as a transformation g
of the planning operator space, g(O), which is then used as
the RL action space, A = g(O). Note that in PDDLGym this
specification is hard-coded, while we propose an automated
method, as we will discuss later.

We already mentioned that the notion of a planning state is
directly translated into an RL state. We need to take into ac-
count that sometimes, and depending on the RL method, the
planning states must be translated into some encoding that
the RL method supports. For example, if we are using a NN
to represent the policy, we need a vectorial representation of
the state. This representation can be obtained, for example,
by using Graph Neural Networks (Zhou et al. 2020) or Neu-
ral Logic Machines (Dong et al. 2019), in conjunction with
intermediate structures such as graphs.

Sometimes we will say that we apply a learned policy π to
a planning problem P , meaning that the planning operator
corresponding to the RL action given by the policy is suc-
cessively applied from the initial state of the problem to the
goal, and states will change accordingly through the plan-
ning operators application. This way, as mentioned above,
the planning states are mapped to the RL states and (hege-
monically) planning operators are mapped to RL actions.

Generalized Planning

Generalized Planning is a discipline in which we aim to
find general policies that explain a set of problems, usu-
ally of different size. Specifically, given a set of problems
{⟨Fi, Oi, Ii, Gi⟩}Ni=1, N > 0, rather than searching for a so-
lution plan ρi = ⟨o1, o2, . . . , ok⟩, oj ∈ Oi for each individ-
ual problem Pi by applying a policy πi previously trained
for Pi, we aim to find a general policy π that when applied
to every problem of the set returns a solution plan to all of
them.

Defining meta-operators
As we discussed in the previous section, a bijective corre-
spondence is usually considered between the set of planning
operators and the set of RL actions when solving a planning
problem P = ⟨F,O, I,G⟩ of a domain D. That is, A = O.
We have also seen that we can transform this operator space
into a different one g(O). In this work, unlike PDDLGym
that performs a reduction of the operator space, we will de-
fine a transformation function to enrich it.

For this purpose, we define the notion of a meta-operator
for a problem P = ⟨F,O, I,G⟩ as a new operator that, given
L > 1 and o1, ..., oL ∈ O, which we will refer to as atomic
operators, is represented as

L⊕
i=1

oi

with the following considerations:

• Pre
(⊕L

i=1 oi

)
=

⋃L
i=1 Pre(oi)

• Add
(⊕L

i=1 oi

)
=

⋃L
i=1 Add(oi)

• Del
(⊕L

i=1 oi

)
=

⋃L
i=1 Del(oi)

• No pair of actions oi, oj from all the atomic actions
o1, ..., oL that form the meta-operator conflict with each
other. Two atomic operators oi and oj conflict with each
other if one of these two conditions hold:

– ∃ p ∈ Pre(oi) such that p ∈ Del(oj).
– ∃ p ∈ Add(oi) such that p ∈ Del(oj).

Broadly speaking, a meta-operator is nothing but a syn-
thetic operator resulting from the union of atomic ones that
can be executed in any order. The resulting operator will
therefore inherit the union of its sets Add, Pre and Del, al-
ways bearing in mind that all the atomic operators involved
can be executed at the same time, that is, that they do not
conflict with each other.

This means that they are inconsistent if they compromise
the consistency of the resulting state when applying the op-
erator, i.e., if the resulting state changes if the sequential or-
der of application of the atomic operators changes. These
two considerations are equivalent to the notions of incon-
sistent effects and interference in the calculation of a mutex
realtion between two actions in GraphPlan (Blum and Furst
1997).

We define the set of meta-operators of degree L ∈ N in
a problem P of a domain D as the union of every possible
meta-operation:

OL =
⋃

oi∈O

[
L⊕

i=1

oi

]

where oi are actions from O that do not interfere with each
other when defining a single meta-operator and O1 = O.

Algorithm 1: Calculate all applicable RL actions
Input:
A set of applicable planning operators O
Degree of meta-operators L
Output:
A set of applicable RL actions A

1: A = O
2: N = ∅
3: # Generate all conflicts
4: for a ∈ O do
5: for p ∈ Pre(a) do
6: for b ∈ O do
7: if p ∈ Del(b) then
8: N = N ∪ {(a, b), (b, a)} # Interference
9: for p ∈ Add(a) do

10: for b ∈ O do
11: if p ∈ Del(b) then
12: N = N∪{(a, b), (b, a)} # Inconsistent effects
13: # Combine pairs, triplets, until L, of operators
14: # that do not contain any pair of operators in N .
15: for i ∈ {2, ..., L} do
16: A = A ∪ MakeMetaOperators(O,L,N)
17: return A

Including meta-operators in RL
Meta-operators are then added to the RL action space, en-
riching and enabling the application of parallel planning op-
erators within this sequential RL action space. We can there-
fore define a new transforming function gL as the union of
the base set with meta-operators of degree L:

gL(O) =

L⋃
i=1

Oi

and train our RL algorithms using this consideration, i.e.,
A = gL(O).

This integration of meta-operators is calculated online, as
in Algorithm 1, at each time step t and current state st, for all
applicable RL actions At = {o ∈ O : o is applicable at st}.
We define that a meta-operator is applicable at state st if
every atomic operator is also applicable at st and if opera-
tors do not interfere with each other, which is followed by
definition.

We used the Generalized Planning RL training scheme
proposed in (Rivlin, Hazan, and Karpas 2020) to observe the
effects of the inclusion of a meta-operator in domains that
often struggle to generalize in the literature, such as logistics
or depots (Ståhlberg, Bonet, and Geffner 2022a). That archi-
tecture also uses GNNs for state representation and gives a
reward of 1 to the agent if it reaches the goal, and 0 in any
other case, as usual.

This last decision is highly criticized by the planning com-
munity because it introduces the so-called sparse rewards
problem, that is, the agent receives information from the
environment at very specific moments, thus hindering the
learning process. The inclusion of meta-operators opens up
the possibility of defining a certain reward for actions that

include more than one atomic operator, briefly alleviating
the aforementioned problem.

In that sense, we want to test how this inclusion of differ-
ent specific amounts of reward in meta-operators affects to
the learning process, so we will do an analysis using differ-
ent amounts of reward and we will see how well they train
and how parallel generated plans are compared with each
other.

We also want to test whether the inclusion of meta-
operators actually improves the coverage for problems of
domains we analyzed, compared to the coverage of a se-
quential model, trained with the same domain but without
using meta-operators (A = O).

Experiments
In this section, we present a series of experiments that sup-
port the inclusion of meta-operators in Generalized Plan-
ning using RL. In particular, we are interested in two things:
(1) analyzing the impact of an extra reward when a meta-
operator is applied in the learning process, and (2) checking
whether the inclusion of meta-operators improves the results
in terms of coverage (number of solved problems).

Specifically, we conduct two experiments. Experiment 1
is designed to measure the degree of parallelism of the solu-
tion plans using different rewarding in meta-operators. Ex-
periment 2 evaluates the performance of our model against
two different defined datasets.

Domains
We will use two domains that are widely used in the IPC
and also known for their complexity, logistics and depots,
and a third domain which is an extension of the well-known
blocksworld domain.

Multi-blocksworld. This domain is an extension of the
blocksworld domain that features a set of blocks on an in-
finite table arranged in towers, with the objective of getting
a different block configuration by moving the blocks with
robot arms. Blocks can be put on top of another block or on
the table, and they can be grabbed from the table or from
another block. We have defined two robot arms.

Logistics. This domain features packages located at cer-
tain points which must be transported to other locations by
land or air. Ground transportation uses trucks and can only
happen between two locations that are within the same city,
while air transportation is between airports, which are spe-
cial locations of the cities. The destination of a package is
either a location within the same city or in a different city.
In general, ground transportation is required to take a pack-
age to the city’s airport (if the package is not at the airport).
The package is then carried by air between cities, and finally
using ground transportation the package is delivered to the
final destination if its destination is not the arrival airport.

Depots. This domain consists of trucks that are used for
transporting crates between distributors, and hoists to han-
dle the crates in pallets. Hoists are only available at cer-
tain locations and are static. Crates can be stacked/unstacked
onto a fixed set of pallets. Hoists do not store crates in any

particular order. This domain slightly resembles the multi-
blocksword domain as there is a stacking operation, though
crates do not need to be piled up in a specific order, and to
the logistics domain as to the existence of agents that trans-
port crates from one point to another.

Data generation
RL algorithms need a large number of instances in order to
converge. That is why, for the training process, it was nec-
essary to use automatic generators of planning problems.
For logistics and depots domains, we used generators of the
AI Planning Github (Seipp, Torralba, and Hoffmann 2022),
while for the multi-blocksworld domain we created a new
generator based on the generator for the blocksworld domain
(Seipp, Torralba, and Hoffmann 2022).

Table 1 illustrates the size distribution of the problems
used in this work; it shows the number of objects of each
type involved in all three domains. We generated a dataset
of random problems out of the distributions shown in Table
1, which we will refer to as Dataset 1 (D1).

Dataset 1 (D1) It consists of problems uniformly sampled
from the test distribution of Table 1 and generated with the
aforementioned generators. We generated 460 problems for
the multi-blocksworld domain, 792 problems for the logis-
tics domain and 640 for the depots domain, as a result of
creating ten problems for each configuration in the test dis-
tribution.

Additionally, we created a second collection of samples
that we will refer to as Dataset 2 (D2) from a renowed plan-
ning competition.

Dataset 2 (D2) It consists of problems that were used in
the IPC (specifically, in the IPC-2000 and IPC-2002). We
used the 35 first instances for the blocksworld domain in
IPC-2000, with a slight modification to introduce the two
robot arms; the 30 first instances of logistics from IPC-2000;
and the 22 instances of depots from IPC-2002. This set of
instances was chosen in order to compare our results with
those obtained in the work (Ståhlberg, Bonet, and Geffner
2022b).

Setup
We opted for using a L = 2 degree meta-operator to come
up with a feasible extension of the action space. As the inclu-
sion of meta-operators increases the action space, we need
to find a balance between size and performance. Using two-
degree meta-operators is sufficient to fulfill the two objec-
tives mentioned at the beginning of this section, namely an-
alyzing the impact of rewarding meta-operators and evaluat-
ing the coverage of the models. We will also evaluate how
much does the action space rise with our approach compared
to a sequential model.

The RL training was conducted on a machine with a
Nvidia GeForce RTX 3090 GPU, a 12th Gen Intel(R)
Core(TM) i9-12900KF CPU and Ubuntu 22.04 LTS operat-
ing system, and the same hyperparameter configuration than
(Rivlin, Hazan, and Karpas 2020). A similar training process
as the one proposed in (Rivlin, Hazan, and Karpas 2020) was

followed here, all policies are trained for 900 iterations, each
with 100 episodes and up to 20 gradient update steps, using
Proximal Policy Optimization RL training algorithm, with a
discount factor of 0.99.

Experiment 1: Rewarding of meta-operators
In this experiment, we aim to observe how the reward
granted to the application of a meta-operator in the RL train-
ing influences the learning process and the quality of the
plans. We are interested in measuring the effect of meta-
operators in terms of the plan length or the number of time
steps of the plan. To that end, we define the parallelism rate
of a solution plan of a problem as:

parallel operators

total plan timesteps

where # parallel operators is the number of meta-
operators that appear in the plan by applying the learned pol-
icy to the problem, and # total plan timesteps is the total
number of timesteps of the plan. This is a measure of how
frequently parallel operators appear in the decisions made
by the planner agent.

We trained a series of models giving different reward val-
ues to meta-operators. This experiment can be thought of as
a way of tuning the meta-operators reward, which can there-
fore be regarded as a hyperparameter. Since we primarily
aim to find the most appropriate reward for the use of meta-
operators in this experiment, we decided to focus only on
the training distribution.

We trained five models from the train distribution
of Table 1 with reward values to meta-operators of
0.0, 0.1, 0.01, 0.001 and 0.0001, respectively. Subsequently,
the five models were run on a fixed sample, generating 10
problems for each element from the train distribution, and
results were analyzed in order to obtain the average paral-
lelism rate of all plans.

During the experiment execution, rewards and the num-
ber of parallel actions at each time step are monitored so as
to balance out the reward coming from parallel actions and
coming from achieving a solution plan. In other words, we
want to avoid situations in which parallel actions are just
added for the sake of reward, which may deviate plans to-
wards a large number of parallel actions sacrificing reaching
the objective.

The results of this experiment are shown in Table 2:
all models are able to fulfill the aforementioned objective
(100% of coverage in training) except for the model that
gives a reward of 0.1 to meta-operators (no results are shown
because the model did not converge). Intuition tells us that
there are certain values that reward too much parallelism,
even above reaching the problem goal itself, resulting in po-
tentially infinite plans that execute parallel actions in a loop
(until the maximum episode time is reached). This means
that a reward value of 0.1 for meta-operators outputs poli-
cies that yield more than ten parallel actions per plan, which
exceeds the value given to reaching the goal, thus making
the algorithm converge to a situation in which no goal is
reached but lots of meta-operators of degree L > 2 appear in

Domain Train size Total objects train Validation/Test size Total objects test
Multi-blocksworld 5-6 blocks 5-6 10-11 blocks 10-100

Logistics

2-4 airplanes
2-4 cities
2-4 trucks

2-4 locations per city
1-3 packages

9-10

3-4 airplanes
6-7 cities
3-4 trucks

6-7 locations per city
6-7 packages

24-29

Depots

1-2 depots
2-3 distributors

2-3 trucks
3-5 pallets
2-4 hoists
3-5 crates

13-22

5-6 depots
5-6 distributors

5-6 trucks
5-6 pallets
5-6 hoists
5-6 crates

30-36

Table 1: Sizes used for the problem generation, in terms of general and specific objects.

Reward Multi-blocks Logistics Depots
0.0 0.550 0.243 0.530
0.1 - - -

0.01 0.701 0.851 0.857
0.001 0.559 0.582 0.381
0.0001 0.557 0.768 0.294

Table 2: Average parallelism rate for all models trained with
specified reward for the application of meta-operators.

the plan. Ultimately, RL is about optimizing a reward func-
tion, and if adding meta-operators produces more reward,
this will be the path taken by the model.

According to Table 2, we observe that the model that gives
the best results in terms of parallelism rate for all domains
within the plans generated is the 0.01 reward model. This
indicates that, in order to obtain potentially better results, a
balance must be established between the amount of reward
given to parallelism and the amount of reward given to the
goal.

For example, a somewhat more conservative proposal,
which we know for sure would not exceed the goal reward, is
to establish a meta-operator reward of GOAL REWARD

MAX ITERATIONS ,
where GOAL REWARD is the reward given to reach-
ing the goal (generally 1) and MAX ITERATIONS is
the maximum number of applications of the policy before
stating that the goal cannot be achieved. Generally, this ap-
proach is excessively limiting and does not encourage par-
allelism. This is evident from Table 2, which shows that
greater rewards lead to improved parallelism.

In fact, the amount of reward provided in meta-operators
is also dependent on the average length of the plans we
want to test. That means, perhaps if the problems we want
to test have a larger average plan length than the ones we
trained, it would be wiser to test with a model that has been
trained with a slightly lower reward in order to not “over-
flow” the reward and fall into the undesired scenario of poli-
cies that produce parallel actions with no goal termination.
This would be a problem that would probably occur in Gen-
eralized Planning, for example, where we train models with

a problem size smaller than the problem size on which we
will test the results.

All in all, it has been found that the amount of reward
given to meta-operators is significant in terms of quality and
convergence of plans.

Experiment 2: Performance in Generalized
Planning
In this experiment, we compare the original sequential
model with versions of the parallel model obtained with dif-
ferent reward values. We note that the aim is to test the per-
formance of the models when dealing with new inputs of a
larger size. The trained policy for each domain is then an-
alyzed as in the Generalized Planning literature by testing
the problems in datasets D1 and D2. Particularly, for each
model, we measure the coverage and the average length of
the generated plans for the problems in D1 and D2.

Table 3 shows the results obtained with the sequential
(OR) model (Rivlin, Hazan, and Karpas 2020), the paral-
lel model trained with no reward (R=0.0), with a reward of
0.01 on meta-operators (R=0.01) and with a reward of 0.001
on meta-operators (R=0.001) for the International Planning
Competition (D2) and randomly generated (D1) datasets.
With these experiments we aim to illustrate how the results
vary from one model to another depending on the reward, as
stated in the previous section.

The table is divided in two halves, one for each set of
problems. In the top part of each half we show results for
coverage of the analyzed models with respect to the prob-
lems of each set, while in the bottom part of each half the
average length of plans for each problem of the set is an-
alyzed. In the top part of each half we show within paren-
theses the total number of problems that compound that set,
and then in each column the number of those for which the
model under analysis has managed to reach the target. The
bottom part of each half corresponds to the number of time
steps with which the models managed to solve each set of
problems. We present the average number of actions taking
into account only the solved problems.

Results of Table 3 show that coverage from the models
that use meta-operators improves with respect to the cover-

Domain - D1 OR R = 0.0 R = 0.001 R = 0.01
Multi-blocks (460) 268 439 408 406

Logistics (792) 131 701 717 317
Depots (640) 287 572 640 552

Multi-blocks 79.99 76.43 65.92 92.84
Logistics 200.50 112.61 109.05 110.25
Depots 338.49 106.68 124.46 121.80

Domain - D2 OR R = 0.0 R = 0.001 R = 0.01
Multi-blocks (35) 2 35 34 34

Logistics (30) 11 26 28 27
Depots (22) 20 17 20 20

Multi-blocks 172.00 43.17 44.59 54.12
Logistics 136.64 115.92 120.64 121.00
Depots 127.45 83.59 110.20 114.25

Table 3: Results for datasets D1 and D2. The top part of the tables shows coverage out of the total number of instances shown
between parenthesis. The bottom part of the tables indicates the average plan length. OR is the original sequential model in
(Rivlin, Hazan, and Karpas 2020); R=0.0 is the model with no meta-operator reward; R=0.1 is the model with reward of 0.01,
and R=0.001 is the model with reward of 0.001.

Multi-blocks Logistics Depots
Sequential 100 108 228

Parallel 1140 3960 8519

Table 4: Action space or number of RL actions (planning
operators and, when makes sense, meta-operators) visited
during training.

age of the sequential model. Moreover, it is observed that for
the logistics domain, which has been found in the literature
to be hard to address for RL approaches (Ståhlberg, Bonet,
and Geffner 2022b), a very good result is obtained with re-
spect to that of the sequential model.

Results are correlated to the enrichment of the action
space. Table 4 shows the size of the action space visited dur-
ing training of the sequential model and the parallel ones.
There is only one result in Parallel because the action space
is the same for all three models, only the amount of reward
given to the meta-operator application varies. We observe
that in the multi-blocks domain where there are only two
agents (two robot-arms), the increase in the number of ac-
tions is much less significant than in logistics or depots do-
main, in which many more agents (trucks, planes, etc.) co-
exist at the same time.

Plans also tend to be shorter in terms of average actions
when applying meta-operators. In Table 3, results for R=0.0
tend to give short plan lengths, which makes sense because
as a sparse reward problem plans tend to reach the goal faster
thanks to the discount factor and reward only coming from
reaching the goal. This sometimes even result in better cov-
erage, such as in multi-blocks, while in R=0.001 and R=0.01
the reward also comes from the meta-operators and not only
from reaching the goal.

The use of a model with lower reward R=0.001 has re-

ported significantly better coverage results than the model
with R=0.01. In the Generalized Planning task there is a
variance in the size of problems tested, resulting also in
a variance in the length of its correspondent plans. As the
model R=0.01 gives a high reward to parallelism, if the size
of the plans is too large, parallelism is being rewarded too
much. For example, 11 meta-operators would already mask
the objective’s reward, which is 1, i.e., 11 · 0.01 = 1.1 > 1.

Discussion
Although there is not yet a standard neural network ar-
chitecture that suits perfectly the planning frame, the ap-
proaches that leverage deep learning techniques that auto-
matically extract structure from high-level data are mostly
based on graph convolution to learn state embeddings like
Graph Neural Networks (Rivlin, Hazan, and Karpas 2020;
Ståhlberg, Bonet, and Geffner 2022b) or first-order logic
neural models like Neural Logic Machines (Gehring et al.
2022).

Overall, the aforementioned approaches show to be com-
petitive with baseline sequential models that use planning
heuristics or state-of-the-art implementations of classical
planners in terms of coverage (number of solved problems).
More interestingly, some works report the inability of NN-
based heuristics to outperform classical planning engines in
transport-like domains wherein a tight coupling between the
different objects of a planning task exists (Rivlin, Hazan, and
Karpas 2020; Ståhlberg, Bonet, and Geffner 2022b; Gehring
et al. 2022).

Frameworks that combine AI planning and RL establish
a one-to-one correspondence between operators in planning
and actions in RL. It is observed, as stated before, that low
performance usually arises in domains with a high number
of agents that need to collaborate with each other to reach
the goal, also called tightly-coupled domains (Torreño, On-

aindia, and Sapena 2014), for example logistics or depots.
Specifically, speaking about logistics, in (Ståhlberg,

Bonet, and Geffner 2022b) authors prove that it is not possi-
ble to achieve satisfactory results using a GNN architecture.
The authors identify transitive relations without which the
locality of the objects is lost. For example, when a package
is inside a truck and the truck is in a city, the information
about the city where the package is found fails to propagate
in a transitive manner, i.e., it fails to infer that the package
is indeed in the city. Results within this perspective are im-
proved by hard-coding extra predicates (derived atoms) and
including them to guarantee the transitive relations. In the
mentioned example, a new atom is added to denote that a
package is in a city.

Interestingly, we found that in tightly-coupled domains
such as logistics, depots or multi-blocksworld test results
from our perspective are very satisfactory when including
meta-operators. In fact, if we compare the same IPC in-
stances of the logistics domain from (Ståhlberg, Bonet, and
Geffner 2022b) with our approach we observe that, while
they have a coverage of 17 (28) without using the hard-coded
atoms, we obtain 26 (28). It should be emphasized that our
process is automatic, i.e., it is not necessary to manually en-
rich any problem or domain to reach the goal.

It is interesting to think about why adding meta-operators
actually improves the training process when it comes to us-
ing RL for planning. It is not only the fact that it allows
several atomic operators to coexist at the same time, decen-
tralizing as already mentioned in other sections the purely
sequential nature of RL, but also the fact that when adding
the extra operators the algorithm converges faster and yields
better results.

We hypothesize that the inclusion of meta-operators
opens a way of (virtual) communication between agents.
As stated in (Rivlin, Hazan, and Karpas 2020), problems in
tightly-coupled domains arise when certain resources need
to be used by several agents at the same time. Since a pol-
icy is nothing more than the “brain” of the planning agent,
when several entities can be executed in parallel (e.g. mov-
ing different vehicles) or change their state (location, mode,
etc.) at the same time, the sequential nature of the RL may
interfere with this notion of collaboration, thus obstructing
the convergence of RL methods for this type of problems.

By introducing parallel actions we allow several entities
to change their state at the same time, so that they can “pre-
pare” for what is next to come. A clear example is in the
logistics domain: if we have a package being transported
in a truck, which must then be picked up by another entity
that transports it elsewhere, in a sequential nature the truck
would leave the package at one location, and then the other
entity would have to pick it up and take it away. However,
how can one distinguish, given that the only known informa-
tion is that the package is at one location, that the package is
to be picked up by the next entity and not by the same entity?
By introducing parallelism, the second entity could go to the
exchange point before the package actually reaches that ex-
change point. We believe that our approach provides some
sense of “entity” to the independent objects of a planning
problem and improves agent collaboration.

On the other hand, we also wanted to hypothesize about
why meta-operators also favor exploration in the state space
of planning. If we think about state graphs as in (Bonet and
Geffner 2022), which are graphs that outline the whole struc-
ture of actions and states that the agent can take at each mo-
ment, we can consider adding meta-operators to the RL ac-
tion space as introducing extra edges to these state graphs.

In the end, training with RL is done on a trial-and-error
basis, choosing actions randomly at first and seeing if it
brings some benefit. By including meta-operators we allow
our planning agent to do in one sampling step what previ-
ously had to be done in more (as long as the actions can
coexist in parallel, obviously). This helps the convergence
and thus the generalization of our methods.

To illustrate this last affirmation, we want to give another
example. Let’s assume an initial training iteration with a pol-
icy that is initialized with a uniform probability p to each RL
action. If the agent decides to apply a meta-operator of de-
gree L, we arrive to a state s with a probability of p, but
in a sequential environment we would have to arrive to s
(following the same path) with L different transitions, each
one corresponding to the atomic operators that conform the
meta-operator, with a pL probability. This summarizes why
we think it is interesting to apply meta-operators.

Conclusion and Future work
In conclusion, we defined the notion of meta-operator as a
way to enrich the RL structure that has hegemonically been
used to attack the planning problem. Furthermore, we saw
that it improves results from other sequentially trained mod-
els, both with randomly generated problems and with prob-
lems from the International Planning Competition. Finally,
we wanted to highlight the discussion that may arise from
this paper, with special emphasis on the fact that RL struc-
tures can be enriched to better match the true nature of plan-
ning.

Finally, we are aware that the inclusion of meta-operators
makes the action space larger, so a balance between paral-
lelism and size must also be found so that training times are
not excessively long. For future work we would like to ex-
plore different ways of attacking RL problems with much
larger, even continuous, action spaces in order to compu-
tationally be able to use meta-operators of any degree. We
would also like to explore other different ways of represent-
ing planning states and how this may influence what was
analyzed and to try to explain how does tuning the meta-
operators reward affect in several different domains.

Acknowledgments
This work is supported by the Spanish AEI PID2021-
127647NB-C22 project and Ángel Aso-Mollar is partially
supported by the FPU21/04273.

References
Blum, A.; and Furst, M. L. 1997. Fast Planning Through
Planning Graph Analysis. Artif. Intell., 90(1-2): 281–300.
Bonet, B.; and Geffner, H. 2022. Language-Based Causal
Representation Learning.

Celorrio, S. J.; Aguas, J. S.; and Jonsson, A. 2019. A review
of generalized planning. Knowl. Eng. Rev., 34: e5.

Dong, H.; Mao, J.; Lin, T.; Wang, C.; Li, L.; and Zhou, D.
2019. Neural Logic Machines. CoRR, abs/1904.11694.

Eysenbach, B.; Salakhutdinov, R.; and Levine, S. 2019.
Search on the Replay Buffer: Bridging Planning and Re-
inforcement Learning. In Advances in Neural Information
Processing Systems 32: Annual Conference on Neural Infor-
mation Processing Systems 2019, NeurIPS 2019, December
8-14, 2019, Vancouver, BC, Canada, 15220–15231.

Francès, G.; Corrêa, A. B.; Geissmann, C.; and Pommeren-
ing, F. 2019. Generalized Potential Heuristics for Classi-
cal Planning. In Kraus, S., ed., Proceedings of the Twenty-
Eighth International Joint Conference on Artificial Intel-
ligence, IJCAI 2019, Macao, China, August 10-16, 2019,
5554–5561. ijcai.org.

Gehring, C.; Asai, M.; Chitnis, R.; Silver, T.; Kaelbling,
L. P.; Sohrabi, S.; and Katz, M. 2022. Reinforcement Learn-
ing for Classical Planning: Viewing Heuristics as Dense Re-
ward Generators. In Kumar, A.; Thiébaux, S.; Varakan-
tham, P.; and Yeoh, W., eds., Proceedings of the Thirty-
Second International Conference on Automated Planning
and Scheduling, ICAPS 2022, Singapore (virtual), June 13-
24, 2022, 588–596. AAAI Press.

Icarte, R. T.; Klassen, T. Q.; Valenzano, R. A.; and McIlraith,
S. A. 2022. Reward Machines: Exploiting Reward Function
Structure in Reinforcement Learning. J. Artif. Intell. Res.,
73: 173–208.

Lee, J.; Katz, M.; Agravante, D. J.; Liu, M.; Tasse, G. N.;
Klinger, T.; and Sohrabi, S. 2022. Hierarchical Reinforce-
ment Learning with AI Planning Models.

Moerland, T. M.; Broekens, J.; Plaat, A.; and Jonker, C. M.
2023. Model-based Reinforcement Learning: A Survey.
Found. Trends Mach. Learn., 16(1): 1–118.

Ng, J. H. A.; and Petrick, R. P. A. 2019. Incremental
Learning of Planning Actions in Model-Based Reinforce-
ment Learning. In Kraus, S., ed., Proceedings of the Twenty-
Eighth International Joint Conference on Artificial Intel-
ligence, IJCAI 2019, Macao, China, August 10-16, 2019,
3195–3201. ijcai.org.

Puterman, M. L. 1990. Chapter 8 Markov decision pro-
cesses. In Stochastic Models, volume 2 of Handbooks in
Operations Research and Management Science, 331–434.
Elsevier.

Rivlin, O.; Hazan, T.; and Karpas, E. 2020. General-
ized Planning With Deep Reinforcement Learning. CoRR,
abs/2005.02305.

Seipp, J.; Torralba, Á.; and Hoffmann, J. 2022. PDDL Gen-
erators. https://doi.org/10.5281/zenodo.6382173.

Silver, T.; and Chitnis, R. 2020. PDDLGym: Gym Environ-
ments from PDDL Problems. CoRR, abs/2002.06432.

Ståhlberg, S.; Bonet, B.; and Geffner, H. 2022a. Learning
General Optimal Policies with Graph Neural Networks: Ex-
pressive Power, Transparency, and Limits. In Kumar, A.;

Thiébaux, S.; Varakantham, P.; and Yeoh, W., eds., Proceed-
ings of the Thirty-Second International Conference on Au-
tomated Planning and Scheduling, ICAPS 2022, Singapore
(virtual), June 13-24, 2022, 629–637. AAAI Press.
Ståhlberg, S.; Bonet, B.; and Geffner, H. 2022b. Learn-
ing Generalized Policies without Supervision Using GNNs.
In Kern-Isberner, G.; Lakemeyer, G.; and Meyer, T., eds.,
Proceedings of the 19th International Conference on Princi-
ples of Knowledge Representation and Reasoning, KR 2022,
Haifa, Israel. July 31 - August 5, 2022.
Sutton, R. S.; and Barto, A. G. 1998. Reinforcement learn-
ing - an introduction. Adaptive computation and machine
learning. MIT Press. ISBN 978-0-262-19398-6.
Torreño, A.; Onaindia, E.; and Sapena, Ó. 2014. FMAP:
Distributed cooperative multi-agent planning. Applied Intel-
ligence, 41(2): 606–626.
Zhou, J.; Cui, G.; Hu, S.; Zhang, Z.; Yang, C.; Liu, Z.; Wang,
L.; Li, C.; and Sun, M. 2020. Graph neural networks: A
review of methods and applications. AI Open, 1: 57–81.

