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Abstract

In many real-world applications, safety constraints for rein-
forcement learning (RL) algorithms are either unknown or
not explicitly defined. We propose a framework that con-
currently learns safety constraints and optimal RL policies
in such environments. Our approach merges a logically-
constrained RL algorithm with an evolutionary algorithm to
synthesize signal temporal logic (STL) specifications. We
showcased our framework in grid-world environments, suc-
cessfully identifying both acceptable safety constraints and
RL policies.

Introduction
RL has emerged as a powerful computational approach for
training agents to achieve complex objectives through in-
teractions within stochastic environments (Sutton and Barto
2018). RL algorithms have demonstrated significant suc-
cess in a wide range of applications and domains (Kober,
Bagnell, and Peters 2013; Razzaghi et al. 2022). However,
when deploying RL policies in real-world scenarios, partic-
ularly those involving safety-critical operations, ensuring the
safety of the learning process becomes a paramount con-
cern. Traditional RL algorithms tend to focus on reward
maximization, which may inadvertently lead to violation of
safety constraints. Safe RL aims to address this challenge by
learning policies that not only maximize the expected return
but also respect safety constraints throughout the learning
process. One promising avenue of research in safe RL in-
volves the use of formal methods, such as temporal logic,
for specifying safety constraints in a mathematically rigor-
ous manner. By incorporating temporal logic constraints into
the reward function, RL agents can learn policies that are
both high-performing and safe. However, this approach as-
sumes the availability of accurate temporal logic specifica-
tions, which may not always be the case, especially in com-
plex real-world environments. In this brief, we propose a
novel framework for jointly learning RL policies and safety
specifications. Our approach combines the strengths of RL
for policy optimization with computational techniques for
discovering temporal logic constraints from data. This joint
learning strategy allows us to efficiently derive an optimal
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policy and a suitable safety constraint for a given environ-
ment, even in situations where the safety constraints are not
explicitly provided in advance.

Related Work
Safe RL. Safe RL has garnered significant attention in re-
cent years, as researchers aim to address safety concerns
associated with deploying RL agents in safety-critical do-
mains (Garcıa and Fernández 2015; Gu et al. 2022). A preva-
lent approach to safe RL involves formulating the problem
as a constrained optimization task, where the primary ob-
jective is to maximize the expected return while satisfying
given safety constraints (Achiam et al. 2017). Another di-
rection in safe RL is risk-sensitive RL, which aims to bal-
ance the trade-off between exploration, exploitation, and risk
management (Mihatsch and Neuneier 2002). Risk-sensitive
RL algorithms incorporate risk measures, such as condi-
tional value-at-risk (CVaR) (Tamar, Glassner, and Mannor
2014) and risk envelope (Majumdar et al. 2017), to guide
the learning process. An additional approach to ensure safety
in RL is through shielding, which intervenes in the agent’s
actions when it might violate safety constraints (Alshiekh
et al. 2018). Integrating formal methods, like temporal logic
and Lyapunov-based techniques, into RL algorithms has
emerged as a promising direction for safe RL (Hasanbeig,
Abate, and Kroening 2018; Alur et al. 2023; Chow et al.
2018).
STL Mining. STL has emerged as an essential formal-
ism for specifying complex temporal properties and con-
straints in various applications, including robotics and
cyber-physical systems. In recent years, researchers have fo-
cused on inferring or mining STL specifications from data,
to facilitate the development of safe and robust systems. A
key approach to mining STL from data is the use of algorith-
mic techniques, such as optimization-based algorithms (Ab-
bas et al. 2014) and machine learning methods (Fronda and
Abbas 2022). Optimization-based techniques seek to min-
imize an objective function that captures the distance be-
tween the candidate STL formulas and the given data traces.
Data-driven techniques have shown promise in learning STL
specifications from data. Another direction in mining STL
from data is the development of automated, scalable, and ro-
bust techniques for the discovery of interpretable STL spec-
ifications (Mohammadinejad et al. 2020). (Bartocci et al.



2022) provides a comprehensive survey of the various tech-
niques for mining STL specifications from data.

Methodology
We cast the joint learning of policy with unknown specifica-
tions as a bi-level optimization problem (Sinha, Malo, and
Deb 2017). In this formulation, the upper level optimiza-
tion aims to infer the correct STL safety constraint, while
the lower level optimization focuses on learning the opti-
mal policy under the inferred constraint. A human expert
assists the learning by labeling trajectories based on their
safety. In this context, safety is attained when a trajectory
achieves the environmental objective without violating any
safety constraints, i.e., the trace should have a positive ro-
bustness value against the true safety constraint. These com-
ponents are iteratively called upon to simultaneously iden-
tify the optimal policy and the suitable STL constraint with
the aid of the human expert. The outer loop, an evolutionary
algorithm, is designed to infer both the template and the pa-
rameters of an STL specification that can classify the labeled
dataset. This method is inspired by the work in (Nenzi et al.
2018), which has been shown to result in simpler, more in-
terpretable outputs, as well as an improved misclassification
rate compared to those in (Bombara and Belta 2021; Kong
et al. 2014). The algorithm implements the following pro-
cedures: random generation of the initial STL population,
evaluation of fitness, F , following the Eq. 1, ranking popu-
lation members based on fitness, discarding the bottom half
of the population, and applying genetic alterations such as
mutation and crossover. For a positively labeled trace, Xp,
and a negatively labeled trace, Xn, in their respective posi-
tive and negative datasets, Dp and Dn, the fitness function
is,

F(ϕ) = Nρ(ϕ)+|Xp
+Nρ(ϕ)-|Xn

+ | ρ(ϕ)Dp
−ρ(ϕ)Dn

| (1)

where, F is the fitness function for STL ϕ. The first term
in Eq. 1 represents the number of true positive classifica-
tions for the positive samples, the second term represents
the number of true negative classifications for the negative
samples, and the third term computes the absolute value dif-
ference between the average of the robustness values, ρ(ϕ),
for samples in Dp and Dn.

The inner loop is comprised of a logically-constrained Q-
learning in which the reward is based solely on the robust-
ness of a trajectory throughout an episode against a given
STL constraint. The definition of the reward function is
shown in Eq. 2.

R =

{
ρ(ϕ[0:T ]), if ρ(ϕ[0:T ]) < 0

ρ(ϕ[0:T ]) + 100, if ρ(ϕ[0:T ]) ≥ 0
(2)

where, R is the reward value determined by the robustness
degree ρ(ϕ) of the sample s over the horizon of the STL, T .

The reward is sparse because it is given at the end of an
episode, and not at each step. This is due to the fact that,
with timed STL constraints, the robustness value cannot be
quantified at every step and can only be computed over a
signal at least as long as the horizon, T, of the STL. After

training, the algorithm generates a certain number of rollout
traces that are presented to the human expert for labeling
based on their safety, which is our final component. In our
experiments, we have automated the human labeling pro-
cess by computing the robustness value of the traces against
the true safety constraint of the environment. However, it is
important to note that this is only done for automation pur-
poses, and as per the basis of our problem, this true safety
constraint is unknown, and traces should actually be labeled
by an expert. The labeled traces are then used as input to
the evolutionary algorithm. This process is repeated itera-
tively until convergence, which, in this case, is defined by
the number of rollout traces that are labeled safe by the hu-
man expert. This metric is chosen because the safety of the
rollout traces reflects the quality of the STL used as a safety
constraint as well as the quality of the policy generated us-
ing that constraint. The framework is depicted graphically in
Fig. 1.
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Figure 1: Overview of the proposed framework.

Results
We consider the problem of implementing RL algorithms
in an environment where the safety constraint is unknown
in advance. Specifically, our goal is to simultaneously infer
the correct STL safety constraint and an optimal policy. To
evaluate our framework, we have designed grid-world envi-
ronments of varying sizes for an agent to navigate through
to reach a goal at a specific location, under temporal con-
straints. Initially, neither the goal location nor the time con-
straint are known, making it impossible to design a tradi-
tional reward function. The problem was initiated with 1000
random 2-dimensional coordinate traces within the environ-
ment, which were then labeled by a human to create a dataset
for the evolutionary algorithm. The algorithm proceeds with
the steps outlined in the methodology until the number of
safe traces, as labeled by the human expert, meets a cer-
tain threshold. The experiment was performed on 6×6, 8×8,
and 10×10 grid environments. The outputs were evaluated
based on two metrics: (i) the change in the percentage of
the number of unsafe traces from the first batch of rollout
traces to the last batch and (ii) the average misclassifica-
tion rate (MCR) of the inferred STL specification against
a dataset labeled by the human expert. The first metric eval-
uates how closely the inferred STL specification is able to
capture the true environmental constraints by assessing how
the number of unsafe samples in the rollout traces has de-



creased over the iterations, indicating the STL specification
is getting closer to the true (but unknown) constraint. The
second metric conveys the classification capability of the in-
ferred STL against labeled datasets. It quantifies how well
the STL distinguishes between safe and unsafe trajectories,
as compared to that of a human expert. The results are given
in Table 1.

Table 1: Percentage of unsafe traces (per rollout sample) at
the beginning and the end of the process, and average MCR
for inferred STL.

Size % of Unsafe Traces Inferred STL
First rollout Last rollout MCR

6×6 73.2% 1.2% 0.02±0.0013
8×8 86.7% 4.3% 0.04±0.001
10×10 91.4% 11.1 % 0.06±0.009

Conclusions
In this paper, we have studied a joint learning framework
for the safety constraint and the RL policy of an environ-
ment where the safety constraints are unknown a priori. We
have implemented an algorithm that optimizes the safety
constraint and the RL policy simultaneously. Our prelimi-
nary results have shown that our framework is capable of
identifying safety constraints that are suitable for the envi-
ronment and an optimal RL policy that results in safe behav-
ior. Future directions for this work will include testing our
algorithm in complex environments, assessing adaptability,
and improving the algorithm’s computational efficiency.
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Appendix
Joint Convergence of the Inner Loop and Outer
Loop
The goal is to establish that the joint convergence of the in-
ner and outer loops leads to the overall convergence of the
framework. In other words, we want to show that if the in-
ner loop (Q-learning) converges to an optimal policy and the



outer loop (evolutionary algorithm for STL synthesis) con-
verges to an optimal STL constraint, then the entire frame-
work converges to a stable solution. By proving these two
implications, we demonstrate that the proposed framework
is effective in solving the given problem and that it con-
verges to a solution that meets both the optimality of the
policy and the optimality of the STL constraint. To prove the
joint convergence, we need to establish two implications:

• Convergence of the inner loop (Q-learning) to an optimal
policy π∗ implies the convergence of the outer loop (evo-
lutionary algorithm) to an optimal STL constraint ϕ∗.

• Convergence of the outer loop (evolutionary algorithm)
to an optimal STL constraint ϕ∗ implies the convergence
of the inner loop (Q-learning) to an optimal policy π∗.

Implication 1. This implication aims to show that if the
inner loop converges to an optimal policy, the outer loop
converges to an optimal STL constraint. This is achieved
by demonstrating that the fitness function is maximized for
the optimal STL constraint and that the evolutionary algo-
rithm converges to this optimal constraint under certain con-
ditions.

Assume that the inner loop converges to an optimal pol-
icy π∗. Under this assumption, we need to prove that the
outer loop converges to an optimal STL constraint ϕ∗. We
approach this by showing that:

• The fitness function F(π∗, ϕ) is maximized for the opti-
mal STL constraint π∗. This can be done by analyzing the
properties of the fitness function and the reward function
R(π, ϕ) under the optimal policy.

• The evolutionary algorithm for STL synthesis converges
to the optimal STL constraint π∗ under certain condi-
tions, such as proper selection pressure, sufficient explo-
ration, and well-defined mutation and crossover opera-
tors.

By showing that the fitness function is maximized for the
optimal STL constraint, and that the evolutionary algorithm
converges to this optimal constraint, we establish the conver-
gence of the outer loop under the assumption that the inner
loop converges to the optimal policy.
Implication 2. This implication aims to show that if the
outer loop converges to an optimal STL constraint, the in-
ner loop converges to an optimal policy. This is achieved by
demonstrating that the reward function provides the neces-
sary guidance under the optimal STL constraint, and that the
Q-learning algorithm converges to the optimal policy under
this guidance.

Assume that the outer loop converges to an optimal STL
constraint π∗. Under this assumption, we need to prove that
the inner loop converges to an optimal policy π∗. We ap-
proach this by showing that:

• The reward function R(π, ϕ∗) has the necessary prop-
erties to guide the Q-learning algorithm towards the op-
timal policy. This can be done by analyzing the reward
function under the optimal STL constraint and ensur-
ing that it provides proper guidance and exploration-
exploitation trade-off.

• The Q-learning algorithm converges to the optimal pol-
icy π∗ under certain conditions, such as proper learning
rates, sufficient exploration, and well-defined state and
action spaces.

By showing that the reward function provides the necessary
guidance under the optimal STL constraint, and that the Q-
learning algorithm converges to the optimal policy under this
guidance, we establish the convergence of the inner loop un-
der the assumption that the outer loop converges to the opti-
mal STL constraint.

Proof of Implication 1.
(i) Maximizing the fitness function for the optimal
STL constraint:
To provide a more detailed and mathematical presentation
of Implication 1, let’s first define the key components of the
framework: (i) policy: π : S → A, a mapping from states
to actions, (ii) reward function: R(π, φ) : Π × Φ → R, a
function that measures the reward for a given policy π and
STL constraint φ, (iii) fitness function: F(π, φ) : Π× Φ →
R, a function that measures the fitness of a given policy π
and STL constraint φ. Now, let’s proceed with the proof of
Implication 1:

Assume that the inner loop converges to an optimal pol-
icy π∗. We want to show that the fitness function F(π∗, φ)
is maximized for the optimal STL constraint φ∗. Let R∗ =
maxπ,φ R(π, φ) be the maximum achievable reward. We
know that the reward function R(π, φ) is maximized for the
optimal policy π∗ and the optimal STL constraint φ∗, i.e.,
R(π∗, φ∗) = R∗. We define the fitness function F(π, φ) as
a function of the reward function R(π, φ):

F(π, φ) =
R(π, φ)

R∗

since R(π∗, φ∗) = R∗, we have:

F (π∗, φ∗) =
R (π∗, φ∗)

R∗ =
R∗

R∗ = 1

This result shows that the fitness function F(π∗, φ) is in-
deed maximized for the optimal STL constraint φ∗, given
that the inner loop converges to the optimal policy π∗. The
maximum value of the fitness function is 1, which occurs
when both the policy and the STL constraint are optimal.

(ii) Convergence of the evolutionary algorithm for
STL synthesis:
Let φi be the STL constraint at iteration i of the evolutionary
algorithm. We want to show that the evolutionary algorithm
converges to the optimal STL constraint φ∗ under certain
conditions. Let P (φi) be the probability distribution of the
STL constraint population at iteration i. The evolutionary
algorithm updates P (φi) through selection, mutation, and
crossover operators. Let Psel(φi), Pmut(φi), and Pcross(φi)
be the updated probability distributions after applying the
selection, mutation, and crossover operators, respectively.
Then, the probability distribution at iteration i + 1 is given
by:



P (φi+1) = Pcross (Pmut (Psel (φi)))

Under proper selection pressure, sufficient exploration, and
well-defined mutation and crossover operators, it can be
shown that the evolutionary algorithm converges to the op-
timal STL constraint φ∗ as the number of iterations ap-
proaches infinity:

lim
i→∞

P (φi) = δ (φ− φ∗)

where δ(·) is the Dirac delta function, which means that the
probability distribution converges to a distribution concen-
trated on the optimal STL constraint φ∗. By proving both
(a) and (b), we establish that the outer loop converges to the
optimal STL constraint φ∗ under the assumption that the in-
ner loop converges to the optimal policy π∗. This shows that
the joint convergence of the inner and outer loops leads to
the overall convergence of the framework.

Proof of Implication 2.
Assume that the outer loop converges to an optimal STL
constraint φ∗. Under this assumption, we need to prove that
the inner loop converges to an optimal policy π∗. We ap-
proach this by showing that:

• The reward function R(π, φ∗) has the necessary prop-
erties to guide the Q-learning algorithm towards the
optimal policy. This can be done by analyzing the
reward function under the optimal STL constraint
and ensuring that it provides proper guidance and
exploration-exploitation trade-off. Specifically, we show
that R(π, φ∗) is Lipschitz continuous and has a unique
maximum at the optimal policy π∗. Moreover, the re-
ward function should encourage sufficient exploration of
the state-action space while exploiting the knowledge ac-
quired during the learning process.

• The Q-learning algorithm converges to the optimal pol-
icy π∗ under certain conditions, such as proper learning
rates, sufficient exploration, and well-defined state and
action spaces. According to the Q-learning convergence
theorem, the Q-learning algorithm converges to the opti-
mal Q-function Q∗(s, a) if the following conditions are
satisfied:

1. Each state-action pair (s, a) is visited infinitely often, i.e.,
limt→∞ Nt(s, a) = ∞, where Nt(s, a) is the number of
visits to the state-action pair (s, a) up to time t.

2. The learning rate αt(s, a) satisfies
∑∞

t=1 αt(s, a) = ∞
and

∑∞
t=1 α

2
t (s, a) < ∞. This condition ensures that the

learning rate decays slowly enough to guarantee conver-
gence.

Under the optimal STL constraint φ∗, we assume that the
state and action spaces are well-defined, and the exploration
strategy (e.g., using an ϵ-greedy approach) guarantees that
each state-action pair is visited infinitely often. If these con-
ditions are met, the Q-learning algorithm converges to the
optimal policy π∗. By showing that the reward function pro-
vides the necessary guidance under the optimal STL con-
straint, and that the Q-learning algorithm converges to the

optimal policy under this guidance, we establish the conver-
gence of the inner loop under the assumption that the outer
loop converges to the optimal STL constraint.

Bounds on the Error
Deriving bounds on the error between the discovered policy
and the true optimal policy involves analyzing the mathe-
matical relationship between the error and various factors
influencing it. Here’s a possible way to approach this analy-
sis: Let π∗ be the true optimal policy and π′ be the discov-
ered policy. Define the error between these policies as:

ϵ (π′, π∗) = E [R (s, π∗(s))−R (s, π′(s))]

where E[·] denotes the expected value, R(s, a) is the reward
function for taking action a in state s, and the expectation is
taken over all states s in the state space. Now, consider the
following factors that may affect the error bounds:
• Granularity of the state abstraction (denoted by G): A

coarse state abstraction may lead to a larger error be-
tween the discovered policy and the true optimal policy.
The impact of state abstraction granularity on the error
can be represented as:

ϵG(G) ≤ C1 ·G
where C1 is a constant that depends on the problem’s
specific characteristics.

• Quality of the learned STL specifications (denoted by
Q): If the learned STL specifications are not accurate or
expressive enough, the error between the discovered pol-
icy and the true optimal policy may be larger. The impact
of the quality of the learned STL specifications on the
error can be represented as:

ϵQ(Q) ≤ C2 · (1−Q)

where C2 is a constant that depends on the problem’s
specific characteristics.

• Amount of human feedback provided (denoted by H):
Human feedback can help guide the learning process and
reduce the error between the discovered policy and the
true optimal policy. The impact of the amount of human
feedback on the error can be represented as:

ϵH(H) ≤ C3 · e−H

where C3 is a constant that depends on the problem’s spe-
cific characteristics, and e−H represents the exponential
decay in error with increasing human feedback.

By combining these individual error bounds, we obtain an
overall error bound:

ϵ (π′, π∗) ≤ C1 ·G+ C2 · (1−Q) + C3 · e−H .

This bound shows the relationship between the error and the
factors affecting it, such as the granularity of the state ab-
straction, the quality of the learned STL specifications, and
the amount of human feedback provided. By analyzing this
error bound, we can identify the trade-offs between these
factors and develop strategies to minimize the error and im-
prove the effectiveness of the bi-level optimization frame-
work.


