
Hierarchical Planning for Rope Manipulation using Knot Theory and a Learned
Inverse Model

Matan Sudry, Tom Jurgenson, Aviv Tamar and Erez Karpas
Technion — Israel Institute of Technology, Haifa, Israel

{matansudry, tomj}@campus.technion.ac.il, {avivt, karpase}@technion.ac.il

Abstract

This work considers planning the manipulation of deformable
1-dimensional objects such as ropes or cables, with an em-
phasis of planning to tie knots. We propose TWISTED: Tying
With Inverse model and Search in Topological space Exclud-
ing Demos, a hierarchical planning approach which, at the
high level, uses ideas from knot-theory to plan a sequence
of rope configurations, while at the low level uses a neural-
network inverse model to move between the configurations
in the high-level plan. To train the neural network, we pro-
pose a self-supervised approach, where we learn from random
movements of the rope. To focus the random movements on
interesting configurations, such as knots, we propose a non-
uniform sampling method tailored for this domain. In a simu-
lation, we show that our approach can plan significantly faster
and more accurately than baselines. We also show that our
plans are robust to parameter changes in the physical simula-
tion, suggesting future applications via sim2real.

1 Introduction
Deformable object manipulation is important for many ap-
plications, such as manufacturing and robotic surgery. In
particular, manipulating 1-dimensional (1D) objects such as
ropes, cables, and hoses, is a challenging and exciting re-
search area that has drawn recent attention (Sundaresan et al.
2020; Van Den Berg et al. 2010; Yan et al. 2020a; Mayer
et al. 2008; She et al. 2021; Schulman et al. 2016; Wu et al.
2020; Yu, Zhong, and Li 2022; Lim et al. 2022; Chi et al.
2022).

There are several challenges to 1D object manipulation.
Representing the state of the object is difficult, as unlike
rigid objects, the object may have infinite degrees of free-
dom (Yan et al. 2021; Wang et al. 2019; Wi et al. 2022).
Perception of a rope-like object is complex due to self-
occlusions, the similarity between different rope parts, and
self-loops (Sundaresan et al. 2020; Ganapathi et al. 2021;
Grannen et al. 2021; Yen-Chen et al. 2022; Yan et al. 2020b;
Ma, Hsu, and Lee 2022). Planning typically requires an ef-
fective abstraction of the states and the actions, which may
be difficult to define (Lu, Chu, and Cheng 2016; Osa, Sugita,
and Mitsuishi 2017), and low-level control for executing a
plan must handle the flexibility and deformability of the rope

Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

– all non-trivial control problems (Yan et al. 2020a; Lu, Chu,
and Cheng 2017; Jin, Wang, and Tomizuka 2019). To the
best of our knowledge, a system that can generally manipu-
late 1D objects is beyond the capabilities of current technol-
ogy.

Our focus in this work is on the planning component in
1D manipulation, particularly rope manipulation and knot
tying. As mentioned above, planning for rope manipulation
is non-trivial, as the state space may be large or infinite, and
tasks like knot-tying essentially have a ‘needle in a haystack’
characteristic and require exhaustive exploration to reach de-
sired states. Accordingly, most prior studies on rope manip-
ulation relied on human demonstrations in lieu of automatic
search (Yan et al. 2020a; Takamatsu et al. 2006; She et al.
2021; Morita et al. 2003; Wakamatsu et al. 2004; Schulman
et al. 2016; Nair et al. 2017; Teng et al. 2022).

This paper tackles the problem of rope manipulation plan-
ning without any demonstrations. Our main contribution is
a hierarchical search algorithm that exploits prior knowl-
edge about knot-tying geometry for its high-level plan, with
self-supervised learning of an inverse model for executing
the low-level control, which we call Tying With Inverse
model and Search in Topological space Excluding Demos
– TWISTED. TWISTED is trained and evaluated in a phys-
ical simulation. We demonstrate, however, that our planning
results are robust to variations of physical properties such as
friction. Thus, we believe that our planning approach can be
integrated with real-robot perception and control for a com-
plete 1D manipulation system in the future. We demonstrate
that TWISTED can tie various types of knots and can gen-
eralize to tie knots that were not seen during the training.
To the best of our knowledge, this is the first demonstration
of such a capability, which cannot be obtained by previous
work that required a human demonstration of the knot to tie.

Finally, while TWISTED is tailored for knot tying by
building on knot theory for high-level planning, our general
methodology may be useful for other tasks where a well-
established theory may inform the high-level characteriza-
tion of the problem, while a learning-based method is used
for low-level control.

2 Background
In our work, we build on knot-theory for high-level plan-
ning. In this section, we give a brief overview of knot the-



Figure 1: TWISTED: Given initial and goal topological states, we iteratively call a high-level planner to find plans to follow
(top row). The plan uses an inverse model to transition between consecutive topological states (bottom right). When following
a plan, new information is integrated into a graph of all known configurations, which seeds the high-level planner with initial
states (bottom right). Gray boxes are high-level states, green boxes are low-level states, blue boxes represent the inverse model,
and our environment in Mujoco is red.

ory. The most common way to solve problems like knot-
tying, with a high-dimensional and continuous state and ac-
tion spaces, and long-horizon planning is to separate it into a
topological representation for high-level planning and a ge-
ometric representation for low-level control, which is solved
using learning (Morita et al. 2003). We represent a rope as
having L links, and denote by q ∈ Q the rope configura-
tion1, with Q ⊆ R2L+5. A topological state, a discrete vari-
able that buckets similar rope configurations, is denoted by
s ∈ S. To denote the relation between q ∈ Q and it’s corre-
sponding topological state s ∈ S, we use Top: Q → S, or
s = Top(q). We follow previous works (Yan et al. 2020a),
where the discrete topological representation for S is P-data
(see appendix Section 7.1). Finally, we define the “complex-
ity” of a topological state s ∈ S, according to the number
of crosses (link intersections, see appendix Section 7.1) it
represents. The complexity of tying a rope increases as the
number of crosses in the rope increase. For ease of notation,
we define Cross: S → Z0+ that returns the number of
crosses in a topological state.

Knot theory (Reidemeister 1983) suggests Reidemeister
moves as actions that transition the rope between topolog-
ical states. In this work, we will use them as high-level ac-
tions during the search. We denote the space of Reidemeister
moves as AR and PR : S × AR → S as the transition func-
tion of topological states using Reidemeister moves. Reide-
meister (Reidemeister 1983) proved that between any two
topological states s, s′ ∈ S, there exists a sequence of ac-
tions that starts in s and ends in s′, namely, ∃a0, . . . , ak ∈

1The first seven coordinates describe the global position of the
middle rope link (position (x, y, z) and quaternion representation
for the rotation), and the remaining L− 1 joints are each described
by yaw and pitch values.

AR s.t. S′ = PR(. . . PR(PR(s, a0), a1) . . . , ak). The Rei-
demeister moves are defined as:

• The Reidemeister I (R1) moves one segment to create a
new loop.

• The Reidemeister II (R2) pulls the middle segment and
creates a new intersection with opposite signs.

• The Cross (C) creates a new intersection between two
segments.

Examples of those actions can be visualized in Figures 3, 4
and 5

Considering the knot-tying problem as a trajectory over
topological states with Reidemeister moves as actions, trans-
lates the original problem of directly manipulating rope con-
figurations to a problem of a shorter horizon and a “lower”
branching factor. This approach has been adopted in differ-
ent algorithms (Yan et al. 2020a; Takamatsu et al. 2006; She
et al. 2021; Morita et al. 2003; Wakamatsu et al. 2004).

Finally, it is useful to define the topological motion
primitives action space (Yan et al. 2020a). When manipu-
lating a rope with L links, an action is a curve c ∈ C, pa-
rameterized by the link to grab l ∈ [1, L]2, an endpoint in
(x, y) (in the workspace), and the maximal height zmax. We
denote the transition function for curves applied on config-
urations by f : Q × C → Q. Yan et al. (2020a) observed
that the space of curves C approximates well all the possible
Reidemeister moves available from a given topological state.
For this reason, in this work, we follow Yan et al. (2020a),
and plan using Reidemeister moves while manipulating the
rope with curves.

2We associate a fixed point for every link



3 Related work
Manipulating deformable objects, such as ropes, presents
varying degrees of difficulty (Matas, James, and Davison
2018). Rope manipulation involves changing the shape of
a rope while untying knots involves transitioning the rope
from a tied configuration to a relaxed state. The difficulty
in manipulating ropes arises from the limited number of ac-
tions to change the rope’s topological state. Unlike knot ty-
ing, where different knots can be targeted, in rope untying,
there is only one goal state: a knot-free state. Additionally,
any disturbance during the knot-tying process may cause the
knot to be released and the rope to return to its original state.
Furthermore, the number of goals increases exponentially
with the number of crosses in the rope, adding to the dif-
ficulty of knot tying compared to other manipulation tasks
such as knot-untying. Next, we present related work in each
of these areas.

3.1 Rope Manipulation
Current research in rope manipulation has proposed vari-
ous algorithms, with a focus on either learning from human
demonstrations (Van Den Berg et al. 2010; Schulman et al.
2016) or solving short-term plans through pick-and-place
actions (Wu et al. 2020; Teng et al. 2022). Conversely, in
our work, we tackle long-term planning, such as knot tying,
without demonstrations.

Ropes dynamics are challenging to learn, compared to
tasks that manipulate rigid objects. To tackle this, previ-
ous methods used self-supervised learning in order to over-
come the need for human involvement in the learning pro-
cess (Chi et al. 2022; Nair et al. 2017; Yan et al. 2020b).
In our work, we trained a supervised neural network using
self-supervised collected data without manual involvement.

Finally, some previous works attempted to learn rope ma-
nipulation using reinforcement learning (RL) methods (Lin
et al. 2021; Han, Paul, and Matsubara 2017; Deng et al.
2022). However, as we show, knot-tying is a complicated
task that out-of-the-box RL algorithms cannot solve (see
Section 5).

3.2 Knot Un-Tying
A related but different task is un-tying ropes, where the
agent needs to release a knotted rope until the rope has
no crosses. Recently many works tackled the knot un-tying
problem (Viswanath et al. 2021; Shivakumar et al. 2022;
Viswanath et al. 2022; Grannen et al. 2021; Sundaresan et al.
2021). Some (Viswanath et al. 2021; Shivakumar et al. 2022)
used graph-based algorithms, some ideas from uncertainty
quantification (Shivakumar et al. 2022), but a crucial compo-
nent in all these works is that they operate over a high-level
abstraction both in the state and action spaces. In our work,
we similarly use abstraction to make efficient use of prior
knowledge about ropes, but one significant factor differenti-
ating between tying and untying is the goal representation.
In rope-untying, the task is defined as a single goal, i.e., the
rope in an untangled state. However, in our case, the agent
could be asked to tie many knots, which completely changes
the problem.

Figure 2: P-data Topological state representation: each col-
umn corresponds to an intersection along the rope of L links.
Row one is ordered from 1 to L in ascending order. Row two,
for each intersection, defines the other link in the intersec-
tion. The label ”o”/”u” classifies the vertical arrangement at
each intersection (over or under). Finally the last row identi-
fies the ”sign” – see appendix Section 7.1. E.g. in the center
state representation link 1 is over link 2 with a ”+” sign.

Figure 3: Topological action - Reidemeister one

3.3 Knot Tying
Knot tying has received much attention recently (Schulman
et al. 2016; Sundaresan et al. 2020; Yan et al. 2020a). One of
the main issues in knot tying is the size of the search space
required to tie a knot. To handle this problem, some previ-
ous methods opted to use demonstrations (Yan et al. 2020a;
Schulman et al. 2016), while others restricted the horizon of
the task by focusing on short sequences (Sundaresan et al.
2020). In this work, we try a different approach, instead of
learning from demonstrations, we try to learn directly from
random actions, and as we later show, we do not restrict the
horizon of the problem yet are able to achieve solutions for
knots of three and even four crosses.

3.4 Task and Motion Planning
Task and Motion Planning (TAMP) decomposes complex
manipulation problems into two distinct processes: high-
level decision-making and motion planning (Dornhege et al.
2009; Dantam et al. 2016). TAMP is commonly used in pick
and place tasks with rigid objects (Braun et al. 2022; Garrett
et al. 2021). More recently, other works tried to use learning
to accelerate the search (Kim et al. 2019; Paxton et al. 2017;
Driess, Ha, and Toussaint 2020).

Our task is similar in many aspects but has two main dif-
ferences from TAMP, (1) we use self-supervised learning
to learn an inverse model that will prioritize low-level ac-
tions of other actions, and (2) our high-level planning in-
cludes states and actions from knot theory. Because of those
differences, TAMP algorithms are not directly applicable to
our work. For casting our problem with notations similar to
TAMP, refer to appendix Section 7.2.



Figure 4: Topological action - Reidemeister two

Figure 5: Topological action - Cross

4 Method
In this section we describe the components that comprise our
solution – TWISTED. We start with the description of the
simulated environment in Section 4.1, we follow with the
description of the algorithmic components in Sections 4.2,
4.3, and 4.4, and finally describe our data collection method-
ology 4.5. See Figure 1 for an overview.

4.1 Simulated Environment
The environment we used to learn and test TWISTED was
created by the free, open-source simulation environment of
Mujoco (Todorov, Erez, and Tassa 2012). It includes the de-
fault rope of Mujoco and the end-effector moving the rope.
We used a free-moving end-effector to focus on the com-
plexity of tying knots, ignoring the additional complexity of
controlling a robot manipulator3. It is crucial to mention that
during planning, we check actions in the simulation itself,
meaning that both evaluation and search use the same Mu-
joco environment (i.e., the search acts with a perfect world
model). Our Mujoco environment is the concrete implemen-
tation of f(q, c) (Section 2).

4.2 TWISTED
Our algorithm TWISTED, is best summarized as an iterative
algorithm that repeats three steps: (1) starts searching from a
known reachable configuration, (2) plans a trajectory whose
states are in S, and actions in AR in high-level, and (3) uses a
low-level planner to follow subsequent states in the selected
high-level plan. The iterative process of TWISTED repeats
until the goal is reached (success) or a pre-specified timeout
expires (terminating in failure). See Algorithm 1.

Data structures: we maintain two data structures, a tree
of known reachable configurations, and a set of high-level
plans.

The Known reachable configurations, is a tree T whose
vertices are configurations q ∈ Q with their corresponding
topological states Top(q) ∈ S and the edges are low-level
actions c ∈ C. Initially, this tree contains only a root node -
the rope’s initial configuration qinit and its topological state
sinit = Top(qinit).

3Although non-trivial, we expect that common motion planning
solutions could be utilized in order to bridge the gap from a free-
moving end-effector to a complete robotic manipulator.

We also maintain a list of high level plans, P = {Pi =
(s0, s1, . . . sli = sg)}i from currently reachable topologi-
cal states (see Section 4.3). When a topological state s′ is
discovered for the first time by the low-level planner (Sec-
tion 4.3), we run the high-level planner from s′ and store the
results into P.

Plan selection: At the start of each iteration, we need
to select a plan to execute from P and a configuration to
start executing the plan from. One naive heuristic is to se-
lect a random configuration from the reachable configura-
tions. However, due to the sparsity of the knot-tying prob-
lem (see 4.5), we reach exponentially fewer configurations
with a higher number of crosses compared to configurations
with a low number of crosses (since the number of possible
configurations are exponential in the number of crosses). To
avoid this less-efficient selection scheme, we seek a more
sophisticated approach that promotes configurations corre-
sponding to topological states with higher crosses. Thus our
selection process is composed of three sub-procedures:
• SelectTopologicalState(): identifies the reachable

topological states in the graph that have a high-level plan
to the goal. Returns one such topological state s. Here,
we use two heuristics, random, which returns a random
topological state, and prioritize-crosses, which gives a
probability proportional to state s with 1 + Cross(s)
(preferring topological states with more crosses). The
motivation is to search deeper than the random heuris-
tic.

• SelectP lan(s): a high-level plan (sequence of topolog-
ical states) P = s, s1, . . . sl = g is randomly selected
from all the high-level plans that start in s.

• SelectConfiguration(s): a configuration q is ran-
domly selected from all configurations belonging to s.

Recall that our objective was to increase the frequency in
which topological states of higher complexity are utilized as
the initial state in the high-level plan. We note that even in
the random heuristic for the SelectTopologicalState, we
already prioritize such a selection, as sampling a random
topological state induces a different distribution than sam-
pling from all reachable configurations in T .

Plan execution: Next, in FollowP lan, we follow the
high level plan P = s0, s1, . . . sl, where s0 = s and sl = sg ,
starting in s, and incrementally try to reach si>0 until sg is
reached. To transition from si to si+1, we use the low-level
planner (Section 4.3) that uses the learned inverse model
(Section 4.4) to predict curves. The low-level planner ap-
plies multiple curves {cj}j to the current configuration qi.
Let q′j = f(qi, cj), and s′j = Top(q′j). If the transition
for cj reaches a configuration with more crosses, we add
this information to T , even if s′j ̸= si+1, i.e., whenever
Cross(s′j) ≥ Cross(si).

Completeness guarantee: Finally, for completeness of
the algorithm, after every iteration of TWISTED, with prob-
ability p (hyper-parameter, with a value of 0.05), we sample
a random reachable configuration q ∈ T , execute k = 100
random actions and add them to T if the action transi-
tions to a topological state with a greater or equal num-
ber of crosses (same conditions as in the “plan execution”



above). This ensures that given enough time, our algorithm
is guaranteed to find a solution. We denote this sub-routine
as RandomExpand

We next detail the high- and low-level planning compo-
nents in TWISTED, and then expand on the inverse model.

Algorithm 1: TWISTED algorithm
Input qinit Initial configuration state and sg topological goal
state
Output Low-level plan if found

1: init : T,P ▷ see data structures
2: sinit = Top(qinit)
3: populate P with plans from sinit
4: while Not timeout do
5: sselected = SelectTopologicalState()
6: Pselected = SelectP lan(sselected)
7: qselected = SelectConfiguration(sselected)
8: PlanFound = FollowP lan(qselected, Pselected)
9: if PlanFound then

10: ReturnP lan
11: else
12: RandomExpand()
13: end if
14: end while

4.3 Planning and Search
TWISTED is composed of two levels of planning, high-level
and low-level planning, that are called as sub-procedures by
the algorithm. We now describe the two planners with their
states and actions.
High-level planner: The states in the high-level

planner are the topological states, S, and the actions are Rei-
demeister moves AR. The high-level planner is used as a
sub-procedure to find a path from s ∈ S (not necessarily
sinitial) to sg ∈ S. We use BFS where valid Reidemeis-
ter moves are the edges, which prunes nodes s′ ∈ S with
Cross(s′) ≥ Cross(sg). The result of the BFS is a set
(possibly empty) of paths that start in s and terminate in sg .
Low-level Planner: The objective of the low-level

planner is to search for a curve that transitions between two
consecutive topological states in the high-level plan we cur-
rently follow. Formally, its state space is Q, and action space
is C, and the objective is to move from the current topolog-
ical state s ∈ S with configuration q (s = Top(q)), to the
topological state s′ ∈ S. To successfully find a curve that
achieves that without wasting too much computing, we uti-
lize our inverse model (Section 4.4) and generate K = 6
curves {ci ∈ C}K . If any of the newly found topological
states are s′, we return success (if more than one action suc-
ceeds we use the first one found), and the plan execution will
try to move to the next topological state in the high-level
path. Otherwise, we return failure, and the iterative process
of TWISTED will repeat (starting in line 4 in Algorithm 1).

4.4 Inverse model
An action generator is crucial in knot-tying as the proportion
of curves that transition the rope to a given topological state

could be extremely small. This makes it unlikely that a small
set of randomly selected curves could be found to satisfy
the required transition between topological states. Thus, we
have trained an inverse model to generate action candidates
that are likely to satisfy the required transition (see Figure 6).

Our inverse model is an auto-regressive model (Gregor
et al. 2014) that creates the curve element-by-element. The
order of prediction elements is as follows: link to pickup
(categorical), the height of the curve zmax (continuous), des-
tination X position (continuous), and destination Y position
(continuous). Categorical outputs are modeled as a multino-
mial distribution, and the continuous outputs are modeled
with a Normal distribution. Every such input is predicted
with an independent sub-network, whose inputs are (1) the
current configuration q, (2) the current (x, y, z) coordinates
of each of the L links, (3) next topological state s′, and (4)
all the elements before the current element (e.g. zmax gets
the link index as input).

Training: we collected data generated from random ac-
tions to train the inverse model (see Section4.5). The data
D contains transitions (q, s, s′), s and s′ are current and fol-
lowing topological states, and q is the current configuration.
In addition, each transition is labeled by c ∈ C. Since data
collection is time-consuming, we follow previous work of
Yan et al. (2020a) and apply the Mirror and Reverse aug-
mentations to our data.4

Inference: during inference, we follow the standard an-
cestral sampling scheme for auto-regressive models (Gregor
et al. 2014); we predict a distribution for every element, sam-
ple from it, and feed the result to the next predicted element
in the sequence.

4.5 Data collection
To train the inverse model, we must collect data that rep-
resent movements typically encountered when tying knots.
The problem, however, is that without a controller that
knows how to tie knots, nor human demonstrations, it is not
clear how to collect such data. In particular, we find that ap-
plying random actions to the rope typically does not lead to
knot-like configurations. In this section, we detail an alter-
native approach.

Initially, we tried to collect rollouts simply by executing
random walks in our simulator. However, in doing so, we
found a very low number of topological states with three
crosses (only 27 states per CPU core per hour). We there-
fore designed a collection scheme that resets the environ-
ment (see below). Using our scheme, we collected 537 suc-
cessful transitions per hour per CPU core. We used that to
collect a data set of 1,670,000 data points.

Collection process: We maintain a set of configurations
we have already seen during data collection and their respec-
tive number of crosses, i.e. DQ = {(qi,Cross(Top(qi))}i.
For every data collection iteration t, we load the simulation
with a configuration sampled from DQ, qt, take a random
curve ct, and reach a new configuration qt+1 with a topolog-

4In Yan et al. (2020a) these augmentations were applied over
manual demonstrations. In our work, we apply them on randomly
collected data.



Figure 6: Inverse model - Auto-regressive Stochastic Network. The network predicts an action in an auto-regressive manner:
first is predicts the link index l ∈ [1, L], then the height of the curve zmax, finally it predicts the x and y coordinates of the
curve. All predictions are stochastic (Multinominal for link index, and Gaussian otherwise). Besides the previous elements, the
input of each element includes the current configuration qt, the next topological state st+1, and the link positions of all the rope
links. The weights of the sub-components are not shared.

ical state st+1. If the number of crosses in Cross(st+1) >
Cross(st) the transition (qt, st, ct, qt+1, st+1) is added to
D, and the configuration qt+1 is added to DQ.

5 Experiments
In the experiments, we want to answer the following items:
(1) How sensitive is knot-tying planning to the action space,
and is a continuous action space necessary? (2) Comparison
of TWISTED with baselines (3) How sensitive is TWISTED
to changes in the physical simulation? (4) How well does
TWISTED generalize to unseen knots?

5.1 What makes knot-tying difficult?
One difficulty of our knot-tying problem is that it requires
very accurate actions to solve. To demonstrate this, we ver-
ify that even a fine discretization of the problem leads to
significantly different outcomes.

In this experiment, we measure sensitivity to discritiza-
tion of curves, i.e. test if using a discretized curve reaches
the same topological state as the next topological state (ob-
tained by executing the original non-discretized curve). For-
mally, given a curve, c = (i, zmax, x, y) ∈ C, which in-
cludes three continuous elements (zmax, x, and y), we con-
vert it to a discrete curve where each element is rounded.
zmax, is discritized in steps of 0.001, and x and y in steps of
0.01. We denote this discretized curve cdis. Notice that the
size of the discretized curve space is 21× 70× 100× 100 =
14, 700, 000, already rather large. We measure the accuracy
of the resulting topological states, namely Top(f(q, c)) =
Top(f(q, cdis)). If the accuracy is high, there is little dif-
ference in discretizing the action space, which would mean
that this problem could be solved using off-the-shelf dis-

crete planners (Chaslot et al. 2008; Finnsson and Björnsson
2008).

We ran over 600k data points of transitions from topo-
logical states of two crosses to topological states of three
crosses, and got an accuracy of 82%. These results show that
the problem dynamics are not smooth, and small changes in
the actions can lead you to different topological states. As
the space of available actions is already rather large (larger
action spaces would make planning even more difficult) we
conclude that discretization of the action space is not a suit-
able approach for our knot-tying problem.

5.2 Success Rate of Different Algorithms
In this experiment, we compare the following different algo-
rithms, including TWISTED and its ablations, to solve the
knot-tying problem.

• “low level only” - We modify TWISTED to not use any
high-level information. Essentially, using random search
over configurations with curves as actions. As there is no
notion of topological states, there is no way to use the
inverse model here. Instead, we sample random curves.
It is important to notice that for this baseline, the search
does not get feedback along the trajectory (in TWISTED,
we do, for instance, count the number of crosses). We
use this baseline to demonstrate how crucial high-level
information is for knot tying.

• “Low+high level” - We modified TWISTED not to use
the inverse model. Instead, we sample random actions
replacing those suggested by the inverse model. Unlike
the previous baseline, we do try to follow a high-level
plan here. This baseline demonstrates the trade-off be-
tween intensive but more accurate action prediction (in-



verse model) vs. an approach of guessing many random
actions and seeing if any suffice.

• “SAC+HER” - In this baseline, we learn a stochas-
tic policy using the Soft Actor-Critic (SAC)(Haarnoja
et al. 2018), with Hindsight Experience Replay
(HER)(Andrychowicz et al. 2017), and after training we
replace our inverse model with the policy. The objective
of this baseline is to establish the performance of model-
free RL methods and the challenging problem of knot-
tying.

• “TWISTED, RND” - full TWISTED algorithm using the
random heuristic for SelectTopologicalState.

• “TWISTED, CRS” - full TWISTED algorithm using the
prioritize-crosses heuristic for SelectTopologicalState.

Evaluation protocol: To evaluate the performance on dif-
ferent difficulty levels, we split our collected data D (Section
4.5) into three levels: easy, medium, and hard. To clas-
sify the problems (topological goal states), we counted the
frequency of each seen topological state. Easy, medium
and hard are the 33%, 66%, and 100% percentiles appear-
ing the most in the data. From every class of problems, we
sampled ten representatives.

Results: None of the algorithms solve medium or hard
in the time limit of 1800 seconds, demonstrating the hard-
ness of the knot-tying problem. Figure 7 shows the number
of solved tasks vs. the running time for easy problems.

First, observe that ”low level only” (essentially trying ran-
dom curves from random reachable configurations) is barely
able to solve two out of the ten problems. This validates
our earlier hypothesis in Section 4.5 that the problem is
too sparse to solve without prior knowledge of the prob-
lem structure (such as our high-level search). Surprisingly,
the model-free RL baseline is barely better than the random
search. We observed that during training (i.e., when the pol-
icy was not used inside the low-level planner), it did man-
age to consistently solve all 1-cross problems, but already
for 2-cross problems success rate was near zero. This sug-
gests that knot-tying is a hard task to learn end-to-end with-
out proper domain knowledge. We hypothesize that the main
reason this baseline fails is due to the discrete nature of the
topological states – in such cases algorithms cannot general-
ize between “similar” states because as categorical variables,
there is no notion of similarity, only the relation of equality.
Even a well utilized exploration method such as HER does
little to mitigate this problem, because it can only reinforce
patterns for goals we reach, and as we saw when acting ran-
domly, like RL agents do at the beginning of training, there
is little chance to advance to topological states with many
crosses (see Section 4.5).

Finally, regarding the baselines, we see that because ”low
+ high level” is so inferior to the full TWISTED versions, the
inverse model is a valuable component of our full solution.

Comparing “TWISTED, RND” and “TWISTED, CRS”,
we observe that the results are not clear cut. To identify the
better model, we sampled 15 additional easy goals to get a
statically significant separation on which is the better vari-
ant of TWISTED. The “TWISTED, CRS” solved a total of
24/25, and the “TWISTED, RND” solved only 19/25. Un-

Figure 7: Success rate of different algorithms to knot tying,
X axis is how much time the planner had to solve it and Y
axis is success knots, total 30 instances

Figure 8: Success rate of different ropes with different fric-
tion to knot tying, X axis is how much time the planner had
to solve it and Y axis is success knots, total 30 instances

der a Z-test the “TWISTED, CRS” has a statistical signif-
icance of being better than the “TWISTED, RND” (using
α-level of 0.05), showing that planning deeper and utilizing
prior knowledge (number of crosses) is preferable. There-
fore, in our next experiments, we only use the “TWISTED,
CRS” as the selected version of TWISTED.

5.3 Sensitivity Analysis
Our experiments were done in a simulation, where the plan-
ning computation and the evaluation environment are the
same. Clearly, this does not apply in the real world. To mo-
tivate the usage of TWISTED in real world applications we
test what happens if the model of the world in the planning
computation is mismatched with the evaluation environment.

In our experiments, we focus on the friction coefficient.
First, we validate that friction indeed significantly impacts
rope tying. To measure this, we compare the next topoligical
state observed when applying the same action from the same
low-level state, under different friction coefficients. We eval-
uated over 600,000 actions, and only 82% curves had the
same topological state as the original friction value.

Next, we evaluate the performance of TWISTED trained
with a single friction coefficient on simulated environments
with different frictions of the rope. Variants: 100% friction
denotes the default Mujoco friction, and the one we use for



Figure 9: Success rate of unseen states with three crosses, X
axis is how much time the planner had to solve it and Y axis
is success knots, total eight problems instances

Figure 10: Success rate of unseen states with four crosses, X
axis is how much time the planner had to solve it and Y axis
is success knots, total ten problems instances

TWISTED. The 95% and 105% variants, denote decreasing
and increasing the friction by 5%.

Results: We can see that the performance of TWISTED is
well-maintained with the different friction coefficients (Fig-
ure 8). This asserts that TWISTED can handle some vari-
ations in the environment’s physics such as friction (even
though the resulting trajectories might be different than the
original ones).

5.4 Generalization to unseen topological states
The number of available topological states for states with 3
or 4 crosses is above 500 and almost 8000 correspondingly.
Naturally our data does not contains all of them because it
is hard to sample topological states of higher crosses (see
Section 4.5 for analysis). Thus, we require our algorithm
to handle unseen topological states. We evaluate whether
TWISTED can tie knots where the goal state was not rep-
resented in D. For this, we take topological states with
three crosses not seen in D, and topological states with four
crosses. In these out-of-distribution cases we expect the in-
verse model to contribute less than in well represented states,
and we expect that the planning components in TWISTED
will compensate for this distribution shift. For this reason,
we extend search time by a factor of 4×.

Results are shown in figures 9 and 10. Figure 9 shows

that TWISTED solved two out of eight problems with un-
seen three cross states. Those states are harder to reach be-
cause they were never seen in D. In figure 10 we see that
TWISTED solved three out of ten problems with unseen
states with four crosses. We remind that our data contain
only one, two, and three crosses, and therefore these results
show that TWISTED is not only memorizing the data, but
can generalize to some degree to unseen goal states.

6 Limitations and Outlook
We presented TWISTED – an hierarchical planning algo-
rithm for knot tying, that relies on knot-theory and a learned
inverse model to automatically solve problems that previ-
ously required access to human demonstrations. TWISTED
outperforms various baselines, including a model-free deep
RL agent, and we demonstrated robustness to simulation pa-
rameters such as friction, and generalization to problems not
seen during training (even to problems of greater complex-
ity). We see this as an important step towards general 1D
object manipulation.

Our work has several important limitations that need to
be addressed in order to make it more practical and use-
ful in real-world applications. First, simulation accelerates
the training process but introduces a sim2real gap between
the simulation and real-world performance. This gap should
be tested on a real robot using real ropes. Furthermore, in
this work we also simplified the problem; we control a free-
moving end-effector instead of controlling a manipulator
(which might make some curves unfeasible in some scenar-
ios), and we get a perfect representation of the rope, where
in reality we would need first to estimate one.

As our experiments demonstrate, TWISTED has shown
better performance on more common data, but its perfor-
mance decreases when trying to solve rare or unseen goals.
This means that our method needs to be improved to per-
form well in a timely manner on all types of knots. For in-
stance, the data collection was done randomly, but collect-
ing data from states where the system is less capable, could
ultimately provide data of higher quality and improve the
performance of our learned inverse model. Another option
to handle this problem is to improve online search, for in-
stance by utilizing bandit algorithms during high-level plan
selection. The benefit of bandit algorithms is that they bal-
ance exploration versus exploitation, usually making search
more efficient than hand-crafted search heuristics.

Finally, to the best of our knowledge, this is the first work
that manages to tie knots from random data. An exciting
area for improvement would be to utilize TWISTED as a
demonstrations provider to generate “valuable” data for an
off-policy RL algorithm, either by distilling the planner into
a policy (Silver et al. 2016) or by combining RL with imi-
tation learning (Nair et al. 2018). This could be the missing
prior knowledge that RL methods lack for knot-tying tasks
(cf. Section 5).

References
Andrychowicz, M.; Wolski, F.; Ray, A.; Schneider, J.; Fong,
R.; Welinder, P.; McGrew, B.; Tobin, J.; Pieter Abbeel, O.;



and Zaremba, W. 2017. Hindsight experience replay. Ad-
vances in neural information processing systems, 30.

Braun, C. V.; Ortiz-Haro, J.; Toussaint, M.; and Oguz, O. S.
2022. RHH-LGP: Receding Horizon And Heuristics-Based
Logic-Geometric Programming For Task And Motion Plan-
ning. In 2022 IEEE/RSJ International Conference on Intel-
ligent Robots and Systems (IROS), 13761–13768. IEEE.

Chaslot, G. M. J.; Winands, M. H.; Herik, H. J. v. d.; Uiter-
wijk, J. W.; and Bouzy, B. 2008. Progressive strategies for
Monte-Carlo tree search. New Mathematics and Natural
Computation, 4(03): 343–357.

Chi, C.; Burchfiel, B.; Cousineau, E.; Feng, S.; and Song,
S. 2022. Iterative residual policy: for goal-conditioned dy-
namic manipulation of deformable objects. arXiv preprint
arXiv:2203.00663.

Dantam, N. T.; Kingston, Z. K.; Chaudhuri, S.; and Kavraki,
L. E. 2016. Incremental task and motion planning: A
constraint-based approach. In Robotics: Science and sys-
tems, volume 12, 00052. Ann Arbor, MI, USA.

Deng, Y.; Xia, C.; Wang, X.; and Chen, L. 2022. Deep
Reinforcement Learning Based on Local GNN for Goal-
Conditioned Deformable Object Rearranging. In 2022
IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), 1131–1138. IEEE.

Dornhege, C.; Gissler, M.; Teschner, M.; and Nebel, B.
2009. Integrating symbolic and geometric planning for mo-
bile manipulation. In 2009 IEEE International Workshop on
Safety, Security & Rescue Robotics (SSRR 2009), 1–6. IEEE.

Driess, D.; Ha, J.-S.; and Toussaint, M. 2020. Deep Visual
Reasoning: Learning to Predict Action Sequences for Task
and Motion Planning from an Initial Scene Image. In Proc.
of Robotics: Science and Systems (R:SS).

Finnsson, H.; and Björnsson, Y. 2008. Simulation-based ap-
proach to general game playing. In Aaai, volume 8, 259–
264.

Ganapathi, A.; Sundaresan, P.; Thananjeyan, B.; Balakr-
ishna, A.; Seita, D.; Grannen, J.; Hwang, M.; Hoque, R.;
Gonzalez, J. E.; Jamali, N.; et al. 2021. Learning dense vi-
sual correspondences in simulation to smooth and fold real
fabrics. In 2021 IEEE International Conference on Robotics
and Automation (ICRA), 11515–11522. IEEE.

Garrett, C. R.; Chitnis, R.; Holladay, R.; Kim, B.; Silver, T.;
Kaelbling, L. P.; and Lozano-Pérez, T. 2021. Integrated task
and motion planning. Annual review of control, robotics,
and autonomous systems, 4: 265–293.

Grannen, J.; Sundaresan, P.; Thananjeyan, B.; Ichnowski,
J.; Balakrishna, A.; Viswanath, V.; Laskey, M.; Gonzalez,
J.; and Goldberg, K. 2021. Untangling Dense Knots by
Learning Task-Relevant Keypoints. In Conference on Robot
Learning, 782–800. PMLR.

Gregor, K.; Danihelka, I.; Mnih, A.; Blundell, C.; and Wier-
stra, D. 2014. Deep autoregressive networks. In In-
ternational Conference on Machine Learning, 1242–1250.
PMLR.

Haarnoja, T.; Zhou, A.; Abbeel, P.; and Levine, S. 2018.
Soft actor-critic: Off-policy maximum entropy deep rein-
forcement learning with a stochastic actor. In International
conference on machine learning, 1861–1870. PMLR.
Han, H.; Paul, G.; and Matsubara, T. 2017. Model-based re-
inforcement learning approach for deformable linear object
manipulation. In 2017 13th IEEE Conference on Automation
Science and Engineering (CASE), 750–755. IEEE.
Jin, S.; Wang, C.; and Tomizuka, M. 2019. Robust deforma-
tion model approximation for robotic cable manipulation.
In 2019 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), 6586–6593. IEEE.
Kim, B.; Wang, Z.; Kaelbling, L. P.; and Lozano-Pérez, T.
2019. Learning to guide task and motion planning using
score-space representation. The International Journal of
Robotics Research, 38(7): 793–812.
Konidaris, G.; Kaelbling, L. P.; and Lozano-Perez, T. 2018.
From skills to symbols: Learning symbolic representations
for abstract high-level planning. Journal of Artificial Intelli-
gence Research, 61: 215–289.
Lim, V.; Huang, H.; Chen, L. Y.; Wang, J.; Ichnowski,
J.; Seita, D.; Laskey, M.; and Goldberg, K. 2022.
Real2sim2real: Self-supervised learning of physical single-
step dynamic actions for planar robot casting. In 2022 Inter-
national Conference on Robotics and Automation (ICRA),
8282–8289. IEEE.
Lin, X.; Wang, Y.; Olkin, J.; and Held, D. 2021. Softgym:
Benchmarking deep reinforcement learning for deformable
object manipulation. In Conference on Robot Learning,
432–448. PMLR.
Lu, B.; Chu, H. K.; and Cheng, L. 2016. Dynamic trajectory
planning for robotic knot tying. In 2016 IEEE International
Conference on Real-time Computing and Robotics (RCAR),
180–185. IEEE.
Lu, B.; Chu, H. K.; and Cheng, L. 2017. Robotic knot tying
through a spatial trajectory with a visual servoing system.
In 2017 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), 5710–5716. IEEE.
Ma, X.; Hsu, D.; and Lee, W. S. 2022. Learning latent graph
dynamics for visual manipulation of deformable objects. In
2022 International Conference on Robotics and Automation
(ICRA), 8266–8273. IEEE.
Matas, J.; James, S.; and Davison, A. J. 2018. Sim-to-real
reinforcement learning for deformable object manipulation.
In Conference on Robot Learning, 734–743. PMLR.
Mayer, H.; Gomez, F.; Wierstra, D.; Nagy, I.; Knoll, A.; and
Schmidhuber, J. 2008. A system for robotic heart surgery
that learns to tie knots using recurrent neural networks. Ad-
vanced Robotics, 22(13-14): 1521–1537.
Migimatsu, T.; and Bohg, J. 2022. Grounding predicates
through actions. In 2022 International Conference on
Robotics and Automation (ICRA), 3498–3504. IEEE.
Morita, T.; Takamatsu, J.; Ogawara, K.; Kimura, H.; and
Ikeuchi, K. 2003. Knot planning from observation. In 2003
IEEE International Conference on Robotics and Automation
(Cat. No. 03CH37422), volume 3, 3887–3892. IEEE.



Nair, A.; Chen, D.; Agrawal, P.; Isola, P.; Abbeel, P.; Malik,
J.; and Levine, S. 2017. Combining self-supervised learning
and imitation for vision-based rope manipulation. In 2017
IEEE international conference on robotics and automation
(ICRA), 2146–2153. IEEE.
Nair, A.; McGrew, B.; Andrychowicz, M.; Zaremba, W.; and
Abbeel, P. 2018. Overcoming exploration in reinforcement
learning with demonstrations. In 2018 IEEE international
conference on robotics and automation (ICRA), 6292–6299.
IEEE.
Osa, T.; Sugita, N.; and Mitsuishi, M. 2017. Online trajec-
tory planning and force control for automation of surgical
tasks. IEEE Transactions on Automation Science and Engi-
neering, 15(2): 675–691.
Paxton, C.; Raman, V.; Hager, G. D.; and Kobilarov, M.
2017. Combining neural networks and tree search for task
and motion planning in challenging environments. In 2017
IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), 6059–6066. IEEE.
Reidemeister, K. 1983. Knot theory. BCS Associates.
Schulman, J.; Ho, J.; Lee, C.; and Abbeel, P. 2016. Learning
from demonstrations through the use of non-rigid registra-
tion. In Robotics Research, 339–354. Springer.
She, Y.; Wang, S.; Dong, S.; Sunil, N.; Rodriguez, A.; and
Adelson, E. 2021. Cable manipulation with a tactile-reactive
gripper. The International Journal of Robotics Research,
40(12-14): 1385–1401.
Shivakumar, K.; Viswanath, V.; Gu, A.; Avigal, Y.; Kerr, J.;
Ichnowski, J.; Cheng, R.; Kollar, T.; and Goldberg, K. 2022.
SGTM 2.0: Autonomously Untangling Long Cables using
Interactive Perception. arXiv preprint arXiv:2209.13706.
Silver, D.; Huang, A.; Maddison, C. J.; Guez, A.; Sifre, L.;
Van Den Driessche, G.; Schrittwieser, J.; Antonoglou, I.;
Panneershelvam, V.; Lanctot, M.; et al. 2016. Mastering the
game of Go with deep neural networks and tree search. na-
ture, 529(7587): 484–489.
Srivastava, S.; Fang, E.; Riano, L.; Chitnis, R.; Russell, S.;
and Abbeel, P. 2014. Combined task and motion planning
through an extensible planner-independent interface layer.
In 2014 IEEE international conference on robotics and au-
tomation (ICRA), 639–646. IEEE.
Sundaresan, P.; Grannen, J.; Thananjeyan, B.; Balakrishna,
A.; Ichnowski, J.; Novoseller, E.; Hwang, M.; Laskey, M.;
Gonzalez, J. E.; and Goldberg, K. 2021. Untangling dense
non-planar knots by learning manipulation features and re-
covery policies. arXiv preprint arXiv:2107.08942.
Sundaresan, P.; Grannen, J.; Thananjeyan, B.; Balakrishna,
A.; Laskey, M.; Stone, K.; Gonzalez, J. E.; and Goldberg,
K. 2020. Learning rope manipulation policies using dense
object descriptors trained on synthetic depth data. In 2020
IEEE International Conference on Robotics and Automation
(ICRA), 9411–9418. IEEE.
Takamatsu, J.; Morita, T.; Ogawara, K.; Kimura, H.; and
Ikeuchi, K. 2006. Representation for knot-tying tasks. IEEE
Transactions on Robotics, 22(1): 65–78.

Teng, Y.; Lu, H.; Li, Y.; Kamiya, T.; Nakatoh, Y.; Serikawa,
S.; and Gao, P. 2022. Multidimensional Deformable Object
Manipulation Based on DN-Transporter Networks. IEEE
Transactions on Intelligent Transportation Systems.
Todorov, E.; Erez, T.; and Tassa, Y. 2012. Mujoco: A physics
engine for model-based control. In 2012 IEEE/RSJ interna-
tional conference on intelligent robots and systems, 5026–
5033. IEEE.
Van Den Berg, J.; Miller, S.; Duckworth, D.; Hu, H.; Wan,
A.; Fu, X.-Y.; Goldberg, K.; and Abbeel, P. 2010. Super-
human performance of surgical tasks by robots using itera-
tive learning from human-guided demonstrations. In 2010
IEEE International Conference on Robotics and Automa-
tion, 2074–2081. IEEE.
Viswanath, V.; Grannen, J.; Sundaresan, P.; Thananjeyan,
B.; Balakrishna, A.; Novoseller, E.; Ichnowski, J.; Laskey,
M.; Gonzalez, J. E.; and Goldberg, K. 2021. Disentan-
gling Dense Multi-Cable Knots. In 2021 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS),
3731–3738. IEEE.
Viswanath, V.; Shivakumar, K.; Kerr, J.; Thananjeyan, B.;
Novoseller, E.; Ichnowski, J.; Escontrela, A.; Laskey, M.;
Gonzalez, J. E.; and Goldberg, K. 2022. Autonomously Un-
tangling Long Cables. arXiv preprint arXiv:2207.07813.
Wakamatsu, H.; Tsumaya, A.; Arai, E.; and Hirai, S.
2004. Planning of one-handed knotting/raveling manipu-
lation of linear objects. In IEEE International Conference
on Robotics and Automation, 2004. Proceedings. ICRA’04.
2004, volume 2, 1719–1725. IEEE.
Wang, A.; Kurutach, T.; Liu, K.; Abbeel, P.; and Tamar, A.
2019. Learning Robotic Manipulation through Visual Plan-
ning and Acting. In Robotics: science and systems.
Wi, Y.; Florence, P.; Zeng, A.; and Fazeli, N. 2022. Virdo:
Visio-tactile implicit representations of deformable objects.
In 2022 International Conference on Robotics and Automa-
tion (ICRA), 3583–3590. IEEE.
Wu, Y.; Yan, W.; Kurutach, T.; Pinto, L.; and Abbeel, P.
2020. Learning to Manipulate Deformable Objects with-
out Demonstrations. In 16th Robotics: Science and Systems,
RSS 2020. MIT Press Journals.
Yan, M.; Li, G.; Zhu, Y.; and Bohg, J. 2020a. Learning
topological motion primitives for knot planning. In 2020
IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), 9457–9464. IEEE.
Yan, M.; Zhu, Y.; Jin, N.; and Bohg, J. 2020b. Self-
supervised learning of state estimation for manipulating de-
formable linear objects. IEEE robotics and automation let-
ters, 5(2): 2372–2379.
Yan, W.; Vangipuram, A.; Abbeel, P.; and Pinto, L. 2021.
Learning predictive representations for deformable objects
using contrastive estimation. In Conference on Robot Learn-
ing, 564–574. PMLR.
Yen-Chen, L.; Florence, P.; Barron, J. T.; Lin, T.-Y.; Ro-
driguez, A.; and Isola, P. 2022. Nerf-supervision: Learn-
ing dense object descriptors from neural radiance fields. In
2022 International Conference on Robotics and Automation
(ICRA), 6496–6503. IEEE.



Yu, M.; Zhong, H.; and Li, X. 2022. Shape control of de-
formable linear objects with offline and online learning of
local linear deformation models. In 2022 International Con-
ference on Robotics and Automation (ICRA), 1337–1343.
IEEE.

7 Appendix
7.1 P-data, an abstract representation for rope

states
A common way to abstract the state space in knot tying is
using the P-data representation (Morita et al. 2003). The P-
data representation translates a rope configuration to a ma-
trix of discrete values that depends on the number of link in-
tersections. The P-data algorithm stages are: (1) project the
3D rope onto a 2D on the horizontal plane. (2) Select rope
direction by defining the head and tail of the rope. (3) Move
from head to tail and count the number of intersections along
the path, starting from 1 to N. Those intersections are also
called crosses. Finally, (4) each intersection gets over/under
value based on which segment is over the other in the height
dimension and also gets a sign plus/minus. The sign defined
as

sign =

−→
l over×

−→
l under

|−→l over×
−→
l under|

· −→ez ,

where ez is the unit normal of the horizontal plane, and lover
and lunder are the two strands directional vectors. Examples
of P-data of projected knots in Figure 2.

7.2 TAMP-like Problem Statement
In general, the objective of rope manipulation is to move
the rope’s initial configuration to a desired goal using a se-
quence of actions. However, finding a plan built from a se-
quence of actions on the rope configuration can take much
time. Therefore, many algorithms use abstraction to reduce
the state and action spaces. The abstraction is called high-
level, and it reduces the plan length thus making the problem
feasible (Konidaris, Kaelbling, and Lozano-Perez 2018). In
our work, we will use the topological states using p-data and
Reidemeister moves as our high level states and actions. The
high-level plan is translated into concrete low-level actions.
High-level planning needs to generate a plan fast to guide
the low-level motion planner. The high-level planner uses
abstract states and actions to reduce search time and allow
agents to reason over long horizons by showing only the
necessary information for high-level planning (Migimatsu
and Bohg 2022). The high-level plan includes a sequence
of abstract states and transitions between them using ab-
stract actions. The low-level motion planner gets a high-level
plan and searches for paths through controllable joints of the
agent defined as the agent’s configuration space. The formal
connection between high-level and low-level define as exist-
ing a transition from high-level state s to high-level state s′

if there is a low-level state q in s and q′ in s′ with a transition
between them.

High-level planning state space is formally represented as
a tuple T = ⟨S, S0, SG, Aabs, Tabs, Cabs⟩, where:
• S is a finite and non-empty set of states,

• S0 ∈ S is the initial state,
• SG ⊆ S is a non-empty set of goal states,
• Aabs(s) ⊆ Aabs denotes the actions applicable in each

state s ∈ S,
• Tabs : S×Aabs → S is the state transition function, such

that applying action a in state s leads to state s′, and
• C(s, a)abs is the cost of performing action a in state s

Low-level planning state space is formally represented
as a tuple T = ⟨Q,Q0, QG, Amotion, F, Tmotion, Cmotion⟩,
where:
• Q is a finite and non-empty set of configuration states,
• Q0 ∈ S is the initial configuration state,
• QG ⊆ S is a non-empty set of goal configuration states,
• Amotion(q) ⊆ A denotes the actions applicable in each

state q ∈ Q,
• F : Q → {0, 1} defines if Q is a feasible state,
• Tmotion : Q×Amotion → Q is the state transition func-

tion, such that applying action a in state q leads to state
q′,

• Cmotion(q, a) is the cost of performing action a in state
q

The feasible configuration space is a subset of Q that satis-
fies the constraint: QF = {q ∈ Q|F (q) = 1}. It is important
to notice that each q from low-level has only one s, and s has
many q in low-level. The same is valid for actions. The goal
is to generate a low-level plan that the agent can execute to
solve a given task. Doing that using a high-level plan on ab-
stract representation and low-level motion planning guided
by the high-level plan to generate a plan(Srivastava et al.
2014).

The proposed algorithm for knot tying using manipulation
will require high and low levels of planning to achieve the
desired outcome. The initial configuration of the rope will
serve as the starting point for the transition function. In con-
trast, the topological state of the rope will define the goal to
address the challenge of infinite possible configurations for
each tied rope (Takamatsu et al. 2006). This problem state-
ment is similar to the TAMP, where multiple layers of plan-
ning are needed to define the problem.


