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Abstract

Reinforcement learning in problems with symbolic
state spaces is challenging due to the need for rea-
soning over long horizons. This paper presents a
new approach that utilizes relational abstractions in
conjunction with deep learning to learn a general-
izable Q-function for such problems. The learned
Q-function can be efficiently transferred to related
problems that have different object names and ob-
ject quantities, and thus, entirely different state
spaces. We show that the learned, generalized Q-
function can be utilized for zero-shot transfer to re-
lated problems without an explicit, hand-coded cur-
riculum. Empirical evaluations on a range of prob-
lems show that our method facilitates efficient zero-
shot transfer of learned knowledge to much larger
problem instances containing many objects.

1 Introduction

Deep Reinforcement Learning (DRL) has been successfully
used for sequential decision making in tasks using image-
based state representations [Mnih er al., 2013]. However,
many problems in the real world cannot be readily expressed
as such and are naturally described in factored representa-
tions in a symbolic representation language such as the Plan-
ning Domain Definition Language (PDDL) [Long and Fox,
2003] or the Relational Dynamic Influence Diagram Lan-
guage (RDDL) [Sanner, 2010]. For example, in a logistics
problem, the objective consists of delivering packages to their
destined locations using a truck to carry them. Symbolic de-
scription languages such as first-order logic (FOL) can eas-
ily capture states and objectives of this scenario using pred-
icates such as in-truck(p) where p is a parameter that can be
used to represent any package. Symbolic representations for
such problems are already available in the form of databases
and converting them to image-based representations would
require significant human effort. Due to their practical use,
symbolic descriptions and algorithms utilizing them are of
keen interest to the research community.

A key difficulty in applying RL to problems expressed in
such representations is that their state spaces generally grow
exponentially as the number of state variables or objects in-
creases. However, solutions to such problems can often be de-

scribed by compact, easy-to-compute “generalized policies”
that can transfer to a class of problems with differing ob-
ject counts, significantly reducing the sample complexity for
learning a good, instance-specific policy.

Running Example We illustrate the benefits of com-
puting generalized policies using the SysAdmin(n) domain
[Guestrin et al., 2001] that has been used as a benchmark
domain in several planning competitions. A problem in this
domain consists of a set of n computers connected to each
other in an arbitrary configuration. At any time step, the
computers can shutdown with an unknown probability dis-
tribution that depends on the network connectivity wherein a
shutdown computer increases the tendency of its neighbors to
shutdown. The agent is also awarded a positive reward that is
proportional to the total number of running computers. Sim-
ilarly, at each time step, the agent may reboot any one of the
n computers bearing a small negative reward or may simply
do nothing. In our problem setting, action dynamics are not
available as closed-form probability distributions making RL
the natural choice for solving such problems.

A state in this problem is succintly described by a factored
representation with boolean state variables (propositions) that
describe which computers are running and their connectivity.
It is easy to to see that the state spaces grow exponentially as
n increases. However, this problem has a very simple, greedy
policy that can provide a very high cumulative reward; re-
boot any computer that is not running or do nothing. Even
though a general policy for such a problem is easy to ex-
press, traditional approaches to RL like Q-learning cannot
transfer learned knowledge, and thus, have difficulties scal-
ing to larger problems with more computers. Our major con-
tribution in this paper is learning a generalized, relational Q-
function that can express such a policy and use it to efficiently
transfer knowledge to larger instances.

Many existing techniques that compute generalized poli-
cies do so by using human-guided or automatic feature engi-
neering to find relevant features that facilitate efficient trans-
fer (see Sec. 5 for a detailed discussion of related work). For
example, Ng and Petrick [2021a] use an external feature dis-
covery module to learn first-order features for Q-function ap-
proximation. API [Fern er al., 2006] uses a taxonomic lan-
guage with beam search to form rule-based policies.

In this paper, we approach the problem of learning gen-
eralized policies from a Q-function approximation perspec-



tive. We utilize deep learning along with an automatically
generated feature list to learn a nonlinear approximation of
the Q-function. Our approach learns a generalizable, rela-
tional Q-function that facilitates zero-shot transfer of knowl-
edge to larger instances at the propositional level. We extend
our previous work on leapfrogging, a data-efficient automatic
self-training technique, to RL settings. Our empirical results
show that our approach can outperform existing approaches
for zero-shot transfer.

The rest of this paper is organized as follows: The next
section presents the required background. Sec.3 describes
our approach for transfer followed by a description of our
algorithm for generalized reinforcement learning (Sec. 3.3).
Sec. 4 presents an extensive empirical evaluation along with
a discussion of some limitations and future work. Sec. 5 pro-
vides an account of related work in the area and Sec. 6 con-
cludes this paper by summarizing our contributions.

2 Formal Framework

We establish our problem in the context of reinforcement
learning for Markov Decision Processes (MDPs). We rep-
resent relational MDPs using the notation used by Fern et
al. [2006]. Let D = (P, .A) be a problem domain where
P is a set of predicates of arity no greater than 2,' and A is
a set of parameterized action names. An MDP problem for a
domain D is atuple M = (O, S, A, T, R,~, so) where O is a
set of objects. A fact is an instantiation of a predicate p € P
with the appropriate number of objects from O. A state s is a
set of true facts and the state space S is a finite set consisting
of all possible sets of true facts. Similarly, the action space
A is composed of all possible instantiations of action names
a € A with objects from O. T is a transition system, im-
plemented by a simulator, that returns a state s’ according to
some fixed, but unknown probability distribution P(s’|s,a)
when applying action « in a state s. We assume w.l.o.g. that
the simulator only returns actions that are executable in a
given state and that there is always one such action (which
can be easily modeled using a no-op). R : S x A — Risa
reward function that is also implemented by the simulator. ~y
is the discount factor, and sg is the initial state.
Example The SysAdmin domain introduced in the preced-
ing section can be described by predicates running(c,) and
connected(cy, ¢,). The possible actions are reboot(c, ), and
no-op(). ¢, and ¢, are parameters that can be grounded with
objects of a specific problem. A state of a problem M., drawn
from SysAdmin(2) with connectivity K5 using computer
names cg and ¢; where only ¢y is running can be described as
Seg = {running(cy),connected(cy, c1), connected(cy,co)}.
The action space of M,, would consist of actions no-op(),
reboot(cp), and reboot(c; ) with their dynamics implemented
by a blackbox simulator.

A solution to an MDP is expressed as a deterministic policy
m S — A, which is a mapping from states to actions. Let
t be any time step, then, given a policy , the value of taking
action « in a state s is defined as the expected return starting

"Predicates with arity greater than 2 can be easily converted to
binary predicates using a simple compilation.

from s, executing a, observing a reward r and following the
policy thereafter [Sutton and Barto, 1998].

oo
qﬂ'(sﬂ Cb) =E, [Z’Yiﬁﬂdrl
i=0

St :s7at:a}

The optimal action-value function (or Q-function) is de-
fined as the maximum expected return over all policies for
every s € S and every a € A; ¢.(s,a) = maxqr(s,a). It
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is easy to prove that the optimal Q-function function satisfies
the Bellman equation (expressed in action-value form):

¢:(8,a) = Egrur |res1 + ymaxg. (s’ a’)
a’€A

stzs,at:a]

Reinforcement learning algorithms iteratively improve the
Q-function estimate Q(s,a) ~ g¢.(s,a) by converting the
Bellman equation into update rules. Given an observation
sequence (S, at, Tr41, St+1), the update rule for Q-learning
[Watkins, 1989] to estimate Q(s¢, a;) is given by:

Q(st,a:) = Q(8¢,at) + ady

where 0; = 1411 + vmaXQ(st+1,a’) — Q(s¢,ay) is the
a’'e

temporal difference, TD(0), error, and « is the learning
rate. Q-learning has been shown to converge to the opti-
mal Q-function under certain conditions [Sutton and Barto,
1998]. Q-learning is an off-policy algorithm and generally
uses an e-greedy exploration strategy, selecting a random
action with probability e, and following the greedy policy
7(s) = argmax Q(s, a) otherwise.
a

We define a feature f for a domain D as a first-order for-
mula over P with one free variable. We then define a feature
kernel ¢¢(s) for a problem M as the set of objects 0 € O
that satisfy f in a state s € S. We utilize description logic
to derive and express feature kernels building upon the recent
work by Bonet et al. [2019]. This is described in Sec. 3.1.

3  Our Approach

Our goal is to compute approximate Q-functions whose in-
duced policies zero-shot generalize to problem instances with
differing object counts in a way that allows RL approaches to
find good policies with minimal learning. To do so, we au-
tomatically generate domain-specific relational abstractions
that lift problem-specific characteristics like object names and
numbers (Sec.3.1). Sec. 3.2 describes our method of repre-
senting these abstractions as input features to a deep neu-
ral network. Finally, Sec.3.3 and Sec. 3.4 expand on how
our algorithm, Generalized Reinforcement Learning (GRL),
performs iterative automatic self-training of the deep neural
network to learn approximate Q-values of abstract states and
uses them for transfer, especially in the zero-shot setting.

3.1 Relational Abstraction

This paper develops a novel approach for learning, express-
ing, and transferring generalized Q-functions using logic-
based features. One challenge in Q-function approxima-
tion is the selection of a representation language in which



it would be possible to express features that provide use-
ful information for the decision making process. Prior work
on computing generalized plans and policies considers using
logic-based features to develop lifted policy languages for
feature synthesis [Khardon, 1999; Cumby and Roth, 2002;
Martin and Geffner, 2004; Fern et al., 2006]. Counters de-
rived from logic-based features have been found to be use-
ful for expressing generalized plans [Srivastava et al., 2008]
and can be used to derive measures of progress for proving
correctness [Srivastava et al., 2010; Srivastava et al., 2011;
Srivastava er al., 2015]. Bonet ef al. [2019] develop new ap-
proaches for learning logic-based features that can express
such counters. Karia and Srivastava [2021] use such feature-
based counters to learn generalized heuristics for planning.

We now provide a formal description of the general classes
of abstraction-based, domain-independent, automatic feature
synthesis algorithms that we used to yield counters for RL.

Description Logics (DLs) are a family of representation
languages often used for knowledge representation [Baader et
al., 2017]. We chose DLs since they provide a good balance
between expressiveness and tractability in feature expression.

In the relational MDP paradigm, unary predicates P; € P
and binary predicates P, € P of a domain D can be viewed
as primitive concepts C and roles R in DL. DL includes con-
structors for generating compound concepts and roles from
primitive ones to form expressive terms. Our feature list Fppf,
consists of concepts and roles formed by using a reduced set
of grammar from Bonet et al. [2019]:

C,C' P |-C|CnNC"|VYR.C|3RC|R=R
R,R — Py | R*

where P; and P, represent the primitive concepts and
roles, and R~! represents the inverse. VR.C = {z |
Vy R(z,y) ANC(y)} and IR.C = {z | Iy R(z,y) A C(y)}.
R = R’ denotes {z | Vy R(z,y) = R'(x,y)}. We also use
Distance(cy, 1, co) features that compute the minimum num-
ber of role r steps between two objects satisfying concepts c;
and ¢y [Frances ef al., 2021]. We found this reduced gram-
mar (that excludes transitive closure) to generate features that
facilitated good generalization in our experiments.

We control the total number of features generated by only
considering features up to a certain complexity k (a tunable
hyperparameter) that is defined as the total number of gram-
mar rules required to generate a feature.

Example The primitive concepts and roles of the SysAdmin
domain are running(c,) and connected(c,, c,) respectively.
For the running example M,,, the feature kernel for a fea-
ture f,, = running(c,) evaluates to the set of objects sat-
isfying it, i.e., ¢y, (se) = {co}. This feature can be in-
terpreted as tracking the set of computers that are running
(or up). Similarly, ¢, (se) = {c1} for a different feature
feon = TJconnected.running. fe,, can be viewed as tracking
the set of computers that are connected to at least one running
computer. It is easy to see that DL features such as f,, and
feon capture relational properties of the state and can be ap-
plied to problems with differing object names and quantities.

We implemented a reduced version of the D2L system
[Frances et al., 2021] for generating such DL based features
and describe our process for doing so in Sec. 4.2.

Network Architecture
3 RelLU activated, fully connected layers
with 64 neurons each
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Figure 1: Our process for estimating generalized Q-values.

3.2 Deep Learning for Q-value Approximation

Given a list of DL features F', the key challenge is to iden-
tify a subset F’ C F of features that can be used to learn a
good approximation of the Q-function. We use deep learning,
utilizing the entire feature list /' for Q-value estimation.

Given a feature list /' and a domain D, the input to our
network is a vector of size |F| 4+ |A| + N x |F| where |.A] is
the total number of actions in the domain, and /V is the max-
imum number of parameters of any action in 4. Since the
dimensionality of the input vector is fixed and does not de-
pend upon a specific problem instance, the same network can
be used to predict Q-values across problem instances. This is
the key insight into our method for transfer.

Given a concrete state s, the abstract state feature vec-
tor is defined as 5 = (|¢y, (s)],...,|dy, (s)|) for all features
fi € F. Similarly, given a grounded action a(o1,-..,0,),
the abstract action feature vector is defined as a vector
@ = (Auame|Fo,|- .. |Foy) where A,qpe is a one-hot vector
of length |.A| encoding the action name a, F,, is a vector of
length [ F'| encoded with values 1(,, ¢4 7, ()] for every feature

fj € F, and | represents vector concatenation. The vector
(8]a) comprises the input to our network.

Since Distance features directly return numerical values,

we simply define |¢¢(s)| = ¢(s) and Vo € O,0 € ¢5(s) =
0 for such distance-based features.
Example Let Fpp, = (fup, feon) for the SysAdmin domain
where f,, = running(c;) and f.,, = Jconnected.running.
Then, the abstract state vector 5., for the concrete state s.g
of the running example would be (1,1) and it indicates an
abstract state where there is a single computer running and
where there is only a single computer that is connected to a
running computer. The same vector would be generated for
any SysAdmin problem where these properties hold irrespec-
tive of the total number of computers or what computer names
are used to represent the objects in the state.

Assuming actions are indexed in alphabetical order, for
Seq» N0-0p() would be encoded as (1,0[0,0). Similarly,
reboot(cg) and reboot(cy ) would be encoded as (0, 1|1, 0) and
(0,110, 1) respectively.

Fig. 1 illustrates our process for estimating the Q-values.
Given a concrete state s and action a, our network (that
we call Qggrr) predicts the estimated Q-value Qgr.(S,a) ~
¢« (s, a) by converting s and a to abstract state § and action @
feature vectors based on the feature list F'.



Algorithm 1 Generalized Reinforcement Learning (GRL)

Require: MDP M, GRL network Qgg., feature list F,
epsilon e, learning rate «
1: @ « initializeEmptyTable()
2: fors € S;a € Ado
3:  §,a < abstraction(F) s, a)
4 Q(s,a) = Qgre(5, )
5: end for
6: B <« initialize replay buffer
7
8
9
0
1

IS < S

: while stopping criteria not met do

a < getEpsilonGreedyAction(s, €)

s',r + executeAction(s, a)

5= r+max Q[ a) ~ Qls, )
a

12: Q(s,a) =Q(s,a) + ad

13:  3,a <+ abstraction(F, s, a)

14:  Add (5,a,Q(s,a)) to B

15:  Sample a mini-batch B from B
16:  Train Qgp. using B

17: s+« s’ {s < s if episode ends}
18: end while

19: return @, QcggrL

The abstract state captures high-level information about the
state structure, whereas the abstract action captures the mem-
bership of the instantiated objects in the state, allowing our
network to learn a generalized, relational Q-function that can
be transferred across different problem instances.

3.3 Generalized Reinforcement Learning

Intuitively, Alg. 1 presents our approach for Generalized Re-
inforcement Learning (GRL). For a given MDP M, an initial
Qgre network, and a list of features F', GRL works as fol-
lows: Lines 1 — 5 transfer knowledge from the Qg network
by converting every concrete state s and action a to abstract
state s and abstract action @ vectors using the approach in
Sec.3.2. Next, every concrete Q-table entry Q(s,a) is ini-
tialized with the predicted value Qggry (S, @). The Q-table for
different problems M’ # M are different since their state and
action spaces are different, however, s and @ are fixed-sized
vector representations of any state and action in these prob-
lems. This allows Qg to transfer knowledge to any problem
M’ with any number of objects. Lines 9—12 do Q-learning on
M to improve the bootstrapped policy further. Lines 13 — 16
further improve the generalization capabilities of QQgg by in-
corporating any policy changes that were observed while do-
ing Q-learning on M. GRL returns the task-specific policy )
and the updated generalized policy Qgry.

Algorithmic Optimization Lines 2 — 5 can be intractable
for large state spaces. We optimized transfer by only initial-
izing entries in a lazy evaluation fashion, i.e., we start with an
empty Q-table and only transfer values for states that do not
have an entry in the Q-table. An added benefit is that updates
to Qg for any abstract state can be easily reflected when
encountering a new state that maps to the same abstract state.
We empirically observed this to be helpful in improving the
sample efficiency for solving the task.

Theorem 3.1. Solving problem M using GRL converges un-
der standard conditions of convergence for Q-learning.

Proof (Sketch). The proof is based on the following intuition.
Qcre is used to initialize every Q(s,a) entry of M exactly
once after which Q-learning operates as normal. The rest
of the proof follows from the proof of convergence for Q-
learning [Sutton and Barto, 1998]. O

3.4 Scaling Up Q-learning and Transfer

Transfer capabilities can often be improved if the training
strategy uses a curriculum that organizes the tasks presented
to the learner in increasing order of difficulty [Bengio et al.,
2009]. However, the burden of segregating tasks in order of
difficulty often falls upon a domain expert.

We extend our work on leapfrogging, which is an au-
tomatic, data-efficient self-training method [Groshev et al.,
2018; Karia and Srivastava, 2021], to RL settings. Leapfrog-
ging follows the “learning-from-small-examples” paradigm
by using a problem generator to automatically create a cur-
riculum for learning. It is an iterative process for speeding
up learning when used in conjunction with a transfer learning
algorithm such as GRL. Leapfrogging is analogous to a loose
curriculum, enabling self-supervised training in contrast to
curriculum learning, which on its own, does not enable auto-
matic self-training.

Leapfrogging operates by initially generating a small prob-
lem, Mg, that can be easily solved by vanilla Q-learning
without any transfer. It applies GRL (Alg. 1) to this problem
using an uninitialized Qgg, network. Once this problem is
solved, leapfrogging generates a slightly larger problem and
invokes GRL again. The Qgg. network learned in the pre-
vious iteration allows GRL to utilize knowledge transfer to
solve this new problem quickly while also improving the gen-
eralization capabilities of the next generation ()gg, network.

4 Empirical Evaluation

We performed an empirical evaluation on four different tasks
and our results show that GRL outperforms the baseline in
zero-shot transfer performance. We also show that GRL is
competitive with approaches receiving additional information
in the form of closed-form action models. We now describe
the evaluation methodology that we employed for assessing
these hypotheses.

We ran our experiments utilizing a single core and 16 GiB
of memory on an Intel Xeon E5-2680 v4 CPU containing 28
cores and 128 GiB of RAM.

We used the network architecture from Fig. 1 for all of our
experiments. Our system is implemented in Python? and we
used PyTorch [Paszke et al., 2019] with default implementa-
tions of mean squared error (MSE) as the loss function and
Adam [Kingma and Ba, 2015] as the optimization algorithm
for training each domain-specific (Jgg network.

Our system uses RDDLsim as the simulator, and thus, ac-
cepts problems written in a subset of RDDL.

20Our code is available at: https:/github.com/AAIR-1lab/GHN
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4.1 Baselines

As our baseline, we compare our approach with a first-
order Q-function approximation based approach for transfer;
MBRRL [Ng and Petrick, 2021a; Ng and Petrick, 2021b]. We
also compare with SymNet [Garg et al., 2020], an approach
that requires access to closed-form action models, informa-
tion that is unavailable to MBRRL and GRL in our setting.?

MBRRL computes first-order abstractions using conjunc-
tive sets of features and learns a linear first-order approxi-
mation of the Q-function over these features. They employ
“mixed approximation,” where both the concrete (s, a) val-
ues as well as the approximated Q-values are used to select
actions for the policy.

SymNet uses a Graph Neural Network (GNN) representa-
tion of a parsed Dynamic Bayes Network (DBN) for a prob-
lem. SymNet thus has access to additional domain knowledge
in the form of closed-form action models, and as a result, it
is not directly applicable in the RL setting that we consider.
Nevertheless, it can serve as a good indicator of the transfer
capabilities of GRL, which does not need such closed-form
representations of action models. We also tried modifying
TraPSNet [Garg er al., 2019], a precursor of SymNet that
does not require action models, but could not run it due to
the limited support for the domains we considered.

4.2 Tasks, Training, and Test Setup

We consider tasks used in the International Probablistic Plan-
ning Competition (IPPC) [Sanner, 2011; Sanner, 2014], some
of which have been used by SymNet and MBRRL as bench-
marks for evaluating transfer performance.

SysAdmin(n) is the IPPC version of the SysAdmin do-
main that was described earlier in the paper. The IPPC ver-
sion also allows for computers to automatically restart with a
fixed probability p.

Academic Advising(/, ¢, p) is a domain where the objec-
tive is to complete a degree program by passing a certain
number of levels [ containing c courses, each of which need p
prerequisites to be passed first. Courses have a higher proba-
bility of passing if all of their prerequisites have been passed
first. Ateach time step, the agent is provided with a large neg-
ative reward if the agent has not yet completed the program.
Thus, the objective is to complete the program in the shortest
number of time steps.

Game of Life(x,y) is John Conway’s Game of Life en-
vironment on a grid of size x x y [Izhikevich et al., 2015].
The rules are as follows: (a) a live cell with fewer than two
or greater than three live neighbors dies, (b) cells with two
or three live neighbors live on to the next time step, and (c)
any dead cell with exactly three live neighbors becomes a live
cell. At each time step, the agent is awarded with a positive
reward proportional to the total number of live cells.

Wildfire(x, y) is an environment set in a grid of size z X y
with some cells containing fuel. Cells that contain fuel can
spontaneously ignite with a probability proportional to the to-
tal number of their neighbors that are on fire. At each time
step, the agent is awarded a large negative reward for each

3We thank the authors of SymNet and MBRRL for help in set-
ting up and using their source code.

Training Sizes

Domain Baselines GRL Test Sizes

SysAdmln 21() _ 220 23 _ 26 23() _ 25()
Academic Advising 220 — 230 28 232 240 _ 960
Game of Life 29 — 29 24 _99 916 _930
Wildfire 218 — 932 98 _ 932 950 _ 972

Table 1: Sizes of the state spaces (min—max) for the problems used
in training and testing the baselines and GRL.

cell that is burning. The initial state starts with some cells
already on fire and thus the objective is to put out all the fires
as quickly as possible.

The IPPC versions of Game of Life and Wildfire contain 4-
ary predicates that we converted to an equivalent binary ver-
sion by converting predicates like neighbor(x1,y1,x1,y2) to
neighbor(ly1,112) for use with all baselines and GRL.

Training For SymNet, we utilized the same problems
(IPPC instances 1, 2, and 3) for training as published by the
authors. We trained each problem for 1250 episodes. For
MBRRL, we utilized the original authors’ training procedure
wherein we used IPPC instance #3 for training. We trained
this problem for 3750 episodes using Q-learning with an ini-
tial e = 1 and a decay rate of 0.997.

For training GRL with our leapfrogging approach, we
used problem generators that were used in the IPPC to ran-
domly generate problems for training. We used SysAdmin(n)
with n € {3,4,6}, Academic Advising(n,n,n) with
n € {2,3,4}, Game of Life(n,n) with n € {2,3} and
Wildfire(n,n) with n € {2,3,4} for generating problems
used for training each domain respectively. We trained each
problem for 1250 episodes using GRL using a fixed e = 0.1.
for each problem.

Testing We used the same set of problems as SymNet: in-
stances 5 — 10 from the IPPC problem collection. The only
exception was Academic Advising where we used instances
5,7, and 9 since instances 6 and 10 used concurrent actions
and this was not compatible with our system. To better evalu-
ate transfer performance, the test problems are selected such
that their state spaces are much larger than the training prob-
lems used by GRL. For example, the state space size of
SysAdmin(n) is 2. For training, the largest problem used
by GRL was SysAdmin(6), whereas the largest test problem,
instance 10 (SysAdmin #10) of the IPPC is SysAdmin(50).

Table 1 lists the minimum and maximum state space sizes
of the training and test problems that we used in our evalu-
ation respectively. A detailed description of the problem in-
stances and parameters that we used in our training and test
sets can be found in the extended version of this paper [Karia
and Srivastava, 2022].

Hyperparameters We used the IPPC horizon H of 40 time
steps for each episode after which the simulator was reset to
the initial state. To train a Qgg, network, we used a replay
buffer of size 20000, a mini-batch size of 32, and a training
interval of 32 time steps with 25 steps of optimization per
interval. For our test setup, we used Q-learning with ¢ = 0.1
for GRL and MBRRL. We used v = 0.9 and o« = 0.05 for
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Figure 2: Zero-shot transfer performance of GRL (higher values better) compared to MBRRL when averaged across 10 different runs of 100
episodes each. Error bars indicate one standard deviation. The problem number refers to the instance number in the IPPC problem collection.
We also compare with SymNet, an approach that needs closed-form action models and thus is not applicable in our setting. As such, we plot
SymNet results as gray bars. We assume minimum reward is obtained when the Q-values are set to NaN as was the case for some problems
in Academic Advising for MBRRL. For Academic Advising, we report instances 5, 7 and 9 since instances 6 and 10 contained settings that

were incompatible with our system and as a result were not run.

the SysAdmin and Game of Life domains and used v = 1.0
and a = 0.3 for Academic Advising and Wildfire.

For MBRRL and SymNet, we used the default values of
all other settings like network architecture, feature discovery
threshold, etc., that were published by the authors.

Evaluation Metric To showcase the efficacy of transfer
learning, our evaluation metric compares the performance of
MBRRL and our approach after zero-shot transfer. We freeze
the policy after training, transfer it to the test instances and
run it greedily for 100 episodes. We report our results us-
ing mean and standard deviation metrics computed using 10
individual runs of training and testing.

Feature Generation We generated sampled state spaces
and transitions between states using random walks on the first
problem used by GRL for training per domain. These transi-
tions were used in conjunction with the DL grammar from
Sec. 3.1 to generate the DL feature list Fp; using a modified
version of the D2L system [Frances er al., 2021], which does
not require closed-form action models or knowledge of goals.
We set a complexity bound of k = 5 for goal-independent
feature generation. We empirically observed that using this
single small problem instance and complexity bound together
with the reduced DL grammar from Sec. 3.1 to generate Fp;,
was sufficient in generating features that enabled good gener-
alization using GRL.

4.3 Analysis of Results

Our results are shown in Fig. 2. It is easy to see that GRL has
excellent zero-shot transfer capabilities and can easily outper-
form or remain competitive with both MBRRL and SymNet.
We now present our analysis followed by a brief discussion
of some limitations and future work.

Comparison with MBRRL Our approach is able to sig-
nificantly outperform MBRRL on SysAdmin, Academic Ad-
vising, and Wildfire. The DL abstractions used by GRL are
more expressive than the conjunctive first-order features used
by MBRRL, allowing GRL to learn policies that are more ex-

pressive. Additionally, leapfrogging allows scaling up train-
ing and learning of better generalized policies in the same
number of training episodes in contrast to using a fixed in-
stance for training.

For the Game of Life domain, we observed that even a ran-
dom policy performs similarly to GRL and the baselines. This
is surprising since PROST [Keller and Eyerich, 2012], an ap-
proach that requires closed-form action models, has demon-
strated that it is possible to achieve high reward in this domain
[Sanner, 2011]. We leave this investigation to future work.

Comparison with SymNet SymNet utilizes significant do-
main knowledge in constructing the graphs. For example,
edges are added between two nodes iff an action affects them.
Such information is unavailable when just observing states as
sets of predicates. It is impressive that despite not using such
knowledge, GRL is able to remain competitive with SymNet
in most of the problems.

4.4 Limitations and Future Work

In the SysAdmin domain, the probability with which a com-
puter shuts down depends on how many shutdown computers
it is connected to. Our representation of o € ¢(s) for repre-
senting the action vectors cannot capture such dependencies.
However, this is easy to mitigate using a new feature that
counts the number of shutdown computers a specific com-
puter is connected to. We plan to investigate the automatic
generation and use of such features in future work.
Leapfrogging requires an input list of object counts for the
problem generator that we hand-coded. However, we believe
that our approach is a step forward in curriculum design by
relieving the designer from knowing intrinsic details about
the domain, which is often imperative for assessing the diffi-
culty of tasks. The lack of a problem generator can be miti-
gated by combining leapfrogging with techniques that sample
“subgoals” [Fern et al., 2006; Andrychowicz et al., 2017] and
utilizing GRL to learn a generalized policy that can later be
efficiently transferred to any subsequent problems.



5 Related Work

Our work adds to the vast body of literature on learning in
relational domains. Several of these approaches [Khardon,
1999; Guestrin et al., 2003; Wu and Givan, 2007; Garg et al.,
2020] assume that action models are available in an analyti-
cal form and thus are not directly applicable to RL settings.
For example, FOALP [Sanner and Boutilier, 2005] learns fea-
tures for approximating the value function by regressing over
action models. D2L [Frances et al., 2021] learns abstract
policies for deterministic problems assuming an action model
where actions can increment or decrement features. We focus
our discussion on relational RL (see Tadepalli et al. [2004]
for an overview).

Q-estimation Approaches Q-RRL [Dzeroski et al., 2001]
learns an approximation of the Q-function by using logical
regression trees. GBQL [Das et al., 2020] learns a gradient-
boosted tree representation of the Q-function. Their tree
representations use “lifted” predicates thus enabling transfer
across problem instances with differing object counts. These
approaches were evaluated on relatively simple tasks using
hand-coded support predicates, demonstrating the difficulty
of transfer using a tree-based approach. Our evaluation does
not use any support predicates and shows that GRL can learn
good policies that transfer well to larger problems.

RePReL [Kokel et al., 2021] uses a high-level planner
together with hand-coded abstractions to train task-specific
RL agents for transfer learning. Rosenfeld et al. [2017] use
hand-crafted features and similarity functions to speed up Q-
learning. MBRRL [Ng and Petrick, 2021a; Ng and Petrick,
2021b] learns conjunctive first-order features for Q-function
approximation using hand-coded contextual information for
improved performance. In contrast to these approaches, GRL
does not require any hand-coded or expert knowledge.

Policy-based approaches Fern et al. [2006] use taxonomic
syntax with beam search and approximate policy iteration to
learn decision-list policies. They sample sub-goals using ran-
dom walks to scale up learning. However, it is not clear how
to apply their approach to problems that do not have goals.
GRL can work on problems with or without goals. Janisch et
al. [2020] use graph neural network (GNN) representations
of the state to compute policies. GNNs are reliant on the
network’s receptive field unlike Q)gg, Which uses multilayer
perceptrons and thus have limited generalization capabilities
w.r.t. the number of objects. TraPSNet [Garg et al., 2019]
also uses a GNN and is limited to domains with a single bi-
nary predicate and actions with a single parameter. Moreover,
the binary predicate in TraPSNet is required to be a non-fluent
meaning that its truth value in a problem can never change.
GRL can be used in domains with any number of action pa-
rameters and binary predicates and allows binary predicates
to change their valuations across different states.

Automatic Curriculum Generation Fern et al. [2006]
sample goals from random walks on a single problem. Their
approach relies on the target problem to adequately represent
the goal distribution for generalization. Similar ideas are ex-
plored in Ferber et al. [2020] and Andrychowicz et al. [2017].
These techniques are intra-instance, sampling different goals
from the same state space and are orthogonal to GRL, that

addresses inter-instance transfer. Our approach of leapfrog-
ging is most similar to that of Groshev et al. [2018] and Karia
and Srivastava [2021] and the learn-from-small-examples ap-
proach of Wu and Givan [2007]. We extend their ideas to RL
settings and demonstrate its efficacy in transfer. Narvekar and
Stone [2019] automatically generate a curriculum for tasks
by solving a curriculum MDP (CMDP). However, they re-
quire domain-dependent, hand-coded basis features for effec-
tive curriculum learning whereas leapfrogging does not re-
quire any domain-dependent hand-coding.

6 Conclusion

We presented an approach for reinforcement learning in re-
lational domains that can learn good policies with effective
zero-shot transfer capabilities. Our results show that Descrip-
tion Logic based features acquired simply through state tra-
jectory sequences can offer performance similar to that of of
analytical (closed-form) action models. In the future, we plan
to investigate improving the features so that abstract actions
can also take into account relationships between the instanti-
ated parameters and the abstract state.
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