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Abstract

We study the problem of learning control policies for complex tasks given by
logical specifications. Recent approaches automatically generate a reward function
from a given specification and use a suitable reinforcement learning algorithm to
learn a policy that maximizes the expected reward. These approaches, however,
scale poorly to complex tasks that require high-level planning. In this work, we
develop a compositional learning approach, called DIRL, that interleaves high-
level planning and reinforcement learning. First, DIRL encodes the specification
as an abstract graph; intuitively, vertices and edges of the graph correspond to
regions of the state space and simpler sub-tasks, respectively. Our approach then
incorporates reinforcement learning to learn neural network policies for each edge
(sub-task) within a Dijkstra-style planning algorithm to compute a high-level plan
in the graph. An evaluation of the proposed approach on a set of challenging
control benchmarks with continuous state and action spaces demonstrates that it
outperforms state-of-the-art baselines.

1 Introduction

Reinforcement learning (RL) is a promising approach to automatically learning control policies for
continuous control tasks—e.g., for challenging tasks such as walking [11] and grasping [7], control
of multi-agent systems [31, 21], and control from visual inputs [28]. A key challenge facing RL is
the difficulty in specifying the goal. Typically, RL algorithms require the user to provide a reward
function that encodes the desired task. However, for complex, long-horizon tasks, providing a suitable
reward function can be a daunting task, requiring the user to manually compose rewards for individual
subtasks. Poor reward functions can make it hard for the RL algorithm to achieve the goal; e.g., it can
result in reward hacking [4], where the agent learns to optimize rewards without achieving the goal.

Recent work has proposed a number of high-level languages for specifying RL tasks [6, 29, 23, 34, 18].
A key feature of these approaches is that they enable the user to specify tasks compositionally—i.e.,
the user can independently specify a set of short-term subgoals, and then ask the robot to perform a
complex task that involves achieving some of these subgoals. Existing approaches for learning from
high-level specifications typically generate a reward function, which is then used by an off-the-shelf
RL algorithm to learn a policy. Recent works based on Reward Machines [18, 35] have proposed
RL algorithms that exploit the structure of the specification to improve learning. However, these
algorithms are based on model-free RL at both the high- and low-levels instead of model-based
RL. Model-free RL has been shown to outperform model-based approaches on low-level control
tasks [10]; however, at the high-level, it is unable to exploit the large amount of available structure.
Thus, these approaches scale poorly to long horizon tasks involving complex decision making.
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Figure 1: Left: The 9-rooms environment, with initial region S0, an obstacle O, and three subgoal
regions S1, S2, S3. Middle top: A user-provided specification ϕex. Middle bottom: The abstract
graph Gex DIRL constructs for ϕex. Right: Learning curves for our approach and some baselines;
x-axis is number of steps and y-axis is probability of achieving ϕex.

We propose DIRL, a novel compositional RL algorithm that leverages the structure in the specification
to decompose the policy synthesis problem into a high-level planning problem and a set of low-level
control problems. Then, it interleaves model-based high-level planning with model-free RL to
compute a policy that tries to maximize the probability of satisfying the specification. In more detail,
our algorithm begins by converting the user-provided specification into an abstract graph whose
edges encode the subtasks, and whose vertices encode regions of the state space where each subtask
is considered achieved. Then, it uses a Djikstra-style forward graph search algorithm to compute
a sequence of subtasks for achieving the specification, aiming to maximize the success probability.
Rather than compute a policy to achieve each subtask beforehand, it constructs them on-the-fly for a
subtask as soon as Djikstra’s algorithm requires the cost of that subtask.

We empirically evaluate our approach on an environment with continuous state and action spaces1.
We demonstrate that DiRL significantly outperforms state-of-the-art deep RL algorithms for learning
policies from specifications. In summary, our contributions are as follows:

• A novel compositional algorithm to learn policies for continuous domains from high-level
specifications that interleaves high-level model-based planning with low-level RL.

• A theoretical analysis of our algorithm showing that it aims to maximize a lower bound on
the satisfaction probability of the specification.

• An empirical evaluation demonstrating that our algorithm outperforms several state-of-the-
art algorithms for learning from high-level specifications.

This is a shorter version of our full paper [24]. Missing details can be found in the full paper.

Motivating example. Consider an RL-agent in the environment of interconnected rooms in Figure 1.
The agent is initially in the blue box, and their goal is to navigate to either the top-left room S1 or
the bottom-right room S2, followed by the top-right room S3, all the while avoiding the red block O.
This goal is formally captured by the SPECTRL specification ϕex (middle top). This specification is
comprised of four simpler RL subtasks—namely, navigating between the corner rooms while avoiding
the obstacle. Our approach, DIRL, leverages this structure to improve learning. First, based on the
specification alone, it constructs the abstract graph Gex (see middle bottom) whose vertices represent
the initial region and the three subgoal regions, and the edges correspond to subtasks (labeled with a
safety constraint that must be satisfied).

However, Gex by itself is insufficient to determine the optimal path—e.g., it does not know that there
is no path leading directly from S2 to S3, which is a property of the environment. These differences
can be represented as (a priori unknown) edge costs in Gex. At a high level, DIRL trains a policy
πe for each edge e in Gex, and sets the cost of e to be c(e;πe) = − logP (e;πe), where P (e;πe) is
the probability that πe succeeds in achieving e. For instance, for the edge S0 → S1, πe is trained
to reach S1 from a random state in S0 while avoiding O. Then, a naı̈ve strategy for identifying the
optimal path is to (i) train a policy πe for each edge e, (ii) use it to estimate the edge cost c(e;πe),
and (iii) run Djikstra’s algorithm with these costs.

One challenge is that πe depends on the initial states used in its training—e.g., training πe for
e = S1 → S3 requires a distribution over S1. Using the wrong distribution can lead to poor

1Our implementation is available at https://github.com/keyshor/dirl.
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performance due to distribution shift; furthermore, training a policy for all edges may unnecessarily
waste effort training policies for unimportant edges. To address these challenges, DIRL interweaves
training policies with the execution of Djikstra’s algorithm, only training πe once Djikstra’s algorithm
requires the cost of edge e. This strategy enables DIRL to scale to complex tasks; in our example, it
quickly learns a policy that satisfies the specification with high probability. These design choices
are validated empirically—as shown in Figure 1, DIRL quickly learns to achieve the specification,
whereas it is beyond the reach of existing approaches.

Related Work. We have surveyed recent work on RL using temporal logic in [3]. Few works include
[2, 8, 12, 17, 30, 16, 40, 14, 39, 22]. These approaches typically generate a (usually sparse) reward
function from a given specification which is then used by an off-the-shelf RL algorithm to learn a
policy. In particular, Li et al. [29] propose a variant of Linear Temporal Logic (LTL) called TLTL
to specify tasks for robots, and then derive shaped (continuous) rewards from specifications in this
language. Jothimurugan et al. [23] propose a specification language called SPECTRL that allows users
to encode complex tasks involving sequences, disjunctions, and conjunctions of subtasks, as well as
specify safety properties; then, given a specification, they construct a finite state machine called a task
monitor that is used to obtain shaped (continuous) rewards. Icarte et al. [18] propose an automaton
based model called reward machines (RM) for high-level task specification and decomposition as
well as an RL algorithm (QRM) that exploits this structure. In a later paper [35], they propose variants
of QRM including an hierarchical RL algorithm (HRM) to learn policies for tasks specified using RMs.
Camacho et al. [9] show that one can generate RMs from temporal specifications but RMs generated
this way lead to sparse rewards. Kuo et al. [27] and Vaezipoor et al. [36] propose frameworks for
multitask learning using LTL specifications but such approaches require a lot of samples even for
relatively simpler environments and tasks. There has also been recent work on using temporal logic
specifications for multi-agent RL [15, 33].

More broadly, there has been work on using policy sketches [6], which are sequences of subtasks
designed to achieve the goal. They show that such approaches can speed up learning for long-horizon
tasks. Sun et al. [34] show that providing semantics to the subtasks (e.g., encode rewards that describe
when the subtask has been achieved) can further speed up learning. There has also been recent interest
in combining high-level planning with reinforcement learning [1, 25, 13]. These approaches all target
MDPs with reward functions, whereas we target MDPs with logical task specifications. Furthermore,
in our setting, the high-level structure is derived from the given specification, whereas in existing
approaches it is manually provided. Illanes et al. [19] propose an RL algorithm for reachability tasks
that uses high-level planning to guide low-level RL; however, unlike our approach, they assume that
a high-level model is given and high-level planning is not guided by the learned low-level policies.
Finally, there has been recent work on applying formal reasoning for extracting interpretable policies
[37, 38, 20] as well as for safe reinforcement learning [5, 26].

2 Problem Formulation

MDP. We consider a Markov decision process (MDP) M = (S,A, P, η) with continuous states
S ⊆ Rn, continuous actions A ⊆ Rm, transitions P (s, a, s′) = p(s′ | s, a) ∈ R≥0 (i.e., the
probability density of transitioning from state s to state s′ upon taking action a), and initial states
η : S → R≥0 (i.e., η(s) is the probability density of the initial state being s). A trajectory ζ ∈ Z
is either an infinite sequence ζ = s0

a0−→ s1
a1−→ · · · or a finite sequence ζ = s0

a0−→ · · · at−1−−−→ st
where si ∈ S and ai ∈ A. A subtrajectory of ζ is a subsequence ζℓ:k = sℓ

aℓ−→ · · · ak−1−−−→ sk. We let
Zf denote the set of finite trajectories. A (deterministic) policy π : Zf → A maps a finite trajectory
to a fixed action. Given π, we can sample a trajectory by sampling an initial state s0 ∼ η(·), and then
iteratively taking the action ai = π(ζ0:i) and sampling a next state si+1 ∼ p(· | si, ai).
Specification language. We consider the specification language SPECTRL for specifying reinforce-
ment learning tasks [23]. A specification ϕ in this language is a logical formula over trajectories that
indicates whether a given trajectory ζ successfully accomplishes the desired task. As described below,
it can be interpreted as a function ϕ : Z → B, where B = {true, false}. Formally, a specification
is defined over a set of atomic predicates P0, where every p ∈ P0 is associated with a function
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JpK : S → B; we say a state s satisfies p (denoted s |= p) if and only if JpK(s) = true. 2

ϕ ::= achieve b | ϕ1 ensuring b | ϕ1;ϕ2 | ϕ1 or ϕ2,

where b ∈ P . In this case, each specification ϕ corresponds to a function JϕK : Z → B, and we say
ζ ∈ Z satisfies ϕ (denoted ζ |= ϕ) if and only if JϕK(ζ) = true. Letting ζ be a finite trajectory of
length t, this function is defined by

ζ |= achieve b if ∃ i ≤ t, si |= b

ζ |= ϕ ensuring b if ζ |= ϕ and ∀ i ≤ t, si |= b

ζ |= ϕ1;ϕ2 if ∃ i < t, ζ0:i |= ϕ1 and ζi+1:t |= ϕ2

ζ |= ϕ1 or ϕ2 if ζ |= ϕ1 or ζ |= ϕ2.

We assume that we can evaluate all atomic predicates in all states. This is a common assumption in
the literature on learning from specifications, and is necessary to interpret specifications.

Learning from Specifications. Given an MDPM with unknown transitions and a specification ϕ,
our goal is to compute a policy π∗ : Zf → A such that π∗ ∈ argmaxπ Prζ∼Dπ [ζ |= ϕ], where Dπ

is the distribution over infinite trajectories generated by π. In other words, we want to learn a policy
π∗ that maximizes the probability that a generated trajectory ζ satisfies the specification ϕ.

We consider the reinforcement learning setting in which we do not know the probabilities P but
instead only have access to a simulator of M. Typically, we can only sample trajectories of M
starting at an initial state s0 ∼ η. Some parts of our algorithm are based on an assumption that we
can sample trajectories starting at any state that has been observed before. For example, if taking
action a0 in s0 leads to a state s1, we can store s1 and obtain future samples starting at s1.
Assumption 2.1. We can sample p(· | s, a) for any previously observed state s and any action a.

3 Abstract Reachability

In this section, we describe how to reduce the RL problem to a reachability problem on a directed
acyclic graph (DAG), augmented with information connecting its edges to subtrajectories in the MDP.
We exploit the compositional structure of the DAG to learn efficiently.

3.1 Abstract Reachability

We begin by defining the abstract reachability problem, and describe how to reduce the problem of
learning from a SPECTRL specification to abstract reachability. At a high level, abstract reachability
is defined as a graph reachability problem over a directed acyclic graph (DAG) whose vertices
correspond to subgoal regions—a subgoal region X ⊆ S is a subset of the state space S. As
discussed below, in our reduction, these subgoal regions are derived from the given specification ϕ.
The constructed graph structure also encodes the relationships between subgoal regions.
Definition 3.1. An abstract graph G = (U,E, u0, F, β,Zsafe) is a directed acyclic graph (DAG)
with vertices U , (directed) edges E ⊆ U × U , initial vertex u0 ∈ U , final vertices F ⊆ U , subgoal
region map β : U → 2S such that for each u ∈ U , β(u) is a subgoal region,3 and safe trajectories
Zsafe =

⋃
e∈E Ze

safe, where Ze
safe ⊆ Zf denotes the safe trajectories for edge e ∈ E.

Intuitively, (U,E) is a standard DAG, and u0 and F define a graph reachability problem for (U,E).
Furthermore, β and Zsafe connect (U,E) back to the original MDPM; in particular, for an edge
e = u→ u′, Ze

safe is the set of trajectories inM that can be used to transition from β(u) to β(u′).

Definition 3.2. An infinite trajectory ζ = s0
a0−→ s1

a1−→ · · · inM satisfies abstract reachability
for G (denoted ζ |= G) if there is a sequence of indices 0 = i0 ≤ i1 < · · · < ik and a path
ρ = u0 → u1 → · · · → uk in G such that (a). uk ∈ F , (b). for all j ∈ {0, . . . , k}, we have
sij ∈ β(uj), and (c). for all j < k, letting ej = uj → uj+1, we have ζij :ij+1 ∈ Z

ej
safe.

The first two conditions state that the trajectory should visit a sequence of subgoal regions corre-
sponding to a path from the initial vertex to some final vertex, and the last condition states that the
trajectory should be composed of subtrajectories that are safe according to Zsafe.

2Here, achieve and ensuring correspond to the “eventually” and “always” operators in temporal logic.
3We do not require that the subgoal regions partition the state space or that they be non-overlapping.
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Figure 2: Abstract graph for achieve b.

Definition 3.3. Given MDPM with unknown transitions and abstract graph G, the abstract reacha-
bility problem is to compute a policy π̃ : Zf → A such that π̃ ∈ argmaxπ Prζ∼Dπ [ζ |= G].

In other words, the goal is to find a policy for which the probability that a generated trajectory satisfies
abstract reachability is maximized.

3.2 Reduction to Abstract Reachability

Next, we describe how to reduce the RL problem for a given MDPM and a specification ϕ to an
abstract reachability problem forM by constructing an abstract graph Gϕ inductively from ϕ. We
give a high-level description here, and provide details in [24].

First, for each predicate b, we define the corresponding subgoal region Sb = {s ∈ S | s |= b}
denoting the set of states at which b holds. Next, the abstract graph Gϕ for ϕ = achieve b is shown
in Figure 2. All trajectories in Zf are considered safe for the edge e = u0 → u1 and the only final
vertex is u1 with β(u1) = Sb. The abstract graph for a specification of the form ϕ = ϕ1 ensuring b
is obtained by taking the graph Gϕ1 and replacing the set of safe trajectories Ze

safe, for each e ∈ E,
with the set Ze

safe ∩ Zb, where Zb = {ζ ∈ Zf | ∀i . si |= b} is the set of trajectories in which all
states satisfy b. For the sequential specification ϕ = ϕ1;ϕ2, we construct Gϕ by adding edges from
every final vertex of Gϕ1

to every vertex of Gϕ2
that is a neighbor of its initial vertex. Finally, choice

ϕ = ϕ1 or ϕ2 is handled by merging the initial vertices of the graphs corresponding to the two
sub-specifications. Figure 1 shows an example abstract graph. The labels on the vertices are regions
in the environment. All trajectories that avoid hitting the obstacle O are safe for all edges. We have
the following key guarantee:

Theorem 3.4. Given a SPECTRL specification ϕ, we can construct an abstract graph Gϕ such that,
for every infinite trajectory ζ ∈ Z , we have ζ |= ϕ if and only if ζ |= Gϕ. Furthermore, the number
of vertices in Gϕ is O(|ϕ|) where |ϕ| is the size of the specification ϕ.

We give a proof in [24]. As a consequence, we can solve the reinforcement learning problem for ϕ by
solving the abstract reachability problem for Gϕ. As described below, we leverage the structure of Gϕ
in conjunction with reinforcement learning to do so.

4 Compositional Reinforcement Learning

In this section, we propose a compositional approach for learning a policy to solve the abstract
reachability problem for MDPM (with unknown transition probabilities) and abstract graph G.

4.1 Overview

At a high level, our algorithm proceeds in three steps:

• For each edge e = u → u′ in G, use RL to learn a neural network (NN) policy πe to try
and transition the system from any state s ∈ β(u) to some state s′ ∈ β(u′) in a safe way
according to Ze

safe. This step requires a distribution ηu over initial states s ∈ β(u).

• Sample to estimate the probability P (e;πe, ηu) that πe safely transitions from β(u) to β(u′).

• Use Djikstra’s algorithm in conjunction with the edge costs c(e) = − log(P (e;πe, ηu))
to compute a path ρ∗ = u0 → u1 → · · · → uk in G that minimizes c(ρ) =

−
∑k−1

j=0 log(P (ej ;πj , ηj)), where ej = uj → uj+1, πj = πej , and ηj = ηuj
.

Then, we could choose π to be the sequence of policies π1, ..., πk−1—i.e., execute each policy πj

until it reaches β(uj+1), and then switch to πj+1.
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Algorithm 1 Compositional reinforcement learning algorithm for solving abstract reachability.

function DIRL(M, G)
Initialize processed vertices Up ← ∅
Initialize Γu0

← {u0}, and Γu ← ∅ for u ̸= u0

Initialize edge policies Π← ∅
while true do

u← NEARESTVERTEX(U \ Up,Γ,Π)
ρu ← SHORTESTPATH(Γu)
ηu ← REACHDISTRIBUTION(ρu,Π)
if u ∈ F then return PATHPOLICY(ρu,Π)
for e = u→ u′ ∈ Outgoing(u) do
πe ← LEARNPOLICY(e, ηu)
Add ρu ◦ e to Γu′ and πe to Π

Add u to Up

There are two challenges that need to be addressed in realizing this approach effectively. First, it is
unclear what distribution to use as the initial state distribution ηu to train πe. Second, it might be
unnecessary to learn all the policies since a subset of the edges might be sufficient for the reachability
task. Our algorithm (Algorithm 1) addresses these issues by lazily training πe—i.e., only training πe

when the edge cost c(e) is needed by Djikstra’s algorithm.

In more detail, DIRL iteratively processes vertices in G starting from the initial vertex u0, continuing
until it processes a final vertex u ∈ F . It maintains the property that for every u it processes, it has
already trained policies for all edges along some path ρu from u0 to u. This property is satisfied by
u0 since there is a path of length zero from u0 to itself. In Algorithm 1, Γu is the set of all paths from
u0 to u discovered so far, Γ =

⋃
u Γu, and Π = {πe | e = u → u′ ∈ E, u ∈ Up} is the set of all

edge policies trained so far. In each iteration, DIRL processes an unprocessed vertex u nearest to u0,
which it discovers using NEARESTVERTEX, and performs the following steps:

1. SHORTESTPATH finds shortest path from u0 to u in Γu, denoted ρu = u0 → · · · → uk = u.
2. REACHDISTRIBUTION computes the distribution ηu over states in β(u) induced by using

the sequence of policies πe0 , ..., πek−1
∈ Π, where ej = uj → uj+1 are the edges in ρu.

3. For every edge e = u→ u′, LEARNPOLICY learns a policy πe for e using ηu as the initial
state distribution, and adds πe to Π and ρu′ to Γu′ , where ρu′ = u0 → · · · → u→ u′; πe is
trained to ensure that the trajectories from β(u) to β(u′) are in Ze

safe with high probability.

4.2 Definitions and Notation

Edge costs. We begin by defining the edge costs used in Djikstra’s algorithm. Given a policy πe for
edge e = u→ u′, and an initial state distribution ηu over the subgoal region β(u), the cost c(e) of e
is the negative log probability that πe safely transitions the system from s0 ∼ ηu to β(u′). First, we
say a trajectory ζ starting at s0 achieves an e if it safely reaches β(u′)—formally:
Definition 4.1. An infinite trajectory ζ = s0 → s1 → · · · achieves edge e = u→ u′ in G (denoted
ζ |= e) if (i) s0 ∈ β(u), and (ii) there exists i (constrained to be positive if u ̸= u0) such that
si ∈ β(u′) and ζ0:i ∈ Ze

safe; we denote the smallest such i by i(ζ, e).

Then, the probability that π achieves e from an initial state s0 ∼ ηu is P (e;πe, ηu) =
Prs0∼ηu,ζ∼Dπe,s0

[ζ |= e], where Dπe,s0 is the distribution over infinite trajectories induced by
using πe from initial state s0. Finally, the cost of edge e is c(e) = − logP (e;πe, ηu). Note that c(e)
is nonnegative for any edge e.

Path policies. Given edge policies Π along with a path ρ = u0 → u1 → · · · → uk = u in G, we
define a path policy πρ to navigate from β(u0) to β(u). In particular, πρ executes πuj→uj+1 (starting
from j = 0) until reaching β(uj+1), after which it increments j ← j + 1 (unless j = k). That is, πρ

is designed to achieve the sequence of edges in ρ. Note that πρ is stateful since it internally keeps
track of the index j of the current policy.

Induced distribution. Let path ρ = u0 → · · · → uk = u from u0 to u be such that edge policies
for all edges along the path have been trained. The induced distribution ηρ is defined inductively on
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the length of ρ. Formally, for the zero length path ρ = u0 (so u = u0), we define ηρ = η to be the
initial state distribution of the MDPM. Otherwise, we have ρ = ρ′ ◦ e, where e = u′ → u. Then,
we define ηρ to be the state distribution over β(u) induced by using πe from s0 ∼ ηρ′ conditioned on
ζ |= e. Formally, ηρ is the probability distribution over β(u) such that for a set of states S′ ⊆ β(u),
the probability of S′ according to ηρ is Prs∼ηρ

[s ∈ S′] = Prs0∼ηρ′ ,ζ∼Dπe,s0

[
si(ζ,e) ∈ S′ | ζ |= e

]
.

Path costs. The cost of a path ρ = u0 → · · · → uk = u is c(ρ) = −
∑k−1

j=0 logP (ej ;πej , ηρ0:j )
where ej = uj → uj+1 is the j-th edge in ρ, and ρ0:j = u0 → · · · → uj is the j-th prefix of ρ.

4.3 Algorithm Details

DIRL interleaves Djikstra’s algorithm with using RL to train policies πe. Note that the edge weights
to run Dijkstra’s are not given a priori since the edge policies and initial state/induced distributions
are unknown. Instead, they are computed on-the-fly beginning from the subgoal region u0 using
Algorithm 1. We describe each subprocedure below.

Processing order (NEARESTVERTEX). On each iteration, DIRL chooses the vertex u to
process next to be an unprocessed vertex that has the shortest path from u0—i.e., u ∈
argminu′∈U\Up

minρ∈Γu′ c(ρ). This choice is an important part of Djikstra’s algorithm. For a
graph with fixed costs, it ensures that the computed path ρu to each vertex u is minimized. While the
costs in our setting are not fixed since they depend on ηu, this strategy remains an effective heuristic.

Shortest path computation (SHORTESTPATH). This subroutine returns a path of minimum cost,
ρu ∈ argminρ∈Γu

c(ρ). These costs can be estimated using Monte Carlo sampling.

Initial state distribution (REACHDISTRIBUTION). A key choice DIRL makes is what initial state
distribution ηu to choose to train policies πe for outgoing edges e = u → u′. DIRL chooses the
initial state distribution ηu = ηρu

to be the distribution of states reached by the path policy πρu
from

a random initial state s0 ∼ η.4

Learning an edge policy (LEARNPOLICY). Now that the initial state distribution ηu is known, we
describe how DIRL learns a policy πe for a single edge e = u → u′. At a high level, it trains πe

using a standard RL algorithm, where the rewards 1(ζ |= e) are designed to encourage πe to safely
transition the system to a state in β(u′).

Constructing a path policy (PATHPOLICY). Given edge policies Π along with a path ρ = u0 →
· · · → u, where u ∈ F is a final vertex, DIRL returns the path policy πρ.

Theoretical Guarantee. We guarantee that minimizing the path cost c(ρ) corresponds to maximizing
a lower bound on the objective of the abstract reachability problem. Formally,

Theorem 4.2. Given a path policy πρ corresponding to a path ρ = u0 → · · · → uk = u, where
u ∈ F , we have Prζ∼Dπρ

[ζ |= G] ≥ exp(−c(ρ)).

5 Experiments

We empirically evaluate our approach on several continuous control environments, including from
OpenAI Gym. We discuss the rooms environment only; complete analysis can be found in [24].

Rooms environment. We consider the a 16-Rooms environment, similar to the one shown in
Figure 1. They have states (x, y) ∈ R2 encoding 2D position, actions (v, θ) ∈ R2 encoding speed
and direction, and transitions s′ = s + (v cos(θ), v sin(θ)). We consider a series of increasingly
challenging specifications ϕ1, ..., ϕ5; each ϕi encodes a sequence of i sub-specifications, each of
which has the same form as ϕex from Figure 1 We learn policies using ARS [32] with shaped rewards;
each one is a fully connected NN with 2 hidden layers of 30 neurons each.

Baselines. We compare our approach to four state-of-the-art algorithms for learning from spec-
ifications, SPECTRL [23], QRM [18], HRM [35], and a TLTL [29] based approach, as well as a
state-of-the-art hierarchical RL algorithm, R-AVI [25], that leverages state abstractions.

4This choice is the distribution of states reaching u by the path policy πρ eventually returned by DIRL. Thus,
it ensures that the training and test distributions for edge policies in πρ are equal.
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(b) 1 sub-specification ϕ2,
|Gϕ2 | = 4.
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(c) 2 sub-specifications ϕ3,
|Gϕ3 | = 8.
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(d) 3 sub-specifications ϕ4,
|Gϕ4 | = 12.
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(e) 4 sub-specifications ϕ5,
|Gϕ5 | = 16.
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(f) Sample complexity curves.

Figure 3: (a)-(e) Learning curves for 16-Rooms environment with different specifications increasing
in complexity from from (a) to (e). x-axis denotes the number of samples (steps) and y-axis denotes
the estimated probability of success. Results are averaged over 10 runs with error bars indicating
± standard deviation. (f) shows the average number of samples (steps) needed to achieve a success
probability ≥ z (y-axis) as a function of the size of the abstract graph |Gϕ|.

Results. Figure 3 shows learning curves on the specifications for 16-Rooms environment with all
doors open. None of the baselines scale beyond ϕ2 (one segment), while DIRL quickly converges to
high-quality policies for all specifications. The TLTL baseline performs poorly since most of these
tasks require stateful policies, which it does not support. Though SPECTRL can learn stateful policies,
it scales poorly since (i) it does not decompose the learning problem into simpler ones, and (ii) it
does not integrate model-based planning at the high-level. Reward Machine based approaches (QRM
and HRM) are also unable to handle complex specifications, likely because they are completely based
on model-free RL, and do not employ model-based planning at the high-level. Although R-AVI uses
model-based planning at the high-level in conjunction with low-level RL, it does not scale to complex
specifications since it trains all edge policies multiple times (across multiple iterations) with different
initial state distributions; in contrast, our approach trains any edge policy at most once.

We summarize the scalability of DIRL in Figure 3f, where we show the average number of steps
needed to achieve a given success probability z as a function of the number of edges in Gϕ (denoted
by |Gϕ|). As can be seen, the sample complexity of DIRL scales roughly linearly in the graph size.
Intuitively, each subtask takes a constant number of steps to learn, so the total number of steps
required is proportional to |Gϕ|.

6 Conclusions

We have proposed DIRL, a reinforcement learning approach for logical specifications that leverages
the compositional structure of the specification to decouple high-level planning and low-level control.
Our experiments demonstrate that DIRL can effectively solve complex continuous control tasks,
significantly improving over existing approaches. Logical specifications are a promising approach
to enable users to more effectively specify robotics tasks; by enabling more scalable learning of
these specifications, we are directly enabling users to specify more complex objectives through the
underlying specification language. While we have focused on SPECTRL specifications, we believe
our approach can also enable the incorporation of more sophisticated features into the underlying
language, such as conditionals (i.e., only perform a subtask upon observing some property of the
environment) and iterations (i.e., repeat a subtask until some objective is met).
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