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Abstract

We propose a generalisation of a behaviour tree and motion-
generator based robot arm policy representation for learning
and solving tasks such as contact-rich tasks like peg insertion
or pushing an object. We use planning to generate skill se-
quences needed to execute these tasks and rely on reinforce-
ment learning to obtain parameters of the policy. We assume
gaussian processes as a suitable method for this generalisa-
tion and present preliminary, promising results from initial
experiments.

Introduction
In previous papers (Rovida et al. 2018; Mayr et al. 2021,
2022) we have developed a representation based on behav-
ior trees (BT) (Colledanchise and Ögren 2014) and motion-
generator (MG), (BTMG). (Rovida et al. 2018) They are
easy to interpret, can be robust to faults and errors that can
occur during execution and they can be reactive, allowing
the robot to act and deal with uncertain conditions and re-
cover from failures.

BTMG is a parameteric policy representation that allow
us to solve contact-rich tasks like “peg-in-hole” or pushing
an object. Parameters of a BTMG can vary from deciding the
structure of behavior trees to specifying the actual controller
stiffness values of the MG. We can either specify these pa-
rameters manually (Rovida et al. 2018) or learn them using
reinforcement learning (RL) (Mayr et al. 2021, 2022). We
generate skill sequences for these tasks in a skill-based sys-
tem, SkiROS (Rovida et al. 2017) that uses Planning Domain
Definition Langauage (PDDL) for task planning.

Although BTMGs are shown to be quite promising, one
key shortcoming of this representation is that they can be
scenario specific. For instance, pushing an object to different
goal locations using a BTMG requires learning the parame-
ters. This is problematic and is also common for the orig-
inal formalization of dynamic motion primitives (DMPs)
(Ijspeert, Nakanishi, and Schaal 2002). This problem was
later resolved by generalizing DMPs (Ijspeert et al. 2013).
In this work, we aim to generalize the BTMG policy repre-
sentation in a similar way. Our proposed solution is to gen-
erate a novel BTMG for a new task instance as a weighted
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Figure 1: The mapping (yellow) of the vector space of a sce-
nario parameter (pink) to the abstract BTMG space of a task
(gray).
sum of the ”basis”-BTMG (parametric BTMG for differ-
ent instances of a task). This poses some interesting ques-
tions: 1) What kind of Basis-BTMGs should we use? 2) How
many Basis-BTMGs do we need? 3) How can we use Basis-
BTMGs to interpolate?

Formalization
A BTMG is parameterized by two types of parameters; in-
trinsic parameters and extrinsic parameters. Intrinsic pa-
rameters decide the structure of the BT, number of control
flow and execution nodes, etc. These parameters also de-
cide how much velocity can be allowed, how fast the arm
should move, etc. Implicit parameters could be implied by
the specific task at hand, e.g., push task and peg-in-a-hole
task. In this work, we do not want to change intrinsic pa-
rameters. Extrinsic parameters on the other hand represent,
e.g., how much force can be applied, offsets, path velocity
of the end-effector, etc. In a nutshell, extrinsic parameters
are optimized while intrinsic ones are assumed to be known
apriori. Note that object goal pose is not necessarily a pa-
rameter here. Consider a pushing task: while the object goal
pose represents the centre of mass of the object at the goal
location, the point on the object where the peg touches the



object is expected to be different. The centre of mass of the
object should be at the goal location. We specify pushing the
object through a push vector(see Figure 2 defined by start
and goal offsets from object start and goal locations.

In previous work (Mayr et al. 2022), we have used RL
to learn extrinsic parameters of the BTMG policy represen-
tation for a specific instance of a push task and a peg in-
sertion task. Apart from BTMGs, we also consider scenario
parameters like object goal pose, object start pose, object
weight, etc. These parameters represent variations or dimen-
sions over which we want to generalize the BTMG repre-
sentation of a task. Figure 1 shows the vector space Rm of
a particular scenario parameter (shown in pink). Every point
in this space shows a set of unique values of scenario param-
eters. For instance, any point or object goal pose would be
a 6D-vector x, y, z, α, β, γ representing the goal pose of the
object.

Mapping
In order to generate various policy representations of a task
that generalizes over a scenario parameter, we are interested
in a mapping that for a given task and scenario parameter
to the corresponding extrinsic BTMG parameters. Figure 1
shows the mapping (yellow) that maps the vector space of a
scenario parameter to BTMGs of a specific task.

We propose to use gaussian processes (GP) (Rasmussen
2003; Forte, Ude, and Gams 2011; Zhou and Asfour 2017)
as a mapping function. We start by collecting data samples
using RL by learning extrinsic parameters for BTMGs of a
task over a particular scenario parameter. We use these sam-
ples to train the GP by using a scenario parameter as input
and extrinsic parameters as output. The idea is to then use
this trained GP to interpolate and return the values of extrin-
sic parameters for different values of the scenario parameter.

We also want to clarify that using GP to interpolate is not
a new idea as it has already been used in literature (Forte
et al. 2012; Rasmussen 2003). The novelty of our approach
lies in using GPs as a mapping function in the context of
BTMG policy representation that allows it to generalize over
scenario parameters.

Using GP has two major benefits: 1) It provides mean and
variance bounds over the extrinsic parameters of BTMG of a
skill. 2) They are known for generalizing over domains and
have been used in this context in Dynamic Motion Primitives
(DMPs) as discussed before.

Experiments
We tested our approach on a push task where the robot had
to push an object from a start location to a specified object
goal poses, see Figure 2. In our setting, the BTMG of the
push task has four learnable extrinsic parameters: 1) Off-
sets in start locations sx, sy , 2) Offsets in goal locations gx,
gy . Together, these parameters decide the push vector. We
start by collecting training and testing samples of goal lo-
cations of the object. Instead of randomly choosing samples
over the space we use Latin hypercube space(Ye 1998) to
achieve evenly distributed samples across the entire region.
We choose defined number of samples within the bounds.

Choosing the number of samples is not a trivial task and
dependent on work space and the type of the scenario pa-
rameter.

We use RL to get the best sx, sy , gx, gy for every training
sample. These are used to train our GP. The GP takes ob-
ject goal pose as input and produces offsets sx, sy , gx, gy as
output. For simplicity, we only change the x and y coordi-
nates of the object goal pose. The trained GP is then used to
generate offsets for the test points.

We trained the GP on samples distributed across a restric-
tive space and tested it on unseen samples. The initial results
look promising as the GP was able to find offsets that man-
aged to solve the task for all the test points. The offsets man-
aged to push the object throughout without slipping off. We
analyzed the performance of offsets by calculating the error
between actual and specified goal pose of the object. Initial
results suggest that the error for the offsets obtained thor-
ough GP is in the same range for the offsets learned through
RL.

Future Work
For future work, we are planning to generalize over a larger
space to obtain BTMG parameters for multiple scenario pa-
rameters together. We would also like to extend this gener-
alization to other tasks.

We would also like to evaluate the performance of trained
GP models for a skill by comparing it with baseline regres-
sion models. Since, we aim to use a generic model, we ex-
pect GP to perform well to generalize scenario parameters
of BTMG of difference skills.

We would also like to investigate sensitivity of the model
to different scenario parameters. Basically how well GP per-
forms for different types of scenario parameters? Further-
more, we would also like to see if GP can be used to inter-
polate intrinsic parameters as well i.e. generating new BTs
for a skill.

Figure 2: a) Shows the push vector (red) defined by offsets
in start and goal location. The image b) shows the push task
setup with different goal locations where (1-3) are training
examples and (4) is a test example.
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