Exploiting Multiple Levels of Abstractions in Episodic RL via Reward Shaping

Roberto Cipollone, Giuseppe De Giacomo, Marco Favorito, Luca Iocchi, Fabio Patrizi

Sapienza University of Rome

Abstract

One major limitation of Reinforcement Learning (RL) algo-
rithms, which limits applicability in many practical domains,
is the large amount of samples required to learn an optimal
policy. To improve learning efficiency, we consider a hierar-
chy of abstraction layers, where the Markov Decision Process
(MDP) underlying the target domain can be abstracted at mul-
tiple levels by other MDPs. Each abstract model in the hier-
archy is a coarser representation of the next one below, which
captures the relevant dynamics in finer resolution. This paper
proposes a novel form of Reward Shaping defined in terms of
the solution obtained in the abstract levels. Theoretical guar-
antees about optimality and experimental validation of learn-
ing efficiency are discussed in the paper. Our technique has
minimum requirements in the design of abstract models and
is also tolerant to modelling errors in abstractions, thus mak-
ing the proposed method of practical interest.

Introduction

Reinforcement Learning (RL) agents have no model avail-
able to predict outcomes of their actions. While this allowed
wide applicability of RL algorithms, this lack of knowledge
also demands a significant number of interactions with the
environment before an optimal policy can be estimated. In-
deed, most of the successes of RL achieved in recent years
come from the digital world (e.g. video games, simulated
environments), where a large amount of samples can be eas-
ily generated. Still, even in these cases, such large number of
samples might not be available, as the simulation costs may
be very high. As a result, applications of RL in real environ-
ments, such as real robots, are still very rare.

Many RL tasks are goal-oriented, in which a set of en-
vironment states are denoted as target configurations. Com-
plex tasks induce sparse goals and, as a consequence, sparse
rewards. This is known to be a challenging scenario for RL,
which increases the requirements on the number of sam-
ples to collect. Unfortunately, sparse goal states are very
common, as they may arise in simple tasks on large state
spaces (such as reaching specific locations in a complex en-
vironment), or complex behaviours even in modest envi-
ronments (such as the successful completion of a desired

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

sequence (Brafman, De Giacomo, and Patrizi 2018; Icarte
et al. 2018)).

From Hierarchical RL approaches, it is known that ab-
stractions play a fundamental role in subtask decomposi-
tion and efficient exploration. The technique proposed in this
work allows to exploit abstractions of Markov Decision Pro-
cesses (MDPs) to allow learning algorithms to effectively
explore the ground' environment, while guaranteeing op-
timal convergence. The abstraction of some ground MDP
M is an MDP M whose states represent sets of states of
M. A simple example is that of an agent moving in a map.
States of M could determine the agent’s position in terms
of continuous coordinates, orientation, and other configura-
tions. States of the abstraction M, instead, may be coarser
descriptions, for example, through discretization or by pro-
jecting out some state variables. Such compression corre-
sponds, ultimately, to partitioning the concrete state-space
and implicitly defines a mapping from concrete to abstract
states. Importantly, action spaces of M and M may dif-
fer, as each model would include the actions that are best
appropriate for each representation.

The core intuition is that, by first learning the optimal
policy pg of the abstract MDP, we obtain a value estimate
V5 which can be exploited to guide learning on the ground
model M. Technically, we adopt a variant of Reward Shap-
ing (RS), which is generated from V7', which offers rewards
that are consistent with the correspondence between states
at the ground and the abstract level. In this way, when learn-
ing in the concrete model M, the agent is biased to visit
first states corresponding to the abstract ones preferred by
P, thus trying, in a sense, to replicate the behavior of py at
the ground level.

For such exploration bias to be effective, it is essential
that the transitions of M, are good proxies for the dynam-
ics of M. We characterize this relation by identifying con-
ditions under which the optimal policy of the ground MDP
with computed rewards converges to a near-optimal explo-
ration policy. We call such model the biased MDP.

An important difference with respect to previous works is
that, since the proposed approach focuses on the definition
of anovel RS mechanism, it is very general and may be com-

"We follow the nomenclature from (Li, Walsh, and Littman
2006).

bined with any off-policy learning algorithm. Furthermore,
since computed rewards would not perturb the optimal pol-
icy, it’s possible to iterate this process, giving raise to a lin-
ear hierarchy of abstract representations, each constituting a
coarser model of the previous one. Again, one can take ad-
vantage of the experience obtained at the higher abstraction
level to speed-up the learning process in the finer model.

The proposed approach is validated on several use cases,
over which we also discuss properties and effectiveness of
our reward shaping approach. The validation results inte-
grate the theoretical results highlighting different cases with
improved sample efficiency.

The contributions of this work include: (i) the definition of
the multiple-level abstraction framework; (ii) the definition
of a novel RS schema which allows for transferring the ex-
perience acquired at a coarser model to the finer one next in
the abstraction hierarchys; (iii) the identification of a set of re-
lations that allow to characterize near-optimal abstractions;
(iv) the computation of an upper bound for the value loss
of exploration, when using our RS (wrt optimal policy with-
out RS) that depends on an explicit feature of the abstrac-
tion; (v) an empirical analysis showing that higher abstrac-
tion quality effectively improves sample-efficiency and that
modelling errors yield only a limited performance degrada-
tion.

Preliminaries

Notation By II())) we denote the class of probability
distributions over a set). By f: X — II(Y), we denote
a function returning a probability distribution (i.e., f
X, Y —[0,1], with 37y, f(z,y) = 1, forall z € X).

Any total function f : X —) induces a partition on its
domain X, s.t. two elements are in the same block iff f(x) =
f(z"). We denote blocks of the partition by elements of),
thus writing « € yinstead of x € {2’ | 2’ € X, f(2') = y}.
When the partition refers to abstract states, blocks will also
be referred to as abstract states.

Markov Decision Processes (MDPs) A Markov Decision
Process (MDP) is a tuple (S, A, T, R,~), where S is a set
of states, A is a set of actions, T : S x A — II(S) is the
probabilistic transition function, R: S x A xS - R C R
is the reward function, and 0 < + < 1 is the discount factor.
In the following, when the MDP is clear from the context,
we write T'(s, a, s') and p(s’ | s, a) interchangeably.

The value of a policy p in some state s, denoted V*(s), is
the expected sum of discounted rewards, when starting at s,
and selecting actions based on p. Every MDP admits an opti-
mal policy, p* = arg max,c p V?(s), which is deterministic
and Markovian (Puterman 1994). Thus, we consider policies
as functions p : & — A. The optimal value is abbreviated
V* = VP . The function Q”(s, a) is the value of executing
a € A, then following policy p. For optimal actions, the two
notions of value coincide Q*(s, p*(s)) = V*(s). Reinforce-
ment Learning (RL) is the task of learning an optimal policy
in an MDP with unknown 7" and R.

Reward Shaping (RS) Reward Shaping (RS) (Ng,
Harada, and Russell 1999) is a technique for learning in

MDPs with sparse rewards that occur rarely during explo-
ration. The purpose of RS is to guide the agent by exploit-
ing some prior knowledge in the form of additional rewards:
R(s,a,s") == R(s,a,s') + F(s,a,s’), where F is some
shaping function. A fundamental requirement of RS is that
the additional rewards should not modify the set of opti-
mal policies. This is guaranteed by Potential-Based RS (Ng,
Harada, and Russell 1999) (simply called “Reward Shaping”
from now on) which adopts potential functions of the form:

F(s,a,s") =~v®(s') — ®(s) (1)

or its variants, (Wiewiora, Cottrell, and Elkan 2003; De-
vlin and Kudenko 2012). In the infinite-horizon case, equa-
tion (1) guarantees that the set of optimal policies for M and
M* = (S, AT, R% ~) coincide, for any & : S — R.

Since optimal policies are not modified, RS only provides
an initial bias to the learning algorithm; indeed, as shown
by (Wiewiora 2003), the Q-learning algorithm over M? per-
forms the same updates as Q-learning over M with the mod-
ified Q-table initialization: Q((s, a) == Qo(s, a) + D(s).

Options An option (Sutton, Precup, and Singh 1999),
for an MDP M, is a temporally-extended action, de-
fined as 0o = (Z,, po,Bo), where Z, C S is an ini-
tiation set, p, : S — II(A) is the policy to execute, and
Bo : S — {0, 1} is a termination condition that, from the last
state, computes whether the option should terminate. Termi-
nation conditions sometimes follow a more general defini-
tion. Instead, the ones of interest in this paper are determin-
istic and Markovian. Adding options as possible actions to
an MDP produces a model called semi-MDP. Similarly to
MDPs, there always exist an optimal policy for a semi-MDP
that only involves deterministic options. Thus, we only con-
sider intra-option policy of the type p, : S — A.

¢-Relative Options (Abel et al. 2020) Given an MDP M
and a mapping ¢ : S — Sy, an option 0 = (Z, po, Bo)
of M is said to be ¢-relative if and only if there is some
54 € Sy such that, forall s € S:

T, ={sls€ss}, Pols)=U(s¢Zsp), po€Ps, (2

where [(§) = 1if £ is true, 0 otherwise, and P, is the set
of policies of the form p,, : {s | s € 54} — A defined over
states s € Sg.

Framework

Consider an environment in which experience is costly to
obtain. This might be a realistic simulation or an actual en-
vironment in which a physical robot is acting. This is our
ground MDP M, that we aim to solve while reducing
the number of interactions with the environment. Instead of
learning on this MDP directly, we choose to solve a simpli-
fied, related problem, that we call the abstract MDP. Once
a solution of the abstract model is computed, such infor-
mation can be used as a heuristic to speed up learning in
the ground MDP. This idea is not limited to a single ab-
straction. Indeed, we consider a hierarchy of related MDPs
Mo, My, ..., M,, of decreasing difficulty, where the expe-
rience acquired by an expert acting in M; can be exploited
to speed up learning in the previous one, M;_.

Associated to each MDP abstraction M, we also assume
the existence of a mapping function ¢; : S; — S;+1, which
maps states of M to states of its direct abstraction M.
Since each MDP in the sequence should be easier to solve
with respect to its predecessor, we know that |S;| > |S;11].
Therefore, the mapping induces a partition over S;, where
each block contains all states that are mapped through ¢; to
a single state in M ;1.

While our approach requires a mapping between states,
it is important to highlight that we do not require any map-
ping between the action spaces, which will remain implicit.
In other words, the agent solving the concrete model does
not need to know which kind of actions have been used at
the abstract level. Such minimal requirements leaves high
flexibility to the designers in the definition of the abstraction
hierarchy for a given problem.

An abstract model is therefore a suitable relaxation of the
environment dynamics. For example, in a navigation sce-
nario, an abstraction could contain actions that allow to just
“leave the room”, instead of navigating though space with
lower-level controls. The mapping function in the state space
naturally follows from the ground MDP and the chosen ab-
stract state space, while no explicit mapping of the action
spaces is required.

Exploiting the knowledge

Consider a hierarchy of abstractions M, ..., M,, together
with their state mapping functions ¢, . . ., ¢,—1. The learn-
ing process proceeds incrementally, training in order from
the easiest to the hardest model. At each level, the knowl-
edge acquired from an abstraction M;; can be used to
speed up learning in the lower model M;. To do so, our
method applies a form of Reward Shaping to M;, employ-
ing a potential that is derived from the abstraction solution.

In particular, we recognize that the optimal value function
V% 1 can be used as an helpful advice that will evaluate how
desirable a group of states is, according to the abstraction.
Therefore, at each level instead of learning on M;, train-
ing is performed on a modified model, that we can call the
biased MDP:

Definition 1. Let M; be an MDP and M, its abstraction,
with associated mapping ¢; : S; — S;+1. We define the bi-
ased MDP of M, with respect to M, 1, as the model M?,
resulting from the application of reward shaping to M;, us-
ing the following potential:

D(s) = Vit (9i(s)) ©)
where, V;* | is the optimal value function of the abstrac-
tion MZ‘+1 .

This choice for the RS is a novel contribution of this pa-
per. With this choice, the potential of a state is evaluated
according to how desirable is the corresponding state in the
abstract model. This is beneficial, as high potentials are asso-

ciated to high Q-function value initializations in the ground
model (Wiewiora 2003).

Reward Shaping for Episodic RL

Potential-Based Reward Shaping has been explicitly de-
signed not to alter the optimal policies. In fact, regardless of

the potential @, in case of an infinite horizon, or if episodes
always terminate in a zero-potential absorbing state, this is
always guaranteed (Ng, Harada, and Russell 1999). How-
ever, in RL, we often diversify agent experiences by break-
ing up exploration in episodes of finite length. Thus, in the
episodic setting, these guarantees do not hold anymore, as
time limits might terminate episodes in states with arbitrary
potential. As a consequence, the optimal policy may be al-
tered (Grzes 2017).

To see this, consider an episode 7 = sga;r157 ... S, of an
MDP M, and the associated episode " = s9a177181 - - - Sn,
where rewards altered via reward shaping. The returns of the
two episodes are related by (Grzes 2017):

G(r') = Z vt Tl
t=0
=G(m) + 7" D(sn) — P(s0) 4

where G() is the original return computed from M, and
®(sp) is constant with respect to the actions. Since v ®(s,,)
is the term which can perturb optimal policies, the solution
proposed by (Grzes 2017) is to assume, for every terminal
state, the null potential ®(s,,) = 0, as this would preserve
the original returns and policies.

However, this is not always the only desirable solution.
In fact, we might be interested in relaxing the guarantees
of convergence to an identical policy, in favour of a stronger
impact on learning speed. The same need has been also iden-
tified by (Schubert, Oguz, and Toussaint 2021).

As an example, let us consider an MDP with a null reward
function everywhere, except when transitioning to a distinct
goal state. Regardless of the potential, as a consequence of
equation (4), all finite trajectories which do not contain the
goal state are associated to the same return. Since the agent
cannot estimate its distance to the goal state through a dif-
ference in returns, return-invariant RS of (Grzes 2017) is not
able to provide a persistent exploration bias to the agent.

The RS adopted in this paper, which is formulated in Def-
inition 1, does not assign null potentials to terminal states.
Therefore, we say that it is not return-invariant. This ex-
plains why the MDP of Definition 1 has been called “bi-
ased”: optimal policies of M? and M; do not necessary
correspond.

Optimal policy learning
Since we deliberately adopt a form of RS which is not re-
turn invariant, we devised a technique to recover the original
optimality guarantees. The present section proves that the
proposed method still converges to the optimal policy, when
Q-learning (Watkins and Dayan 1992) is used. However, the
same result also apply to other RL algorithms that share the
same convergence requirements of Q-learning, as most off-
policy algorithms do.

Our method proceeds as follows. When learning on MDP
M;, we perform updates on two distinct Q-function esti-
mates:

Q?* called active function, is in charge of estimating Qé’*,
that is the optimal Q-value function of the biased
MDP M?.

Q;‘ called passive function, is an estimate for)7, the opti-

mal Q-value function of the original M.
The exploration policy used to collect experience is com-
puted from the current active function estimate (hence the
name “active”). Therefore, the learning algorithm proceeds
normally with respect to Qb*. The passive function, instead,
is updated from the same state-action transitions as those
produced for training the active function, with the only dif-
ference that rewards are generated from the original reward
function R;, without reward shaping applied.

Clearly, it is essential that each of those estimates can con-
verge to the desired quantity. Thus, the classic Q-learning
convergence assumptions are required:

Assumption 1. Actions are selected according to a stochas-
tic exploration policy p. : S — II(.A), that satisfies:

pe(s,a) >0 Vs € S;, Va € A; 5)

Assumption 2. The sequence of learning rates («;):cn used
in the Q-learning update rule satisfies:

iat =00 ia? < 00 (6)
t=0 t=0

As a consequence, both functions converge to the desired
values:

Proposition 1. Let Ql;* and Q;‘ be the Q-value estimations
for MY and M;, updated according to active-passive Q-
learning described above. Then, under assumptions 1 and 2,
both Qf* and Qf converge to Q%* and Q}, respectively.

Proof. Assumption 1 on the exploration policy p. ensures
that, in every state of ./\/lf, each action is executed infinitely
often. Together with assumption 2, they guarantee that Qf*
under Q-learning updates, converges to Q?*. The same se-
quence of state-action transitions (s¢, asy1,Set1) 1S also
used for the Q-learning update on Q. Since M, and M?
share the same state and action spaces, such sequence is con-
sistent with the same exploration policy p., when executed
on M;, which satisfies assumption 1. Thus, also Qf con-

verges to 7, regardless of rewards (M? rewards are also
bounded). O

In particular, a decaying e-greedy policy computed
from Qf* is a possible exploration policy that satisfies as-
sumption 1. In fact, among all exploration policies, we’re
interested in those, whose deterministic actions depend on
the active function’s estimate, as those incorporate the useful
exploration biases coming from the abstraction. Although
the passive function is updated from the same experience, it
maintains an estimate for the original MDP and it converges
to its optimal Q-function Q).

At convergence, the passive Q-function can be used, in
turn, to compute the potential needed to drive the next ab-
straction level, or, when M is the target ground model My,
it constitutes the final learning objective.

Figure 1: Motivating example: ground MDP (left) and ab-
stract MDP (right).

Abstraction quality

Due to how the framework is designed, convergence on a
model M, does depend on its abstraction, M, 1, but not on
any other model. Therefore, when discussing convergence
properties, it suffices to talk about a generic ground MDP
M = (S, A,T,R,~) and its direct abstraction, M, =
(S¢, Ag, Ty, Ry, 7e), while ignoring the rest of the hierar-
chy. Also, let ¢ : S — S, denote the relevant mapping.
An example of abstraction between two MDPs is graphi-
cally shown in Figure 1, where the different colors indicate
how the mapping function transforms each group of cells to
a state of the abstract MDP.

Given a ground model M, different abstractions induce
different biases in the exploration policy. Some abstractions
may even slow down convergence by encouraging explo-
ration toward irrelevant portions of the state space. This sec-
tion serves to describe what properties should a good ab-
straction possess.

We start our discussion from the following intuitive ob-
servations:

* Every abstract state s, € Sy corresponds to a set of states
»~1(s4) C S, in the ground MDP.

* Every abstract action a, € Ay corresponds to a partial
policy in the ground MDP.

In particular, abstract actions should be associated to non-
interruptible policies that terminate when leaving the cur-
rent block, when a new abstract state is reached. So, a more
appropriate correspondence can be identified between ac-
tions A4 in M and ¢-relative options in M.

Goal MDPs Although we may apply the proposed method
in generic MDPs, Definition 1 of the biased model makes
it specifically effective in a class of problems that can be
modelled as Goal MDPs:

Definition 2. We say that an MDP M = (S, A, T, R,~) is
a Goal MDP iff there exists a set of goal states G C S such
that:

V*(s)=0 Vseg (8

Equivalent definitions of Goal MDPs often assume goals
to be absorbing states. Equation (8) simply requires that
from any goal, it is not possible to re-enter any goal state
and collect an additional reward. Since we are not interested
in the agent’s behaviour at goal states, episodes may be ter-
minated once the agent reaches some s,, € G.

Goal MDPs capture many interesting real-world prob-
lems, in which the agent is rewarded upon successful com-
pletion of a task (the MDP may also contain dead-ends asso-
ciated to failures). In the following discussion, we focus on
this class of problems:

Assumption 3. The ground MDP M is a Goal MDP.

Given the above assumption, each abstraction should be
also consistent with this set of ground goal states:

Assumption 4. Given a Goal MDP M with goal states G,
its abstraction, M, is a Goal MDP with goal states G4 sat-
isfying:

G =Usyeg, ' (59) ©)

Since ¢ : S — S, induces a partition on S, assumption 4
implies that goal states in the abstraction must correspond to
all and only those states that are goals in the ground model:

Vs, s €S: (s€G)N (s €G)= ¢(s) #d(s') (10)
Go = {6(5) | 5 € G) an

In the example, yellow cells in the ground MDP mapped
to abstract state G represent the goal and all other cells of a
different color are not goal states.

The main objective of this section is to quantify, and pro-
vide a bound for, the difference between the optimal policy
of the original problem and the optimal policy of the biased
MDP, as induced by the abstraction. By showing conditions
under which these two policies achieve similar value, we en-
sure that the agent’s exploration policy will converge to an
optimum. We establish this in Theorem 1, by exploiting the
options’ multi-step transition model.

Multi-step transition model Relaxing the usual notation,
Q*(s,a), we denote with Q* (s, 0) the expected return of ex-
ecuting the option o, and following the optimal policy af-
terwards. Similarly, Q(s, p) denotes the expected return of
executing the policy p until the end of the episode.

By combining the classic multi-step return of op-
tions (Sutton, Precup, and Singh 1999), ¢-relative options
from (Abel et al. 2020) and Goal MDPs of Definition 2, we
obtain:

Q*(s,0)= ES’IS,O[R(Sv Po(8); 5/) +(
I(s" € 54) Q7(5',0) +1(s" & 54) V*(5"))]
= AF (
’“2:% Sl:k;;(s)k S’;ES) (12)
p(s, 81k | 8, p0) (H(s/ €qG)+ ’YV*(S/)))

where 251;k€¢(3)k is a sum over all possible se-
quences s1. = S . .. i of k states that remain within ¢(s).

Equation (12) is not an expression about abstract states,
because it’s still relevant which ground state s’ is reached at
the end of the option. In the following definition, we intro-
duce a parameter d that quantifies how much these states s’
are dissimilar in value. This allows to jointly talk about the
value of the group of states that can be reached with each
option. Therefore, we define a function W5 : Sy, x Sy — R,
that, given a pair of abstract states (s, s}), predicts, with 6-
approximation error, the approximate value of the successor
ground states s’ € s;ﬁ (unknown at the time of the predic-
tion) that can be reached from s € sg.

Definition 3. Consider an MDP M, abstraction M, and
mapping ¢. We define the abstract value approximation as
the smallest § > 0 such that there exists a function Wy :
Sy x Sy — R, that satisfies:

Vs € 54, Vs € ', Va € A
p(s' | s,a) > 0= [Ws(sg,s5) = V*(s')| <6 (13)

Thus, according to this definition, the frontier separating
any two sets in the partition lies in states that are equally
valuable with respect to the goal, with an approximation er-
ror of at most §. For example, in Figure 1, ground states
between two neighbouring regions would be approximated
to be equivalently close to the final destination in yellow. On
the other hand, a given § parameter poses a constraint on the
mapping function.

Thanks to definition 3, it is possible to compute a bound
for the value of options, only taking future abstract states
into consideration. For this purpose, in the following, we use
p(s;ﬁ, k) to denote the probability of the event of remaining
for k steps in the same abstract state, then reaching block s’¢
at the next transition.

Lemma 1. Let M be a Goal MDP and M its abstraction
according to a mapping function ¢, such that they satisfy
assumptions 3 and 4. The value of an option in M admits
the following lower bound:

Do D A sk] s p0) (

5,€84\{¢(s)} k=0
I(sy € G) +~v (W((s),55) —0)) (14)
where, 6 and Wy follow definition 3.

Q*(s,0) >

Proof. Proof in appendix. O

This lemma provides a different characterization of op-
tions, in terms of abstract states, so that it can be exploited
to obtain the theorem below.

Limiting the suboptimal exploration The section “opti-
mal policy learning” has shown that the experience gener-
ated while learning on the biased MDP M? is collected and
used to learn the optimal policy for M. Since convergence
is guaranteed, we know that this exploration policy used for
learning converges to p®*. Thus, we are interested in limiting
the difference, in value, between p®* and p*.

Definition 4. (M ,-value loss) The value loss of M, ab-
straction of an MDP M, is the expected value loss of exe-
cuting p®*, the optimal policy of M®, on M, instead of its
optimal policy:

LM, My) = max |[V*(s) = Q(s,p™)| (15)

We expand the results from (Abel et al. 2020) to limit the
above loss. Thanks to Lemma 1, we know that the value of
p%*, only depends on the k-step transition probability to each
abstract state. So, we assume this quantity is bounded:

Assumption 5. Let p* and p* be the optimal policies for
the original M and biased MDP M?, respectively. We as-
sume that there exists € > 0 such that:

VseS, Vs, eSs\{d(s)}, VkeN
|p(sly, k | s,p%) = p(sly, k | s,p"*)| <€ (16)

It is now finally possible to state:

Theorem 1. Let M be an MDP and M its abstraction,
satisfying assumptions 3, 4 and 5. The value loss of Mg
satisfies:

€+ 7Sy (e +€d+29))
(1—7)?

LM, My) < a7

Proof. Proof in appendix. O

Fora d = 0, this bound has similarities with the inequality
n. 5in (Abel et al. 2020). Notice however, that the one stated
here is expressed in terms of the size of the abstract state
space, which usually can be assumed to be |Sy| < |S|.

Theorem 1 provides an important contribution of this pa-
per showing that, when acting according to biases derived
from the abstraction, the agents achieves near optimal value
on the original domain. This characterizes abstractions that
induce good biases onto the lower model. However, we re-
call that convergence is guaranteed regardless of the abstrac-
tion quality, as the agent can explore from an e-greedy policy
built from p®*.

Validation
Navigation task

We initially consider a navigation scenario, where an agent
has to navigate through a map and reach a desired location.

Environment The ground MDP M consists of a finite
state space S1, containing a set of locations, and actions .4
that allow to move between neighbour locations, with some
small failure probability. Figure 2 contains an example of
such domains that we will use for training. The gray cells are
goal states. So, R generates a positive reward upon entering
in this right-most region.

As abstraction for this environment, we define an MDP
Moy, with S = {sp,...,s7}, where each of these
states represents one of the colored regions. The map-
ping ¢1 : S — Sy is defined according to this choice. Ac-
tions A5 allow to move, with high probability, from any re-
gion to any other, only if they are connected in M.

Figure 2: A grid-world domain for the navigation task.

episode length

step 104
(a) Navigation task in 4-rooms domain (Abel et al. 2020).

100 — e 11— |
:S “ »\I\‘ ll\
® 80|
=
< 60|
z
g 40|
20 | | | | |
0 1 2 3 4

step 10°

(b) Navigation task in 8-rooms domain of Figure 2.

Figure 3: Results on the navigation tasks.

Training results In the plots of figures 3a, 3b, we compare
performances of the following algorithms:

--- Q-learning without reward shaping;
-.-- Delayed Q-learning (Strehl et al. 2006);

—— Q-learning with rewards computed as in Definition 1.
Evaluation of the passive Q-function.

Episodes are terminated after a fixed timeout or when the
agent reaches a goal state. Therefore, lower episode lengths
are associated to higher cumulative returns. Each point in
the plot is an average of 10 different runs with 10 episodes
each. Shaded areas are the standard deviations. Additional
training details can be found in the appendix.

As we can see from Figure 3a, all algorithms, even un-
der Q-learning naive exploration policy converge to the opti-
mum relatively fast on the 4-rooms domain. In Figure 3b, as
the state spaces starts to increase and to be harder to explore,

100

80

60

episode length

40

20

step .10°

0.5 \/QWJ/ /q\

—0.55 |-

episode return

—0.6 |- f i

—0.65 | | | | |

step .10°
(b)

Figure 4: Comparison of different forms of reward shaping.
Q-learning with e-greedy 1-to-0 linear decay.

Delayed Q-learning still manages to converge. However, our
agent in green, the one driven by computed rewards, steadily
reaches the optimum in less than 500 episodes. Instead, the
same Q-learning algorithm, without any advice cannot con-
verge in reasonable time.

Return-invariant shaping

As discussed in previous sections, when applying RL for the
episodic setting, there is a delicate distinction to make:

--- Return-invariant RS, which assigns null potentials at
terminal states.

—— Non return-invariant RS (our approach).

Figure 4a compares both variants on the same environ-
ment of Figure 2. As we can see, even though the learning
algorithm is the same, our approach gives exploration bi-
ases in a more effective way. The reason for this behaviour
can be seen by looking at the cumulative returns that the
two agent accumulate before reaching the goal even once.
The two are reported in Figure 4b. Although the two returns
are incomparable (as they receive different rewards), the left
half of the plot shows that the return-invariant agent always
achieves the null return, regardless of how close it might be
to the goal. The variability on the green line, instead, shows

Closed

Out; N\ —Closed

Figure 5: A temporally-extended task in the navigation do-
main. Arcs are associated to environment events.

that the agent is rewarded differently, depending on the value
of each abstract state reached.

Interaction task

In this section, we demonstrate that the proposed method ap-
plies to a wide range of algorithms and environments. With
respect to variability in environments, we emphasize that
Goal MDPs can capture many interesting problems, apart
from those considered up to this point. For this purpose,
let us consider the same navigation scenario, but instead
of reaching a location, the task assigned to the robot is a
temporally-extended behavior such as: “reach the entrance
of each room and, if the door is open, enter and interact with
the person inside, if present”. This task is summarized by the
deterministic automaton .4 of Figure 5. Note that there is a
single accepting state.

Regarding the environment dynamics, instead, apart from
the abstract and grid representations that we’ve seen in the
previous case, the robot movements are now also modelled
at a much lower resolution, using continuous features. For
this purpose, let us consider an MDP M 4, in which states
(z,y, 0) represent the agent’s mobile base position and ori-
entation in the plane. Actions are relative displacements or
rotations with respect to the current configuration.

There exists a Goal MDP M| that captures both the dy-
namics and the task defined above, which can be obtained
through a suitable composition of M 4 and A. Such reduc-
tion has been described in detail in (Brafman, De Giacomo,
and Patrizi 2018; Icarte et al. 2018). Abstractions M and
M also follow a similar composition.

Since the MDP M, includes continuous features, we now
adopt a Deep RL algorithm, namely Dueling DQN (Wang
et al. 2016). The plot in Figure 6 shows a training com-
parison between the Dueling DQN agent alone (dot-dashed
brown), and Dueling DQN with computed rewards from the
grid abstraction. As we can see, our method allows to pro-
vide useful exploration bias even when using diverse learn-
ing algorithms and features.

Robustness to modelling errors

Finally, we analyzed the training performance in presence
of significant modelling errors in the abstraction. For this
test we train on the same navigation task of Figure 2, used
in previous experiments. Now, the same Q-learning agent
is trained from rewards constructed from three different ab-
stract MDPs:

cumulative reward
—
ot o

T T

[es)
I

|
0 0.5 1 1.5 2 2.5 3 3.5
training step 105

Figure 6: Dueling DQN algorithm with decaying e-greedy
exploration. Goal reward is 10. Average of 5 runs. The y-
axis shows the cumulative rewards obtained during training.

100

80

60

40

episode length

20 + n
0 1 2 3 4
step .10°

Figure 7: Episode lengths per training episode, when reward
shaping is computed in presence of modelling errors.

—— M5: the same abstraction used in previous tests; two
abstract states are connected if two colored regions are
directly connected.

—me Mgb): same abstraction as M with an additional tran-
sition from the central pink states to the goal states (not
achievable in M).

--------- Méc): same abstraction Méb) with an additional tran-
sition from the blue cells to the central pink region (again
not achievable in M).

Results are shown in Figure 7, which show evaluation per-
formances among 10 different runs over 10 episodes each.
Clearly, abstractions with bigger differences with respect to
the underlying domain cause the learning process to slow
down. However, with any of these abstraction, Q-learning
converges to the desired policy and performance in terms
of sample efficiency degrade gracefully. Interestingly, even
in presence of severe modelling errors, the abstraction still
provides useful information with respect to uninformed ex-
ploration.

Related work

The field of Hierarchical RL specifically studies efficiency
of algorithms in presence of abstractions. Some classic ap-
proaches are MAXQ (Dietterich 2000), HAM (Parr and Rus-

sell 1998) and the Options framework (Sutton, Precup, and
Singh 1999). In order to describe which relation should
the ground MDP and its abstraction satisfy, (Ravindran and
Barto 2002; Li, Walsh, and Littman 2006) develop MDP Ho-
momorphisms and approximated extensions. Differently to
these works, our method does not try to capture symmetries
and spatial regularities in the domain, rather, we are inter-
ested in coarse partitioning of neighbouring states, whose set
can hardly be approximated with a single optimal value. Our
abstractions are more closely related with those described
in (Abel, Hershkowitz, and Littman 2016; Abel et al. 2020),
which admit to talk about abstractions both with respect to
state and action spaces. Still, they do not exploit, as in our
work, explicit abstract MDPs, since they only learn on one
ground model, from a given set of options.

Regarding the use of Reward Shaping, (Gao and Toni
2015) presented the idea of applying RS in context of HRL,
and applying it specifically to the MAXQ algorithm. Our
method, instead, can be combined with various learning al-
gorithms. Recently, (Schubert, Oguz, and Toussaint 2021)
proposed an effective form of biased RS for Goal MDPs.
Differently to this work, our approach maintains the original
optimality guarantees.

Another set of related works (Marthi; Grze$ and Kudenko
2008; Biza and Jr. 2019; Steccanella, Totaro, and Jonsson
2021), with a different objective with respect to this paper,
consider how abstractions may be learnt instead of being
pre-defined. This is an interesting future extension for our
method as well.

This work considers abstract models being MDPs. Plan-
ning models can be also regarded as abstractions, whose
action schemas correspond to high-level actions (Illanes
et al. 2020; Lee et al. 2021). Planning domains allow
to extract useful heuristics which may also be goal-
independent (Gehring et al. 2021). MDP abstractions, one
the other hand, can be stochastic and only a simulator is re-
quired.

Conclusion

In this paper, we have presented an approach to increase
sample-efficiency in RL, based on a linear hierarchy of ab-
stract simulators and a form of reward shaping. While the
ground M accurately captures the environment dynamics,
higher-level models represent increasingly coarser abstrac-
tions of it. We have devised the theoretical framework for
the approach and performed a validation activity. The results
show effectiveness of the approach: we can take advantage
of the policy learned at some level to speed-up the learn-
ing process on the lower-level. Importantly, our approach
is completely general, as it makes little assumptions on the
learning algorithm used and it has minimal requirements in
terms of mapping between the abstraction layers.

For future work, we plan to develop a more comprehen-
sive experimental analysis, comparing the proposed method
with other approaches, mostly from hierarchical RL, and dif-
ferent forms of reward shaping. We also aim at demonstrat-
ing this framework in the context of robotic applications in
which the most concrete MDP is a real robot acting in a com-
plex environment through low-level perception and controls.

Acknowledgments

This work is partially supported by the ERC Advanced
Grant WhiteMech (No. 834228), by the EU ICT-48 2020
project TAILOR (No. 952215), by the PRIN project RIPER
(No. 20203FFYLK), and by the JPMorgan AI Faculty Re-
search Award “Resilience-based Generalized Planning and
Strategic Reasoning”.

References

Abel, D.; Hershkowitz, D.; and Littman, M. 2016. Near Op-
timal Behavior via Approximate State Abstraction. In Pro-
ceedings of The 33rd International Conference on Machine

Learning, volume 48 of Proceedings of Machine Learning
Research, 2915-2923. PMLR.

Abel, D.; Umbanhowar, N.; Khetarpal, K.; Arumugam, D.;
Precup, D.; and Littman, M. 2020. Value Preserving State-
Action Abstractions. In Proceedings of the Twenty Third In-
ternational Conference on Artificial Intelligence and Statis-

tics, volume 108 of Proceedings of Machine Learning Re-
search, 1639-1650. PMLR.

Biza, O.; and Jr., R. P. 2019. Online Abstraction with MDP
Homomorphisms for Deep Learning. In Elkind, E.; Veloso,
M.; Agmon, N.; and Taylor, M. E., eds., Proceedings of the
18th International Conference on Autonomous Agents and
MultiAgent Systems, AAMAS 19, Montreal, QC, Canada,
May 13-17, 2019, 1125-1133. International Foundation for
Autonomous Agents and Multiagent Systems.

Brafman, R. I.; De Giacomo, G.; and Patrizi, F. 2018.
LTL{/LDLf Non-Markovian Rewards. In AAAI, 1771-1778.

Devlin, S.; and Kudenko, D. 2012. Dynamic Potential-
Based Reward Shaping. In AAMAS, 433-440. Richland, SC.

Dietterich, T. G. 2000. Hierarchical reinforcement learning
with the MAXQ value function decomposition. JAIR, 13:
227-303.

Gao, Y.; and Toni, F. 2015. Potential based reward shaping
for hierarchical reinforcement learning. In Tiventy-Fourth
International Joint Conference on Artificial Intelligence.

Gehring, C.; Asai, M.; Chitnis, R.; Silver, T.; Kaelbling,
L. P;; Sohrabi, S.; and Katz, M. 2021. Reinforcement Learn-
ing for Classical Planning: Viewing Heuristics as Dense Re-
ward Generators. abs/2109.14830.

Grzes, M. 2017. Reward Shaping in Episodic Reinforcement
Learning. In AAMAS, 565-573.

Grze$, M.; and Kudenko, D. 2008. Multigrid reinforcement
learning with reward shaping. In ICANN, 357-366.

Icarte, R. T.; Klassen, T.; Valenzano, R.; and Mcllraith, S.
2018. Using reward machines for high-level task specifica-
tion and decomposition in reinforcement learning. In ICML,
2107-2116.

Illanes, L.; Yan, X.; Icarte, R. T.; and Mcllraith, S. A. 2020.
Symbolic Plans as High-Level Instructions for Reinforce-
ment Learning. In ICAPS, 540-550. AAAI Press.

Lee, J.; Katz, M.; Agravante, D. J.; Liu, M.; Klinger, T;
Campbell, M.; Sohrabi, S.; and Tesauro, G. 2021. Al Plan-
ning Annotation in Reinforcement Learning: Options and

Beyond. Planning and Reinforcement Learning PRL Work-
shop at ICAPS.

Li, L.; Walsh, T. J.; and Littman, M. L. 2006. Towards a
Unified Theory of State Abstraction for MDPs. In ISAIM,
531-539.

Marthi, B. 7??? Automatic shaping and decomposition of
reward functions. In (ICML.

Ng, A. Y.; Harada, D.; and Russell, S. J. 1999. Policy Invari-
ance Under Reward Transformations: Theory and Applica-
tion to Reward Shaping. In ICML, 278-287. San Francisco,
CA, USA.

Parr, R.; and Russell, S. 1998. Reinforcement learning with
hierarchies of machines. Advances in neural information
processing systems, 1043-1049.

Puterman, M. L. 1994. Markov Decision Processes: Dis-
crete Stochastic Dynamic Programming. Wiley.

Ravindran, B.; and Barto, A. G. 2002. Model Minimiza-
tion in Hierarchical Reinforcement Learning. In Abstrac-
tion, Reformulation and Approximation, 5th International
Symposium, SARA 2002, volume 2371 of Lecture Notes in
Computer Science, 196-211. Springer.

Schubert, 1.; Oguz, O. S.; and Toussaint, M. 2021. Plan-
based relaxed reward shaping for goal-directed tasks. In
9th international conference on learning representations,
ICLR 2021, virtual event, austria, may 3-7, 2021. OpenRe-
view.net.

Steccanella, L.; Totaro, S.; and Jonsson, A. 2021. Hierarchi-
cal Representation Learning for Markov Decision Processes.
CoRR, abs/2106.01655.

Strehl, A. L.; Li, L.; Wiewiora, E.; Langford, J.; and
Littman, M. L. 2006. PAC model-free reinforcement learn-
ing. In Proceedings of the 23rd international conference on
Machine learning, 881-888.

Sutton, R. S.; Precup, D.; and Singh, S. 1999. Between
MDPs and semi-MDPs: A framework for temporal abstrac-
tion in reinforcement learning. Artif. Intell., 112(1-2): 181—
211.

Wang, Z.; Schaul, T.; Hessel, M.; van Hasselt, H.; Lanctot,
M.; and de Freitas, N. 2016. Dueling Network Architectures
for Deep Reinforcement Learning. In ICML, volume 48,
1995-2003. JMLR.org.

Watkins, C. J.; and Dayan, P. 1992. Q-learning. Machine
learning, 8(3-4): 279-292.

Wiewiora, E. 2003. Potential-based shaping and Q-value
initialization are equivalent. JAIR, 19: 205-208.

Wiewiora, E.; Cottrell, G. W.; and Elkan, C. 2003. Princi-

pled methods for advising reinforcement learning agents. In
ICML, 792-799.

Appendix
Lemma 1

It is possible to marginalize the probabilities in equation (12)
over all possible sequences of states si.;. For this purpose,
let us write p(s’, k) to represent the probability of the event
of remaining for k steps in the same abstract state, then
reaching s’ at the next transition. We can now rephrase (12)
into:

DD

s'€S\¢(s) k=0

Q" (s,0) =
(13)

For all states in ¢(s’) that can be reached in one transition
from ¢(s), definition 3 applies, and we can introduce suit-
able W : Sy x S — R and 4, such that it is possible
to provide the lower bound W (¢(s),d(s")) — & for each
term V*(s’), in the above sum. Therefore, we get:

> > Zv p(s' k[5, p0) (

s'€8\¢(s) k=0 (19)
I(s" € G) + v (W((s), p(s") — 9))

Itis now possible to split the sum 3, g\ 4(5) into |Sp| sums
over future blocks and marginalize them to obtain:

S D A sl ks, p0) (

s,€85\{$(s)} k=0 (20
I(sy € G) +v (W (6(s),55) — 9))

This proves the lemma. A similar result holds for the upper
constructed from W (¢(s), sj) + 0.

Q"(s,0) =

Theorem 1

Consider p*, the optimal policy for M, and p®*, the optimal
policy for the biased MDP. The value loss of M, is defined
as:

LM, M) = max |V*(s) = Qs ™) @)
Instead of computing such loss for the whole policies, we
compute the loss of executing each initial portion: namely,

the value of the associate ¢-relative options constructed from
them, and optimal policies afterwards.

Q*(5,0") — Q(5,0™)] = Q(5,0") — Q"(s,0™) (22)

= > DA ks p0) (I8 € G+ VH(S))

s'€S\¢(s) k=0

> Akn(
5/ €8\(s) k=0
(23)

(s’ k| 5,p0) (I(s" € G) + 7 V7(s'))

s' k| s, poe) (I(s" € G) +9V™(s))

It is now possible to apply lemma 1 to both terms and bound
the above loss,

|Q*(s,0") — Q*(s,0"")| (24)
< Z Z’ykp(sibvk | S;Po*) ((25)

51, €85\ {(s)} k=0
I(sy € G) + 7 (W(@(s),) +8))

Do D A sk s pe) ((26)
s, €85 \{#(s)} k=0
I(sf, € G) +~ (W(o(s), 55) — 9)) 27)

> iv’“(p(

55,55 \{¢(s)} k=0

p(8/¢, k | S7pob*))(

(28)

S:z;ak | Sapo*) -

I(s}y € G) +yW(g(s), s;))Jr

> i’y’“ (n(

s, €8,\{9(s)} k=0

S;ﬂk | 5,/70*) +p(5:ﬁvk | s7pob*)) 75

(29)

Now we apply assumption 5, and bound
|Q*(s,0%) — Q*(s,0")| (30)

< Z kae(ﬂ(sib € Q) —&-vW((b(s),s;))-&-
5,€85\{¢(s)} k=0

Z i’yk'HQ(S (31)

5,€85\{6(s)} k=0
=Y Aeplshed+ > D AW (g(s),5%) +
=0 5,€85\{6(5)} k=0
S > A2 (32)
5,€85\{6(s)} k=0

Since by definition, W is a § approximation of the value
of some states in the MDP, and we know that, in a
goal MDP, the maximum value is 1, we can upper bound

W(g(s),sy) < (1+6),forall s € S, sy € Sy. Resuming,
Q7 (5,0%) — Q"(s,0™)] (33)
<Y e+ DD DY A e+ ed+26) 34

k=0 s;ES(b\{(b(s)} k=0
€ Z v(e+€d+20) (35)
1—7 1—7v
55,€55\{0(s)}
<e+’y\8¢|(e—|—66—|—2(5)) 36)

= 1—~

This is a loss bound on executing a single option from the
set constituted only by p’*. To this option set the results

from (Abel et al. 2020) apply, and in particular equation (3).
So we obtain the final result:
€+ 7Sy (e +€d+29))

LM, My) < 1 -2

37)

Other training details

Figure 3b Environment M is the 8-rooms grid appearing
in Figure 2. Initial coordinate is (2,3) (vertical coordinate
increases downward). Transitions have 5% failure probabil-
ity. In the abstract model, actions have 10% failure probabil-
ity.
* DelayedQ algorithm, with 0.98 discounting, €; = 0.005,
6 = 0.1, MaxR = 1.0, m = 30, 500000 timesteps, 10
rollouts per run, 10 runs.

e Q-learning, with 0.98 discounting, learning rate decay
from 0.02 to 0.002, 500000 timesteps, e-greedy explo-
ration decay from 1.0 to 0.0.

¢ Q-learning with our Reward Shaping, with 0.98 discount-
ing, learning rate decay from 0.02 to 0.002, 500000
timesteps, e-greedy exploration decay from 0.5 to 0.0 (Q-
learning without reward shaping starting from 0.5 explo-
ration did not converge instead).

Figure 3a Environment M, is the 4-rooms grid also ap-
pearing in (Abel et al. 2020). Initial coordinate is (1, 9) (ver-
tical coordinate increases downward). Transitions have 5%
failure probability. In the abstract model, actions have 10%
failure probability.

* DelayedQ algorithm (Strehl et al. 2006), with 0.95 dis-
counting, e; = 0.01, 6 = 0.1, MaxR = 1.0, m = 30,
50000 timesteps, 10 rollouts per run, 10 runs.

e Q-learning, with 0.95 discounting, learning rate decay
from 0.1 to 0.01, 50000 timesteps, e-greedy exploration
decay from 1.0 to 0.0.

* Q-learning with our Reward Shaping, with 0.95 dis-
counting, learning rate decay from 0.1 to 0.01, 50000
timesteps, e-greedy exploration decay from 0.5 to 0.0 (Q-
learning without reward shaping starting from 0.5 explo-
ration did not converge instead).

Figure 4 Same 8-rooms environment as in one previous
experiment.

* Q-learning with our Reward Shaping, with 0.98 discount-
ing, learning rate decay from 0.02 to 0.002, 500000
timesteps, e-greedy exploration decay from 0.9 to 0.1

e Q-learning, with 0.98 discounting, learning rate decay
from 0.02 to 0.002, 500000 timesteps, e-greedy explo-
ration decay from 0.9 to 0.1.

Figure 7 All training algorithms are configured with the
parameters. Only the potential differ, depending on the ab-
straction, as described in main text.

¢ Q-learning with our Reward Shaping, with 0.98 discount-
ing, learning rate decay from 0.02 to 0.002, 500000
timesteps, e-greedy exploration decay from 0.9 to 0.1

Figure 6 Dueling DQN (Wang et al. 2016), implemented
in the TensorForce library. The Q-networks are composed of
three dense layers with ReLU activations, which receive in-
put observations as [z, y, ¥, cos , sin §]. The current step for
the task represented in Figure 5, which is an automaton state,
is passed to the network final layer. Output values are parti-
tioned for each state, and the final layer operates a selection
based on its value.

