
Graph-Based Representation of Automata Cascades
with an Application to Regular Decision Processes

Alessandro Ronca, Giuseppe De Giacomo
DIAG, Sapienza University of Rome, Italy

ronca@diag.uniroma1.it, degiacomo@diag.uniroma1.it

Abstract

Cascades allow for expressing any automaton as the com-
position of some basic automata of a restricted number of
kinds. Cascades can be constructed in a completely incremen-
tal way, by adding one component at a time. Adding a new
automaton amounts to a refinement of the previous cascade.
The complexity of the phenomena described by a cascade in-
creases greatly with the number of components because each
new automaton has access to the states of the previous au-
tomata. Furthermore, components are taken from some well-
identified classes of basic automata. We believe such char-
acteristics are of great value. However, the potential of cas-
cades is blocked by the lack of an appropriate representa-
tion formalism. We present a graph-based formalism to repre-
sent automata cascades, and we demonstrate its effectiveness
through an application in Regular Decision Processes, where
automata are employed to capture temporal dependencies in
the dynamics of a domain.

Introduction
Cascades allow for expressing any automaton as a chain of
simple automata where each automaton reads the state of the
previous automata in addition to the input. Cascades are at
the heart of algebraic automata theory, cf. (Ginzburg 1968),
and in particular of the Krohn-Rhodes theory (Krohn and
Rhodes 1965), which describes how all automata can be
expressed as a cascade of some basic automata. The idea
that an automaton should be realised in terms of compo-
nents having specific functionalities, from whose interaction
the behaviour of the overall automaton emerges, can also be
found in (Minsky 1967). This is in contrast with the standard
representation of automata as transition graphs.

We see cascades as a promising formalism. They allow
for building automata out of simple components, taken from
classes of basic automata, identified by the Krohn-Rhodes
theory. Furthermore, cascades satisfy a valuable incremen-
tal refinement property. Namely, the range of phenomena
described by a cascade can be extended by adding a new
component, while leaving the meaning of the previous com-
ponents unchanged. Finally, every new component can take
advantage of what is already captured by the previous com-
ponents; thus, even a simple component can add a complex
meaning. We see the potential value of cascades in a number
of applications such as Regular Decision Processes (RDPs)

(Brafman and De Giacomo 2019; Abadi and Brafman 2020;
Ronca and De Giacomo 2021), a class of non-Markov Deci-
sion processes where the dependency on the history is cap-
tured by finite-state automata.

Automata cascades are described in an algebraic form,
that does not address representation issues. First, the alge-
braic form is inconvenient as a specification language. In
particular, it is a linear structure where every automaton
seemingly depends on all the previous ones. This makes it
difficult to take advantage of the locality of the dependen-
cies between the automata, in order to build the specification
in a modular and incremental way. Second, in the algebraic
form, the size of each component grows exponentially with
its position in the cascade.

Our contribution is a graph-based representation formal-
ism for cascades of flip-flops, a restricted but important class
with the expressivity of star-free regular languages. Our rep-
resentation achieves compactness and ease of specification
by connecting flip-flops through Boolean functions, and ar-
ranging them into a directed acyclic graph according to their
dependencies. In deep-learning parlance, our formalism is a
feedforward architecture.

The class of star-free languages is also the expressivity of
first-order logic on finite linear orders, as well as linear tem-
poral logic on finite traces (LTLf) (De Giacomo and Vardi
2013). Thus, our formalism can represent all RDPs where
the transition and reward functions are specified in LTLf.
We present an application to an RDP consisting of a grid
domain, showing how several kinds of temporal dependen-
cies can be easily modelled in our formalism.

Preliminaries
Automata
This section introduces basic notions of automata theory,
with some inspiration from (Ginzburg 1968; Maler 1990).
Note that the perspective is rather different from the tradi-
tional one found in, e.g., (Hopcroft and Ullman 1979).

Consider a finite alphabet Σ. An automaton A is a tuple
〈Σ, Q, δ, qinit〉 where Q is a finite set of states, δ : Q ×
Σ→ Q is the (total) transition function, and qinit ∈ Q is the
intial state. The transition function is extended to strings as
δ(q, wσ) = δ(δ(q, w), σ).

The transition graph of A is a directed graph with one

vertex for each state, with a distinguished vertex for qinit,
an edge 〈q, δ(q, σ)〉 with label σ for each q ∈ Q and each
σ ∈ Σ.

A homomorphism from A1 = 〈Σ, Q1, δ1, q
1
init〉 to A2 =

〈Σ, Q2, δ2, q
2
init〉 is a surjective function φ : Q1 → Q2 such

that the two identities φ(q1init) = q2init and φ(δ1(q, σ)) =
δ2(φ(q), σ) are valid. If φ is bijective, then it is an isomor-
phism between A1 and A2.
Example 1. Considering Figure 1, the two automata on the
left admits the isomorphism ψ defined as ψ(0) = 1 and
ψ(0) = 1. Intuitively, they are the same automaton, but their
state names are swapped. Furthermore, the automata on the
left both admit a homomorphism to the automaton on the
right. Specifically, they admit the same homomorphism ξ de-
fined ξ(0) = ξ(1) = 0. Finally, there is no homomorphism
from the automaton on the right to any of the automata on
the left, and hence no isomorphism either.

When there is a homomorphism from A1 to A2, we say
that A2 is captured by A1, written A2 v A1—the notion
may become more intuitive after seeing its implications on
the expressivity of the acceptors built on A1 and A2, de-
scribed below. Furthermore,A2 is precisely captured byA1,
written A2 ≡ A1, when A2 v A1 and A1 v A2; we also
say that the two automata are homomorphically equivalent.
Finally, A2 is properly captured by A1, written A2 @ A1,
when A2 v A1 and A1 6v A2.

An automaton 〈Σ, Q, δ, qinit〉 can be made into an accep-
tor by adding a function θ : Q→ {0, 1} indicating the set of
accepting states. A string x is accepted if θ(δ(qinit, x)) = 1,
and the set of accepted strings is called the language recog-
nised by the acceptor. Two acceptors are equivalent if they
recognise the same language. An automaton A1 is at least
as expressive as an automaton A2 if for every acceptor built
on A1 there is an equivalent acceptor built on A2; if the con-
verse holds as well, then they are equally expressive. The
connection with homomorphisms is as follows:
1. A1 v A2 implies that A2 is at least as expressive as A1;
2. A1 ≡ A2 implies that A1 and A2 are equally expressive.
The expressivity of an automaton is the set of languages
recognised by acceptors built on the automaton, and the
expressivity of a class of automata is the set of languages
recognised by acceptors built on the automata in the class.
The above notions can be easily generalised to transducers
(see below) by allowing θ to be an output function over an
alphabet Γ; namely θ : Q → Γ. Having in mind that such
a generalisation is possible, we omit it, and we focus on the
simpler case of acceptors.

Transducers. We follow (Moore 1956). A transducer is
a tuple 〈Σ, Q, δ, qinit,Γ, θ〉 where: Σ, Q, δ : Q × Σ →
Q, and qinit are as above; Γ is the finite output alphabet;
θ : Q → Γ is the output function. We extend the use of δ
to strings of length greater than one as δ(q, σ1σ2 . . . σn) =
δ(δ(q, σ1), σ2 . . . σn), and to the empty string as δ(q, ε) =
q. We also extend the use of θ to arbitrary strings as
θ(q, σ1 . . . σn) = θ(q) θ(δ(q, σ1), σ2 . . . σn) where the base
case is θ(q, ε) = θ(q). We call θ(qinit, σ1 . . . σn) the output
of the transducer on σ1 . . . σn.

Figure 1: Three simple automata represented as transition
graphs.

Automata Cascades
The notions in this section can be found in (Ginzburg 1968).
However, here they are presented in a way that aims at keep-
ing the terminology and notation from semigroup theory to
a minimum. Given two automata

A1 = 〈Σ, Q1, δ1, q
1
init〉, A2 = 〈Σ×Q1, Q2, δ2, q

2
init〉,

their cascade productA1nA2 is 〈Σ, Q1×Q2, δ, qinit〉where
qinit = 〈q1init, q2init〉 and the transition function is

δ(〈q1, q2〉, σ) =
〈
δ1(q1, σ), δ2(q2, 〈σ, q1〉)

〉
.

Note that the second automaton, reading input 〈σ, q1〉, has
access to the state q1 of the first automaton, in addition to the
input σ. Considering the cascade product as left-associative,
an automaton cascade is

C = A1 n · · ·nAn,

where Ai = 〈Σ×Q1 × · · · ×Qi−1, Qi, δi, qiinit〉. Cascades
allow for incremental refinements, since

C1 v C2 v · · · v Cn,
for Ci the cascade A1 n · · ·nAi.

We focus on cacades of flip-flops, or f-cascades. A flip-
flop is a two-state automaton 〈Σ, {0, 1}, δ, qinit〉 where Σ is
the union of three disjoint sets Σread, Σset, Σreset of inputs
intuitively corresponding to read, set, and reset operations.
Namely:
• δ(q, σ) = q for every σ ∈ Σread;
• δ(q, σ) = 1 for every σ ∈ Σset;
• δ(q, σ) = 0 for every σ ∈ Σreset.

A flip-flop is trivial if Σ = Σread. Intuitively, a flip-flop
is a device capable of storing one bit of information. The
automata in Figure 1 are flip-flops. The top-left one has
an intuitive meaning of its inputs, since Σset = {1} and
Σreset = {0}. In the bottom-left one the meaning of the in-
puts is swapped, i.e., Σset = {0} and Σreset = {1}. The one
on the right is a trivial flip-flop, since Σread = {0, 1}.

A fundamental result for cascades is the Krohn-Rhodes
decomposition theorem (Krohn and Rhodes 1965)—see also
(Ginzburg 1968; Maler 1990; Dömösi and Nehaniv 2005).
Here we focus on its restricted version that relates f-cascades
with counter-free (or aperiodic, or group-free) automata,
whose expressivity has been established by (Schützenberger
1965).

Theorem 1 (Krohn-Rhodes for Counter-free Automata).
Every counter-free automaton is captured by a cascade of
flip-flops. The converse holds as well.

Theorem 2 (Schützenberger). The expressivity of the class
of counter-free automata is the star-free regular languages.

Thus, f-cascades have the expressivity of star-free reg-
ular languages. Star-free regular languages are the ones
expressed by star-free regular expressions, cf. (Ginzburg
1968). It is a central class, also because it is the expressivity
of both monadic first-order logic on finite linearly-ordered
domains, and linear temporal logic on finite traces (De Gia-
como and Vardi 2013).

The following example shows how the size of the compo-
nents of a cascade grows exponentially.

Example 2. Consider n flip-flops where the i-th flip-flop is
Fi = 〈{0, 1}n+1, {0, 1}, δi, 0〉 with transition function

δi(q, 〈r, b1, . . . , bn〉) = q, if r = 1, (read)
δi(q, 〈r, b1, . . . , bn〉) = bi, if r = 0. (set/reset)

Their direct product F1 × · · · × Fn is a device to store and
read words of n bits; in particular, all flip-flops keep the
stored bit if r = 1, and each Gi stores the current i-th input
bit otherwise. Note that each Fi is independent of the others.
In any homomorphically-equivalent f-cascade F ′1n· · ·nF ′n,
every flip-flop F ′i is required to read the state of every pre-
ceding flip-flop, making the input alphabet of F ′i exponen-
tially larger than the original input alphabet. Furthermore,
there is no canonical form, since every permutation of the n
flip-flops is equivalent.

Decision Processes
A Non-Markov Decision Process (NMDP), cf. (Brafman
and De Giacomo 2019), is a tuple P = 〈A,O,R,T,R, γ〉
where: A is a finite set of actions; O is a finite set of ob-
servations; R ⊆ R is a finite set of reward values; T :
O∗ × A × O → [0, 1] is the transition function which de-
fines a probability distribution T(·|h, a) over O for every
h ∈ O∗ and every a ∈ A; R : O∗ × A × O → R is the
reward function; γ ∈ (0, 1) is the discount factor. The tran-
sition and reward functions can be combined into the dy-
namics function D : O∗ × A × O × R → [0, 1] which
defines a probability distribution D(·|h, a) over O × R for
every h ∈ O∗ and every a ∈ A. Namely, D(o, r|h, a)
is T(o|h, a) if r = R(h, a, o), and zero otherwise. Every
element of O∗ is called a history. A policy is a function
π : O∗×A→ [0, 1] that, for every history h, defines a prob-
ability distribution π(·|h) over the actions A. Every element
of (AOR)∗ is called a trace. The dynamics ofP under a pol-
icy π describe the probability of an upcoming trace, given
the history so far, when actions are chosen according to a
policy π; it can be recursively computed as Dπ(aort|h) =
π(a|h) ·D(o, r|h) ·Dπ(t|ho), with base case Dπ(ε|h) = 1
for ε the empty trace. The value of a policy π on a history
h, written vπ(h), is the expected discounted sum of future
rewards when actions are chosen according to π given that
the history so far is h; it can be recursively computed as
vπ(h) =

∑
aor π(a|h) · D(o, r|h, a) · (r + γ · vπ(ho)).

Figure 2: F-graph for a bank of n flip-flops.

The optimal value on a history h is v∗(h) = maxπ vπ(h),
which can be expressed without reference to any policy
as v∗(h) = maxa (

∑
orD(o, r|h, a) · (r + γ · v∗(ho))). A

policy π is optimal on a history h if vπ(h) = v∗(h). For
ε > 0, a policy π is ε-optimal on h if vπ(h) ≥ v∗(h)− ε. A
policy is optimal (resp., ε-optimal) if it is so on every history.

A Regular Decision Process (RDP) (Brafman and De Gi-
acomo 2019)1 is an NMDP P = 〈A,O,R,T,R, γ〉 whose
transition and reward functions can be represented by a finite
transducer. Specifically, there is a finite transducer that, on
every history h, outputs the function Th : A × O → [0, 1]
induced by T when its first argument is h; and there is a
finite transducer that, on every history h, outputs the func-
tion Rh : A × O × R → [0, 1] induced by R when its first
argument is h. Note that the cross-product of such transduc-
ers yields a finite transducer for the dynamics function D of
P . Optimal behaviour in RDPs can be achieved by acting ac-
cording the states of the dynamics transducer (Ronca and De
Giacomo 2021). Namely, for every ε ≥ 0, there is a Markov
policy on the states of the dynamics transducer such that its
composition with the tranisition function of the dynamics
transducer is an ε-optimal policy for the RDP. The Markov
policy can be computed by solving the MDP induced by the
dynamics transducer.

Boolean Functions
The Boolean domain is {0, 1}. An n-ary Boolean function
is f : {0, 1}n → {0, 1}. We will abstract from the represen-
tation of Boolean functions. They can be represented using,
e.g., Ordered Binary Decision Diagrams (OBDDs) (Bryant
1986, 1992), that are succinct for most practical functions
given an appropriate choice of the variable order.

Graph-Based Representation of Cascades
We introduce graph-based representations of f-cascades.
Definition 1 (Syntax). A flip-flop graph (or f-graph) is a
directed acyclic graph with vertices V of two kinds. An input
vertex is labelled by an index and has no parents. A flip-
flop vertex v (or f-vertex) is labelled by an n-ary Boolean
function and has n− 1 parents.

1In (Brafman and De Giacomo 2019) the functions T and R are
represented using the temporal logics on finite traces LDLf . Here
instead we use directly finite transducers to express them. Note that
all T and R representable in LDLf are indeed expressible through
finite transducers.

The structure of an f-graph is shown in Figure 2. In the
following definition, all tuples are sorted according to an ar-
bitrary (but fixed) total order on vertices.
Definition 2 (Semantics). The automaton 〈Σ, Q, δ, qinit〉
represented by an f-graph is defined as follows.
• Alphabet Σ = {0, 1}n where n is the maximum index of

an input vertex.
• States Q = {0, 1}m where m is the number of f-vertices.
• Initial state qinit = 〈0, . . . , 0〉.
• Transition function

δ(〈qv1 , . . . , qvm〉, 〈x1, . . . , xn〉) = 〈q′v1 , . . . , q
′
vm〉,

where each q′vi is recursively defined as follows. First, for
v an input vertex with index j, let qv = xj . Then, for vi
an f-vertex with label f ,

q′vi = f(qvi , qvi1 , . . . , qvir),

where vi1 , . . . , vir are its parents.
An f-graph G homomorphically represents an automaton A
if the automaton represented by G precisely-captures A.
Example 3. Consider the f-graph in Figure 2 where f-vertex
i′ has the label fi defined as fi(q, x0, xi) = q if x0 = 1, and
f(q, x0, xi) = xi if x0 = 0. The f-graph homomorphically
represents the f-cascade of Example 2.

F-graphs are a compact representation of f-cascades.
Theorem 3. Any f-cascade C is homomorphically-
represented by an f-graph whose size is the logarithm of the
size of C plus the size of the labels.

Proof. Consider an f-cascadeC = F1n· · ·nFn on alphabet
{0, 1}m. We assume w.l.o.g. that the initial state of each Fi
is 0—renaming states always yields an equivalent automa-
ton. Let δi be the transition function of Fi. The f-cascade is
precisely-captured by the f-graph G consisting of m input
vertices and an f-vertex vi for each Fi, with label

fi(x0, x1, . . . , xk) = δi(x0, 〈x1, . . . , xk〉),

and with parents all input vertices and all f-vertices vj for
j < i. Finally, observe that C has size exponential in n since
the input alphabet of each Fi is exponential in i. On the con-
trary, the f-graph G has size polynomial in the number n of
components of the cascade.

Application to Regular Decision Processes
In this section we show how f-graphs can be used to repre-
sent regular decision processes. We do it through a running
example. We first present the basic features of a grid domain,
and then we introduce more features incrementally. The grid
domain is shown in Figure 3. The corresponding f-graph is
shown in Figure 4.

Basic grid. Consider a 8 × 4 grid where an agent has to
move from the bottom left corner, position (0, 0), to the
top right corner, position (7, 3). The agent’s actions are
A = {up, down, left, right}. They have their intuitive mean-
ing, but the agent may fail to move into the chosen direction
with probability 0.1. When an action fails, the agent moves

Figure 3: Grid environment.

to its previous position. The agent can observe its current po-
sition. Specifically, at every step, it receives an observation
consisting of the 5-bit encoding of the current coordinates.
The agent is rewarded when it reaches the destination. Note
that for this basic setting, the colours shown in the grid figure
are not relevant.

The dynamics transducer has a state q(i,j),(i′,j′) for each
pair of neighbouring grid positions (i, j), (i′, j′). From state
q(i,j),(i′,j′), it transitions to q(i′,j′),(i′′,j′′) when it reads an
input that encodes (i′′, j′′). Indeed, observe that knowing
the current and previous positions suffices to describe the
conditional probability of the next observation-reward for
any given action. Now, consider the black subgraph of the
f-graph in Figure 4, consisting of vertices 1–5 and 10–14.
Vertices 1–5 the input vertices for the 5-bit encoding of the
current position. Vertices 10–14 are f-vertices, all having the
same label fstore defined as fstore(q, x) = x, that simply
stores the state of the parent. Then, the automaton repre-
sented by the black f-graph precisely-captures the automa-
ton of the dynamics transducer. In particular, the input ver-
tices store the current position, and the f-vertices store the
previous position.

Position sequences. We make it more difficult for the
agent to obtain a reward. It is still rewarded when it
reaches position (7, 3), but only if it has visited positions
(2, 3), (1, 3), (1, 2) exactly in the specified order—note that
they are the cyan cells in the figure. It is not valid to in-
terleave the sequence with other positions. For instance,
(2, 3), (1, 3), (0, 3), (1, 3), (1, 2) is not a valid sequence.
Consider the f-graph for the basic grid, extended with f-
vertices 15, 16, and 17, having labels f15, f16, f17 defined
as follows:

• f15(q, x1, . . . , x5) = 1 if x1, . . . , x5 encode (2, 3), and
f15(q, x1, . . . , x5) = 0 otherwise;

• f16(q, x1, . . . , x5, x15) = 1 if x1, . . . , x5 encode (1, 3)
and x15 = 1, and f16(q, x1, . . . , x5, x15) = 0 otherwise;

• f17(q, x1, . . . , x5, x16) = 1 if x1, . . . , x5 encode (1, 2)
and x16 = 1, and f17(q, x1, . . . , x5, x16) = q otherwise
(i.e., propagate current state).

Then, the state of vertex 17 is 1 iff the agent has completed
the sequence.

Figure 4: F-graph of the dynamics transducer for the grid environment.

Positions to avoid. Let us extend the observations with an
additional bit, that takes value 1 for grid positions that the
agent must avoid. These positions are the red ones in the fig-
ure. If the agent visits any of the red cells, then it is no longer
rewarded. Consider the red subgraph in Figure 4, consist-
ing of vertices 6 and 18. Vertex 6 is the input vertex for the
additional bit. Let the label f18 of vertex 18 be defined as
f18(q, x6) = 1 if x6 = 1, and f18(q, x6) = q otherwise.
Then, the state of vertex 18 indicates whether the agent has
ever visited a red cell.

Positions to visit. Let us further extend the observations
with two additional bits. Each of them indicates whether the
agent is in one of the two green cells, respectively. The agent
is rewarded only after having visited both cells, in any order.
Consider the green f-graph, consisting of input vertices 7
and 8 for the two additional bits, and f-vertices 19 and 20.
Let the label f19 of vertex 19 be defined as f19(q, x7) = 1 if
x7 = 1, and f19(q, x7) = q otherwise; similarly, let the label
f20 of vertex 19 be defined as f20(q, x8) = 1 if x8 = 1, and
f20(q, x8) = q otherwise. Then, the states of 19 and 20 can
be used to check whether the agent has visited the two green
cells.

Positions to visit in order. Finally, let us extend the ob-
servations with one bit that indicates whether the agent is
in the purple cell. The agent is rewarded only if it visits the
purple cell after having visited both green cells. Consider
the green f-graph together with the purple one. Let the label
f21 of vertex 21 be defined as f21(q, x19, x20, x9) = 1 if
x19 = x20 = x9 = 1, and f21(q, x19, x20, x9) = 1 other-
wise. Then, the state of vertex 21 can be used to check the
required condition and issue the reward accordingly.

Conclusion
We see f-graphs as enabling the incremental construction
of representations of complex automata. We note that f-
graphs are in line with ‘symbolic’ representations of au-
tomata (Coudert, Madre, and Berthet 1990; Burch et al.
1992; McMillan 1992). In particular, they can be seen as
an approach to building such representations.

References
Abadi, E.; and Brafman, R. I. 2020. Learning and Solving
Regular Decision Processes. In IJCAI.

Brafman, R. I.; and De Giacomo, G. 2019. Regular Decision
Processes: A Model for Non-Markovian Domains. In IJCAI.
Bryant, R. E. 1986. Graph-Based Algorithms for Boolean
Function Manipulation. IEEE Trans. Computers, 35(8):
677–691.
Bryant, R. E. 1992. Symbolic Boolean Manipulation with
Ordered Binary-Decision Diagrams. ACM Comput. Surv.,
24(3): 293–318.
Burch, J. R.; Clarke, E. M.; McMillan, K. L.; Dill, D. L.; and
Hwang, L. J. 1992. Symbolic Model Checking: 1020 States
and Beyond. Inf. Comput., 98(2): 142–170.
Coudert, O.; Madre, J. C.; and Berthet, C. 1990. Verifying
Temporal Properties of Sequential Machines Without Build-
ing their State Diagrams. In CAV, 23–32.
De Giacomo, G.; and Vardi, M. Y. 2013. Linear Temporal
Logic and Linear Dynamic Logic on Finite Traces. In IJCAI,
854–860.
Dömösi, P.; and Nehaniv, C. L. 2005. Algebraic Theory of
Automata Networks: An Introduction. SIAM.
Ginzburg, A. 1968. Algebraic Theory of Automata. Aca-
demic Press.
Hopcroft, J.; and Ullman, J. 1979. Introduction to Automata
Theory, Languages, and Computation. Addison-Wesley.
Krohn, K.; and Rhodes, J. 1965. Algebraic Theory of Ma-
chines. I. Prime Decomposition Theorem for Finite Semi-
groups and Machines. Trans. Am. Math. Soc., 116: 450–64.
Maler, O. 1990. Finite Automata: Infinite Behaviour, Learn-
ability and Decomposition. Ph.D. thesis, The Weizmann In-
stitute of Science.
McMillan, K. L. 1992. Symbolic Model Checking: An
Approach to The State Explosion Problem. Ph.D. thesis,
Carnegie Mellon University.
Minsky, M. L. 1967. Computation: Finite and Infinite Ma-
chines. Prentice-Hall.
Moore, E. F. 1956. Gedanken-experiments on sequential
machines. Automata Studies, 34.
Ronca, A.; and De Giacomo, G. 2021. Efficient PAC Rein-
forcement Learning in Regular Decision Processes. In Zhou,
Z., ed., IJCAI.
Schützenberger, M. P. 1965. On Finite Monoids Having
Only Trivial Subgroups. Inf. Control., 8(2): 190–194.

