
Deep Policy Learning for Perfect Rectangle Packing

Boris Doux, Satya Tamby, Benjamin Negrevergne, Tristan Cazenave
LAMSADE, Université Paris Dauphine-PSL, CNRS

{boris.doux,satya.tamby,benjamin.negrevergne,tristan.cazenave}@lamsade.dauphine.fr

Abstract

Perfect Rectangle Packing consists in solving a puzzle where
the goal is to fit many small rectangles in a larger rectangle
without creating holes. It has been previously addressed with
Monte Carlo Tree Search algorithms. In this paper we train
a neural network on solved instances of Perfect Rectangle
Packing that are easy to generate. The trained neural network
enables to derive a policy that is used as a prior by Monte
Carlo search. The learned policy outperforms a random pol-
icy.

Introduction
Given a set of rectangles with different widths and heights,
solving the problem of Perfect Rectangle Packing consists in
finding a spacial arrangement of the rectangles that exactly
covers a board whose area is equal to the sum of the area of
all the rectangles.

Perhaps unsurprisingly, the Rectangle Packing problem
is NP-hard and remains NP-hard even if we do not con-
sider rectangle rotations, (x)or if we only consider rectan-
gles with identical dimensions (Fowler, Paterson, and Tani-
moto 1981). Despite its complexity, the Rectangle Packing
is an interesting problem to study, with a number of practi-
cal applications (e.g. in transports and logistics or in circuit
boards design) as well as ties with more theoretical consid-
erations such as interval graphs. In the context of this work,
the problem is also an interesting candidate application for
testing the applicability of Deep Learning methods for solv-
ing combinatorial problems, because it is relatively easy to
generate a large number of solved instances, that can be used
to supervise the training of neural networks.

In practice however, neural networks are not good to
deal with hard constraints and rarely produce exact solu-
tions (which explains why they remain challenging to apply
to combinatorial optimization problems). To overcome this
limitation it is common to use the neural network to drive a
search algorithm such as Monte Carlo search. Monte Carlo
search algorithms rely on random simulations to discover
good sequences of actions according to a user-specified scor-
ing function. The most natural way to combine deep learning
with Monte Carlo search is to replace the random (or hand

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

crafted) search heuristic with a neural network trained to
output a probability distribution over all possible moves. The
random simulations are thus biased using the output of the
network and often offer much better performance in prac-
tice. Unfortunately this method slows down the throughput
of the algorithm, since it requires computationally intensive
neural inferences at each step of the simulation.

In this paper, we exploit the property of the Rectangle
Packing problem to derive a more efficient approach. We
consider a simple class of probability distribution over the
solutions, and train the neural network to output a probabil-
ity distribution for each given instance to solve. We can then
derive a search policy for Monte Carlo search and discover a
good solution without having to perform more than one in-
ference for each instance to solve. As we will show, we can
efficiently solve almost all the instances in our dataset using
this technique.

We first discuss the neural network architecture, and the
best performing representation for the inputs/outputs. We
then consider a variety of branching heuristics, which can be
used to reduce the branching factor and speed up the search
without loss of generality (i.e. all solutions remain attain-
able). We also reintroduce this neural network based policy
inside a Monte Carlo search algorithm called NMCS. Fi-
nally, we conduct thorough experiments and show that this
new approach can very efficiently solve 80.7% instances, us-
ing the deep learning policy only and 99.5% instances us-
ing the deep learning policy combined with a simple NMCS
implementation with only 1 recursive level, outperforming
other approaches based on random policies such as the one
described by Pejic and van den Berg (2020).

Related works
Monte Carlo search and combinatorial optimization
problems: Monte Carlo search algorithms rely on random
simulations to discover good sequences of actions accord-
ing to a user-specified scoring function. They demonstrate
good performance for puzzles games such as Morpion Soli-
taire, Crossword puzzles, Sudoku or SameGame, and have
also been used for more general combinatorial optimization
problems such as graph coloring problems or vehicle routing
problems.

To improve the quality of the results, researchers have of-
ten replaced purely random simulations with hand-crafted

search heuristics, designed specifically for the problem at
hand. However, building such heuristic is time-consuming
and requires expert knowledge which often is difficult to
encode in the search heuristic. To overcome this limitation
and facilitate the adaptation of Monte Carlo search to new
problems, several algorithms have replaced the hand-crafted
heuristics with simple policies that are learned using data
collected during the search (e.g. NRPA Rosin (2011)). The
principle of NRPA is to adapt the playout policy so as to
learn the best sequence of moves found so far at each level.
NRPA has found new world records in Morpion Solitaire
and crosswords puzzles (Rosin 2011). Other applications
deal with Logistics (Cazenave et al. 2020), Graph Coloring
(Cazenave, Negrevergne, and Sikora 2020) and RNA Design
(Cazenave and Fournier 2020).

The approach discussed in this paper is based on Nested
Monte Carlo Search (NMCS) (Cazenave 2009). NMCS bi-
ases its playouts using lower level playouts. At level zero
NMCS adopts a uniform random playout policy. Note that
the base NMCS algorithm does not rely on policy learn-
ing (which makes it a better candidate than NRPA for our
approach) yet it works well for puzzles and optimization
problems. Online learning of playout strategies combined
with NMCS has given good results on optimization prob-
lems (Rimmel, Teytaud, and Cazenave 2011). Other appli-
cations of NMCS include Single Player General Game Play-
ing (Méhat and Cazenave 2010), Cooperative Pathfinding
(Bouzy 2013), Software testing (Poulding and Feldt 2014),
heuristic Model-Checking (Poulding and Feldt 2015), the
Pancake problem (Bouzy 2016), Games (Cazenave et al.
2016) and the RNA inverse folding problem (Portela 2018).

Monte Carlo Tree Search has been successfully combined
with deep learning in the Alpha Zero program (Silver et al.
2018). The combination has reached superhuman level in
many games including the game of Go. The approach we
present also combines Monte Carlo search and deep learn-
ing. However the combination we use is quite different. We
use NMCS instead of PUCT, we address a single player
game and we train on perfectly solved instances that are easy
to generate. Moreover the policy is determined with only one
inference before using NMCS biased with this policy. The
policy is generated once for all states and not for every state
as in Alpha Zero.

Rectangle Packing Rectangle Packing is a well known
computational geometry problem and exact approaches have
been proposed. For instance, Korf, Moffitt, and Pollack
(2010) propose a constraint satisfaction formulation, Simo-
nis and O’Sullivan (2008) use a constraint programming
solver (Prolog) and propose some search rules, Huang and
Chen (2007) classify different kinds of empty region in order
to construct an heuristic. More recently, Pejic and van den
Berg (2020) have proposed an approach relying on a Monte
Carlo search algorithm and introduce simple search heuris-
tics for the problem.

Perfect Rectangle Packing
In its most general formulation, the Rectangle Packing con-
sists in placing a maximum number of rectangles on a poly-

hedral board (without overlapping), allowing arbitrary rect-
angle rotations. The Perfect Rectangle Packing problem is
a variant that assumes that every instance admits a solution
involving no empty space and all the rectangles.

In this paper, we only consider a more specific setting
where the board has a square shape, and where only π

2 rad
rotation are allowed. We also assume that all rectangles po-
sitions are integral and the board shape is a 20×20 square.
As mentioned earlier, this problem remains NP-hard, even if
rotating the rectangles is not allowed.

Random simulations for Rectangle Packing
Random simulations are the core principle underlying the
approach we describe in this paper, and underlying the
Monte Carlo search algorithms in general. In this section, we
introduce the required formalism and describe how to per-
form random simulations for the Rectangle Packing prob-
lem.

Board state and reward: In the context of the Perfect
Rectangle Packing problem, a state is a representation of the
board together with a valid position for some, or all, the rect-
angles that have been placed on the board. We call S the set
of all possible board states. A state is terminal if and only
if all the rectangles have been placed on the board, or if no
new rectangle can be placed. We call T ⊆ S the set of all
terminal states. Each terminal state t ∈ T has a real valued
reward denoted reward(t), corresponding to the number of
rectangles that have been placed at t.

Legal moves and branching strategy In each state, s ∈
S, the search algorithm can perform a set of legal moves
(or actions) denoted Ms. Each move consists in placing one
additional rectangle at a given position on the board. We de-
note M the set of all possible moves across all states, i.e.
M =

⋃
s∈S Ms.

The exact set of legal action Ms for a given state s de-
pends on the branching strategy that is used. For example,
a first naive branching strategy consists in considering ev-
ery valid rectangle position as a valid move. Using a differ-
ent branching strategy such as top left (see section Exper-
iments), a move is only legal if the rectangle is placed at
the upper left most position on the board. Note that a good
branching strategy can reduce the number of legal moves
at each state, without removing possible solutions (how-
ever, they can also make the training of the policy model
more challenging and can induce an important computa-
tional overhead).

Sequence of moves: Given a sequence of moves X =
⟨m1, . . . ,mt⟩, where each mi is a possible move in M,
we denote states(X) the state reached after playing each
move in X starting in from the initial state s (s is omitted
when it is clear from context). We also note states(X, k),
the state reached after playing only the first k moves in X .
Note that the sequence is only legal, if each move mi ∈ X
belongs to the set of legal moves in the corresponding state,
i.e. ∀i ∈ 1 . . . t,mi ∈Mstate(X,i−1).

Stochastic policies: A policy is a probability distribution
p over a set of movesM that is conditioned on the current
game state s ∈ S. For example, we often consider the uni-
form policy p0, which assigns an equal probability to all the
moves that are legal in state s. I.e. p0(m|s) = 1

|Ms| .
In this paper, we also consider policies probability distri-

butions pW which are parameterized with a set of weights
W . There is one real valued weight for each possible move,
i.e. W = wm1 , . . . , wm|M| , and the probability pW (m|s) is
defined as follows:

pW (m|s) = ewm∑
p∈Ms

ewp

Random simulations (a.k.a. playouts) Given an initial
state s and a policy p (e.g. the uniform policy p0), a random
playout X is a sequence of moves drawn from the policy
until a terminal state in reached using Algorithm 1.

Algorithm 1: The playout algorithm
playout (s: state, p: policy)
X ← []
while s is not terminal do

choose a move m ∼ p
X ← X ∪ {m}
s← state(s+m)

end while
return (reward(X), X)

Solving Perfect Rectangle Packing using
random simulations and deep learning

In this section, we demonstrate how to learn a model that can
then be use to solve the Perfect Rectangle Packing problem
using simulations. We first train a model that can be used
to predict rectangles boundaries on the board, then we show
how to place rectangles on the board using the output of the
network.

Input and output representation
Each rectangle to be placed on a board B is described us-
ing a tuple of two natural numbers Rw and Rh representing
respectively the width and the height of the rectangle. There-
fore, an input instance with n rectangles is characterized by
a set R = {(Ri

w, R
i
h), i ∈ {1, . . . , n}}. From R, we build

an input vector x ∈ R2n such x2i is the width of the ith

rectangle and x2i+1 is the height of the ith rectangle (the
rectangles are sorted according to their areas to ensure that
each permutation of the rectangles in R has the same corre-
sponding vector x).

We then train a neural network to map each input vector
x to two matrices H and V representing the horizontal and
the vertical boundaries of the rectangles on the board. More
formally Hi,j = 1 if and only if there is a boundary between
the tiles Bi−1,j and Bi,j and Vi,j = 1 iff there is a boundary
between Bi,j−1 and Bi,j (as illustrated in Figure 2).

The neural network is then trained using a large number
of supervised examples using binary cross entropy as a loss
function.

loss(H,V,H∗, V ∗) =∑k=Bw
ℓ=Bh

k=1
ℓ=1

H∗
k,ℓlog(Hk,ℓ)+(1−H∗

k,ℓ)log(1−Hk,ℓ)

BwBh
+∑k=Bw

ℓ=Bh

k=1
ℓ=1

V ∗
k,ℓlog(Vk,ℓ)+(1−V ∗

k,ℓ)log(1−Vk,ℓ)

BwBh

Figure 1 presents the prediction of the network compared
to the ground truth. To ease the reading, we merged both H
and V matrices to produce an image depicting the bound-
aries of the solution. We can observe that the network has
captured the linearity of the boundaries as well as the sym-
metrical aspect of the problem.

Scoring rectangle positions on the board
Given that coefficients in H and V each represent a proba-
bility of observing a rectangle boundary at the correspond-
ing position on the board, there may not be a unique way of
placing the rectangles. To place the rectangles on the board,
we need a scoring function that scores different placements
based on the probability in H and V . The scoring function
should be maximal when all the rectangle edges perfectly
match the boundaries on the board. In this paper, we con-
sider two possible scoring functions called boundary only
and boundary-interior.

Boundary only: This first scoring function consists in the
summing the coefficient in H and V when the corresponding
position on the board is covered by a rectangle edge. For a
rectangle R, we have:

sB(R) =
i+Rh∑
k=i

Vk,j +
i+Rh∑
k=i

Vk,j+Rw
+

j+Rw∑
k=j

Hi,k +
j+Rw∑
k=j

Hi+Rh,k

This score prioritizes the widest rectangles since their
boundaries are larger.

Boundary-Interior: This score also takes into considera-
tion the interior of the rectangle, which is defined by:

sI(R) =
i+Rw−1∑

k=i

j+Rh−1∑
ℓ=j+1

Vk,ℓ+

i+Rw−1∑
k=i+1

j+Rh−1∑
ℓ=j

Hk,ℓ

Therefore, the final score is:

sBI(R) = sB(R)− sI(R)

Observe that this score favours smallest rectangles. In-
deed, since large rectangles have by definition a largest inte-
rior, their score can be penalized by non zero outputs.

Figure 1: Left, Merged H and V net output Right, merged H
and V from the ground truth.

H =

0 0 0 0 0
0 0 0 0 0
1 1 1 1 1
0 0 0 0 0
0 0 0 0 0

 V =

0 0 0 0 0
0 0 0 0 0
0 1 0 0 0
0 1 0 0 0
0 1 0 0 0

Figure 2: Top, an example of 3 rectangles perfectly packed
on a 5x5 board. Bottom, corresponding H and V matrices
representing rectangles boundaries.

Branching strategies
It is not always desirable to consider all the possible moves
at each stage of the simulation, as it can dramatically in-
crease the branching factor (i.e. the number of legal moves
at each step), impede the learning process and slow down
the simulations.

However branching heuristics can also induce an impor-
tant computational overhead to compute the set of legal
moves and thus there is a trade-off between the extra com-
putational cost induced by the branching heuristic and the
benefit, from the learning perspective.

In this paper, we consider several heuristics in order to
select which subset of the legal moves (i.e which remaining
rectangles and which positions) will be selected at a given
iteration.

Most constrained first. The first heuristic consists in try-
ing to place the most constrained rectangle, i.e. the rectan-
gle having the largest area. Ties are broken randomly. This
heuristic relies on the idea that placing the largest rectangles
first will drastically reduce the legal positions for the smaller
ones, and so reduce the depth of the search tree.

Touching Edge first. A second heuristic consists in prior-
itizing positions adjacent to an edge of the board. It relies
on the assumption that placing rectangles in the middle of
the board lead to an infeasible solution with a higher prob-
ability. Top left Chazelle (1983). The last heuristic relies on
the knowledge that the totality of the board will be covered
(there will be no empty space). Thus, at each iteration, we
consider every rectangles that can be placed on the free point
that is the uppermost left. This allows to significantly reduce
the number of available choices at each iteration.

Computing the policy
Given the current state, we compute all legal moves from the
current branching strategy then from the score obtained by

AM MCF TEF MCF +TEF TL
1 trial
Uniform 4.54 4.47 4.69 4.59 4.33
Policy BI 5.03 5.43 5.05 5.48 5.42
Policy B 5.04 5.45 5.07 5.48 5.75

2 trials
Uniform 4.75 4.73 4.86 4.85 4.8
Policy BI 5.19 5.56 5.23 5.67 5.58
Policy B 5.18 5.58 5.21 5.64 5.84

5 trials
Uniform 4.94 5.02 4.99 5.12 5.32
Policy BI 5.45 5.77 5.46 5.77 5.73
Policy B 5.42 5.77 5.45 5.79 5.89

10 trials
Uniform 4.98 5.17 5.03 5.3 5.61
Policy BI 5.61 5.83 5.65 5.83 5.83
Policy B 5.62 5.82 5.68 5.81 5.91

100 trials
Uniform 5.10 5.66 5.22 5.81 5.99
Policy BI 5.97 5.93 5.97 5.91 5.93
Policy B 5.99 5.89 5.99 5.89 5.97

Table 1: Average number of positioned rectangles over 1000
random instances using different Monte Carlo search

the current scoring function, we build a probability distribu-
tion using the softmax function.

Preliminary results
Instance generation In our experiments, we focus on
guillotineable instances. Starting with a single rectangle
covering the whole board, the generator iteratively selects
a random rectangle and cuts it in two, from one edge to the
opposite edge. Observe that it is not possible to generate ev-
ery Perfect Rectangle Packing instances with this method,
as mentioned in Pejic and van den Berg (2020).

Supervised learning We trained a residual fully-
connected neural network of 20 layers of 2000 neurons
each on a dataset containing a sample of 100 000 examples.
We used the ADAM gradient descent to optimize the binary
cross entropy between the ground truth and the prediction
of our network.

Experiments We present in this section some preliminar-
ies results on packing 6 rectangles on a 20× 20 board

We compare the efficiency of the combinations of heuris-
tics and scores presented above to guide rollouts. Each roll-
out takes 0.0085 seconds. The columns represent which sub-
set of the legal moves is considered at each iteration, while
the lines represent how the distribution of the legal moves
is biased. In each situation, we take the best solution out of
1, 2, 5, 10 and 100 rollouts, referred to as trials. Column
AM (All Moves) contains the whole set of legal moves, MCF

AM MCF TEF MCF +TEF TL
1 trial
Uniform 0 0.039 0.002 0.078 0.124
Policy BI 0.117 0.525 0.122 0.574 0.626
Policy B 0.120 0.536 0.150 0.581 0.807

2 trials
Uniform 0.002 0.079 0.006 0.120 0.197
Policy BI 0.197 0.648 0.237 0.711 0.702
Policy B 0.191 0.641 0.221 0.691 0.872

5 trials
Uniform 0.006 0.159 0.018 0.219 0.425
Policy BI 0.451 0.791 0.458 0.796 0.806
Policy B 0.421 0.795 0.495 0.809 0.911

10 trials
Uniform 0.006 0.236 0.034 0.346 0.616
Policy BI 0.614 0.842 0.653 0.847 0.842
Policy B 0.648 0.840 0.672 0.841 0.926

100 trials
Uniform 0.103 0.663 0.224 0.809 0.991
Policy BI 0.986 0.932 0.986 0.912 0.929
Policy B 0.994 0.899 0.996 0.900 0.970

Table 2: Ratio of instances optimally solved using different
Monte Carlo search

(Most Constrained First) only considers the largest rectan-
gle, TEF (Touching Edge First) prioritizes positions adja-
cent to at least an edge of the board and TL (Top left) only
considers the uppermost left empty position on the board.
Table 1 and 2 respectively represent the average number of
placed rectangles and the ratio of solved instances according
to these rollouts, on 1000 problems.

We first observe that the All Moves heuristic struggles to
solve instances using an uniform policy. This shows that the
problem cannot be trivially solved without additional efforts.
A natural approach consists in increasing the number of roll-
outs (which is computationally more costly) but the evolu-
tion of the performance over the trials shows that increas-
ing the search for the uniform policy is not enough to solve
many instances. However, using the two policies deduced
from the output of the neural network seems to significantly
improve the average score and the number of problems that
are solved.

A simple heuristic in order to reduce the number of le-
gal moves available at each step is to act greedily with re-
spect of rectangles area size. The MCF heuristic helps the
uniform policy to solve a couple of problems but is still
struggling. However, it does produce a huge improvement
for policies. Regarding trials evolution, the computational
effort added helps each policy but the leanrt policies even
more by achieving more than 90% of problems solved.

Because placing a rectangle in the middle of the board
may lead to an unsolvable instance, TEF forces policies to
place rectangles near the edges. It helps the uniform policy
to solve some problems and more across different trials but
no improvement are visible for the learned policies relatively

to policies with AM. The relatively low number of rectangles
may affect the quality of this heuristic because there is a
high number of possible positions for the different rectangles
which are touching an edge of the board. So only few bad
positions are pruned from the possibilities.

Combining MCF and TEF produce even better results for
the policies. But as the number of trials grows, the benefit for
the learned policies is lesser than the benefit for the uniform
policy which achieves the best score so far while staying
weaker than the learned policies.

Finally, TL helps policies the most. Policy B produces the
best result so far with a single trial by solving 80% of the
problems. With more search, every policies ended up solv-
ing almost all the instances. TL heuristics is reducing the
most the number of possible moves: at each step, only one
position is considered for each rectangle. From this exper-
iment we can also notice that there is a difference between
B score and BI score. Only this heuristic shows the penalty
induced by BI score to bigger rectangles. BI score leads to a
lesser discriminating policy than the one built from B score
because of the very few number of possibilities at each step.

Combining the policy with NMCS
To further improve the quality of the solutions, we com-
bine random simulations with Nested Monte Carlo Search
(NMCS) (Cazenave 2009). NMCS improves on random
search by running recursive (a.k.a. nested) simulations com-
bined with a tree search.

At the lowest recursive level, moves are simply sampled
using a stochastic policy. At the recursive level above, the
move with the best estimated score is selected. The score
of each possible move is estimated using playouts based on
moves sampled from the policy of the level below. (See Al-
gorithm 2.)

Nesting simulations greatly improves the quality of the
solutions discovered, however it is generally impossible to
run NMCS with more than 5 or 6 levels of recursion, due to
the prohibitive cost of the recursive simulations.

NMCS can easily profit from deep learning by sampling
moves at the lowest level from policies based on a deep neu-
ral network such as the ones we have presented in the previ-
ous sections. Doux, Negrevergne, and Cazenave (2021) have
shown that replacing the stochastic policy at the lowest level
with a deep neural network based policy can be used to ob-
tain scores that are comparable to NMCS with 3 level of
recursions using only one level of recursion.

Experiments
In this section, we use NMCS with only one level of re-
cursion combined with the neural-network-based policy to
solve 1000 instances of Perfect Rectangle Packing. The in-
stances involve 6 rectangles to be placed on a 20×20 board.
Table 4 and 5 present the average number of placed rectan-
gles, and the ratio of solved instances respectively. We also
present the average time for each branching heuristic in Ta-
ble 3.

In the tables, NMCS refers to NMCS with uniform ran-
dom rollouts, NMCS BI and NMCS B refers to NMCS with

Algorithm 2: The NMCS algorithm.
NMCS (current-state, policy, level)
if level = 0 then

return playout (current-state, policy)
else
best-reward← −∞
while current-state is not terminal do

for each move in Mcurrent-state do
next-state← state(current-state+move)
(reward, seq)←

NMCS (next-state, policy, level − 1)
if reward > best-reward then
next-best-state← next-state
best-reward← reward
best-sequence← seq

end if
end for
move← move of best-sequence
next-state← state(current-state+move)

end while
return (best-reward, best-sequence)

end if

AM MCF TEF MCF +TEF TL
NMCS 4.54 0.52 1.36 0.41 0.17

Table 3: Mean time (second) spent for 1 trial by NMCS over
1000 examples

rollouts driven by the branching strategies BI and B respec-
tively.

First, we can observe that even though TL remains the
most efficient branching strategy, the other branching strate-
gies also perform well, thus using NMCS reduce the impor-
tance of choosing the correct branching strategy. If we look
at the times from Table 3, we can also observe an important
discrepancy between the branching strategies: even if MCF
and TEF are almost as good TL is three times faster and
thus should be preferred. Finally, we can also see that the
best configuration is able to solve 99.5% of the problems.

Conclusion and further works
We show that the geometrical aspects of the Perfect Rectan-
gle Packing problem can be exploited to efficiently supervise
the training of a neural network. Even if its output is imper-
fect, we can significantly improve the quality of Monte Carlo
search algorithms by taking the knowledge extracted by the
network into consideration.

AM MCF TEF MCF +TEF TL
NMCS 5.38 5.83 5.45 5.86 5.82
NMCS BI 5.88 5.97 5.87 5.96 5.99
NMCS B 5.88 5.96 5.89 5.96 5.99

Table 4: Average number of positioned rectangles over 1000
random instances using NMCS

AM MCF TEF MCF +TEF TL
NMCS 0.380 0.826 0.449 0.860 0.817
NMCS BI 0.878 0.967 0.870 0.961 0.987
NMCS B 0.880 0.962 0.892 0.955 0.995

Table 5: Ratio of instances optimally solved using NMCS

Beyond solving more complicated instances using this
approach, some interesting improvements could consists in
studying how a neural network can handle problems with
various problem sizes. First, the number of rectangles can
fluctuate across the instances, but also the size of the board
can vary and finally, both of theses parameters can change.
In order to deal with these fluctuations some other represen-
tations of the data may be relevant. It could also be interest-
ing to use a policy derived from a neural network to guide
other Monte Carlo search algorithms such as Monte Carlo
Tree Search and Nested Rollout Policy Adaptation which are
known to perform very well for solving combinatorial opti-
mization problems.

References
Bouzy, B. 2013. Monte-Carlo Fork Search for Cooperative
Path-Finding. In Computer Games - Workshop on Computer
Games, CGW 2013, Held in Conjunction with the 23rd Inter-
national Conference on Artificial Intelligence, IJCAI 2013,
Beijing, China, August 3, 2013, Revised Selected Papers, 1–
15.
Bouzy, B. 2016. Burnt Pancake Problem: New Lower
Bounds on the Diameter and New Experimental Optimal-
ity Ratios. In Proceedings of the Ninth Annual Symposium
on Combinatorial Search, SOCS 2016, Tarrytown, NY, USA,
July 6-8, 2016, 119–120.
Cazenave, T. 2009. Nested Monte-Carlo Search. In
Boutilier, C., ed., IJCAI, 456–461.
Cazenave, T.; and Fournier, T. 2020. Monte Carlo Inverse
Folding. In Monte Carlo Search at IJCAI.
Cazenave, T.; Lucas, J.-Y.; Kim, H.; and Triboulet, T. 2020.
Monte Carlo Vehicle Routing. In ATT at ECAI.
Cazenave, T.; Negrevergne, B.; and Sikora, F. 2020. Monte
Carlo Graph Coloring. In Monte Carlo Search at IJCAI.
Cazenave, T.; Saffidine, A.; Schofield, M. J.; and Thielscher,
M. 2016. Nested Monte Carlo Search for Two-Player
Games. In Proceedings of the Thirtieth AAAI Conference
on Artificial Intelligence, February 12-17, 2016, Phoenix,
Arizona, USA, 687–693.
Chazelle, B. 1983. The Bottom-Left Bin-Packing Heuris-
tic: An Efficient Implementation. IEEE Trans. Computers,
32(8): 697–707.
Doux, B.; Negrevergne, B.; and Cazenave, T. 2021. Deep
Reinforcement Learning for Morpion Solitaire. In Springer,
ed., Advances in Computer Games, LNCS.
Fowler, R. J.; Paterson, M. S.; and Tanimoto, S. L. 1981.
Optimal packing and covering in the plane are NP-complete.
Information processing letters, 12(3): 133–137.

Huang, W.; and Chen, D. 2007. An efficient heuristic algo-
rithm for rectangle-packing problem. Simulation Modelling
Practice and Theory, 15(10): 1356–1365.
Korf, R. E.; Moffitt, M. D.; and Pollack, M. E. 2010. Op-
timal rectangle packing. Annals of Operations Research,
179(1): 261–295.
Méhat, J.; and Cazenave, T. 2010. Combining UCT and
Nested Monte Carlo Search for Single-Player General Game
Playing. IEEE Transactions on Computational Intelligence
and AI in Games, 2(4): 271–277.
Pejic, I.; and van den Berg, D. 2020. Monte carlo tree search
on perfect rectangle packing problem instances. In Pro-
ceedings of the 2020 Genetic and Evolutionary Computation
Conference Companion, 1697–1703.
Portela, F. 2018. An unexpectedly effective Monte Carlo
technique for the RNA inverse folding problem. bioRxiv,
345587.
Poulding, S. M.; and Feldt, R. 2014. Generating structured
test data with specific properties using nested Monte-Carlo
search. In Genetic and Evolutionary Computation Con-
ference, GECCO ’14, Vancouver, BC, Canada, July 12-16,
2014, 1279–1286.
Poulding, S. M.; and Feldt, R. 2015. Heuristic Model Check-
ing using a Monte-Carlo Tree Search Algorithm. In Pro-
ceedings of the Genetic and Evolutionary Computation Con-
ference, GECCO 2015, Madrid, Spain, July 11-15, 2015,
1359–1366.
Rimmel, A.; Teytaud, F.; and Cazenave, T. 2011. Optimiza-
tion of the Nested Monte-Carlo Algorithm on the Traveling
Salesman Problem with Time Windows. In Applications of
Evolutionary Computation, volume 6625 of Lecture Notes
in Computer Science, 501–510. Springer.
Rosin, C. D. 2011. Nested Rollout Policy Adaptation for
Monte Carlo Tree Search. In IJCAI, 649–654.
Silver, D.; Hubert, T.; Schrittwieser, J.; Antonoglou, I.; Lai,
M.; Guez, A.; Lanctot, M.; Sifre, L.; Kumaran, D.; Graepel,
T.; et al. 2018. A general reinforcement learning algorithm
that masters chess, shogi, and Go through self-play. Science,
362(6419): 1140–1144.
Simonis, H.; and O’Sullivan, B. 2008. Search strategies for
rectangle packing. In International Conference on Prin-
ciples and Practice of Constraint Programming, 52–66.
Springer.

