Heuristic Search Planning with Deep Neural Networks using Imitation, Attention
and Curriculum Learning

Leah Chrestien, Tomas Pevny, Antonin Komenda, Stefan Edelkamp

Department of Computer Science, Faculty of Electrical Engineering
Czech Technical University in Prague
chreslea@fel.cvut.cz, pevnytom @fel.cvut.cz, antonin.komenda@fel.cvut.cz, stefan.edelkamp @fel.cvut.cz

Abstract

Learning a well-informed heuristic function for hard plan-
ning domains is an elusive problem. Although there are
known neural network architectures to represent such heuris-
tic knowledge, it is not obvious what concrete information is
learned and whether techniques aimed at understanding the
structure help in improving the quality of the heuristics.

This paper presents a network model that learns a heuristic
function capable of relating distant parts of the state space via
optimal plan imitation using the attention mechanism which
drastically improves the learning of a good heuristic function.
To counter the limitation of this method in the creation of
problems of increasing difficulty, we demonstrate the use of
curriculum learning, where newly solved problem instances
are added to the training set, which, in turn, helps to solve
problems of higher complexities and far exceeds the per-
formances of all existing baselines including classical plan-
ning heuristics. We demonstrate its effectiveness on grid-type
PDDL domains.

Introduction

Classical Planning has always relied on strong heuris-
tic functions to approximate distances to the nearest goal
(Bonet and Geffner 2001). Generally speaking, the quality
of heuristics is measured by how well it performs when used
inside a planner, i.e., it depends on the quality of the solu-
tion and the time taken to generate it. A major drawback of
classical planning is the need to formulate problems by ex-
tensively capturing information from the environment. Re-
cent years observe a progress in using visual representations
to capture the specifics of a problem (Asai and Fukunaga
2017). Yet, there is still a big gap between the length of
optimal plans and the plans found by planners using learnt
heuristic functions.

A significant amount of importance is given to developing
deep networks that are able to learn strong heuristics (Ernan-
des and Gori 2004) and policies (Torrey et al. 2006). This is
particularly common in Reinforcement Learning which uses
positive and negative feedback to learn the correct sequence
of next actions. In learning for planning, there is no such pro-
vision; instead, it relies heavily on either hand-coded logical
problem representations (Yoon, Fern, and Givan 2012) or
deep convolution neural networks (Groshev et al. 2017) that
imitate an expert. While there exists successful approaches

in training neural networks to learn heuristic estimates of
various problem domains (Arfaee, Zilles, and Holte 2011;
Virseda, Borrajo, and Alcazar 2013; Groshev et al. 2017),
designing a meaningful neural network architecture to ex-
tract the relevant information from the data set is still an
open-ended problem.

This work extends the work by Schaal (1999) and Gro-
shev et al. (2017) by addressing limitations of convolutional
neural network and by using imitation and curriculum learn-
ing to train from plans of more difficult problem instances
for hard planning domains. Specifically, we propose to use
self-attention and position encoding (Vaswani et al. 2017),
as we believe a strong heuristic function needs to relate “dis-
tant” parts of the state space.

In our default experimental settings, neural networks
(NN5s) realizing heuristic functions are trained on plans of
small problem instances created by classical planners. While
this allows us to generalize across more difficult instances
(some of which are still solvable by classical planners) such
that we can measure distances to optimal plan lengths, they
do not achieve the best results for two reasons. First, even
though the generalization of A*-NN is surprisingly good as
will be seen below, there is still a scope of large-scale im-
provement on previously unseen, larger and more complex
environments. Second, classical domain independent plan-
ners can solve only small problem instances anyway, which
means that obtaining plans from large ones is difficult. We
demonstrate that this problem can be partially mitigated by
curriculum learning, where the NN is retrained / fine-tuned
using plans from problems it has previously solved.

The proposed approach is compared to state-of-the-art
domain-independent planners, namely SymBA*(Torralba
et al. 2014), Lama (Richter and Westphal 2010), and Mer-
cury (Katz and Hoffmann 2014) and to currently best com-
bination of A* and CNNs (Groshev et al. 2017) on three grid
domains: (1) Sokoban where each maze consists of walls,
empty spaces, boxes, targets and an agent; the goal is to push
the boxes to target locations; the boxes can only be pushed
and not pulled in the game; (2) Maze-with-Teleports where
the goal for an agent is to reach the goal position via in-
terconnected teleports; (3) Floor-Tile where the tiles in a
given maze are to be colored alternatively by agents (in our
case, two agents) that are assigned a particular color each.
At no stage can an agent step on a tile that has been colored.

The approach is domain-independent and only requires the
selection of propositions in the PDDL file for spanning the
underlying grid and the objects moving on it. It uses either
policy or heuristic value heads.

We have chosen these domains because (1) all can be eas-
ily translated into an image based representation on which
we can apply the convolution operation;' (2) Sokoban is
PSPACE-complete (Culberson 1999) and known to be a
challenging problem in Deep Learning for Planning (Fern,
Khardon, and Tadepalli 2011); therefore, an improvement
in Sokoban’s policy and heuristic learning implies success
in other two dimensional planning domains; (3) Maze-with-
Teleports have non-local actions as the maze agent is being
teleported to different parts of the maze via teleports; (4)
Floor-Tile is NP-Complete and allows easy generation of
mazes of increasing difficulty, which makes it a great choice
of domain for improving the learnt heuristics via curriculum
learning (Bengio et al. 2009).

The paper is organised as follows. We first discussed ex-
isting relevant research that has been carried out in deep
learning for planning, especially in image based games.
Next, we explore the formal basics of classical planning.
Then, we highlight the shortcomings of a prior state of the
art and propose a solution that addresses some of these
shortcomings. Here, we introduce the basics of the attention
mechanism from NLP and explain the role of positional en-
coding in learning distances. Then, the proposed networks
are compared to other state of the art methods that attempt
to solve Sokoban, Floor-Tile and Maze-with-Teleports. Fi-
nally, we conclude with an overall synopsis of our work and
lay the ground for future work.

Related Work

The implementation of neural networks (NN) in learning
policies and heuristics for deducing strategic positions or
moves in various game domains has been studied exten-
sively in the past. In Chess (Thrun 1994), NNs have been
used to evaluate chess board functions from the outcome of
various games. A combination of supervised learning and re-
inforcement learning has been implemented in games such
as Go (Silver et al. 2017), which uses value networks to eval-
uate board positions and policy networks that choose succes-
sive actions. In Backgammon (Tesauro 2002), temporal dif-
ference learning was employed to train networks from mil-
lions of gameplay. Even single agent games such as Sokoban
(Racaniere et al. 2017) and Rubik’s cube (Agostinelli et al.
2019) use NN to solve the respective puzzles. The relative
success of NNs in reinforcement learning has led researchers
to believe that a similar success may be achieved in learning
heuristic functions for various classical planning domains.
Fern, Khardon, and Tadepalli (2011) presented the earliest
known work that combines planning and learning and con-
cludes that the performance of NNs is promising in learn-
ing heuristic functions. The work of (Virseda, Borrajo, and
Alcazar 2013) attempts to combine classical planning and

'If the domain can be described by graph, we can replace image
convolution by graph-convolution, though we do expect the exper-
imental results on these domains to exhibit very different behavior.

deep learning by modifying costs and learning an improved
heuristic function that generates good quality plans. Arfaee,
Zilles, and Holte (2011) generated strong heuristics by re-
peatedly training on a set of weak heuristics by the boot-
strapping procedure which are then used inside a classical
planner. Neural search policies (Gomoluch et al. 2020) rely
on parameter learning to generate heuristics during the ac-
tual search process. The learning procedure in (Srivastava,
Immerman, and Zilberstein 2011) leads to generalizations
of classical plans by identifying landmark actions that may
be repeatedly applied during learning. Delphi applies deep
learning on performance profile graphs to choose the cost-
optimal planner in a portfolio (Sievers et al. 2019)

Asai and Fukunaga (2017) used classical planning to gen-
erate data and designs in an architecture that returns a vi-
sualised plan execution. In (Groshev et al. 2017)’s work,
the training samples were generated by classical planning,
and imitation learning (Schaal 1999) was performed on this
data set for policy and heuristic learning. Unlike Fikes and
Nilsson (1971) and Shavlik (1989) that used hand-coded do-
mains to represent problems, Asai and Fukunaga (2017) and
Groshev et al. (2017) learned useful information from the
input data through image-based state descriptions.

Our approach significantly differs from prior work in
planning and learning: (1) we do not require any’ pre-
designed model of the problem domain or the state transi-
tion system; instead our model learns primarily from opti-
mal plans; (2) our model uses attention mechanism with po-
sitional encoding designed to learn distances in the heuristic
network; this generates near optimal solutions for complex
problem instances where other techniques often fail.

Classical Planning

We construct our problem domains in a classical setting, i.e.
fully observable and deterministic.

In classical planning, a STRIPS (Fikes and Nilsson 1971)
planning task is defined by a tuple IT = (F, A, I, G). F de-
notes a set of facts which can hold in the environment (for
instance, in Sokoban, a particular box at a particular position
is a fact). A state s of the environment is defined as a set of
facts holding in that particular s, i.e. s C F'. The set of all
states is, therefore, defined as all possible subsets of F' as
S = 2F I € S is the initial state of the problem and G C F
is a goal condition comprising facts which has to hold in a
goal state. An action a, if applicable and applied, transforms
a state s into a successor state s’ denoted as a(s) = ' (if
the action is not applicable, we assume it returns a distinct
failure value a(s) = L). All actions of the problem are con-
tained in the action set A, i.e. a € A. The sets S and A define
the state-action transition system.

Let 7 = (a1,az2,...,a;), we call 7 a plan of length !
solving a planning task ITiff a;(...az(a1(I))...) 2 G. We
assume a unit cost for all actions, therefore the plan length
and plan cost are equal. Moreover, let 4 denote a plan from
a state s, not /. An optimal solution (plan) is defined as a
minimal length solution of a problem II and is denoted as
7* together with its length [* = |7*|.

2Within the family of the grid domains.

A heuristic function h is defined as h : S — RZ° and
provides an approximation of the optimal plan length from
a state s to a goal state s, 2 G, formally h(s) ~ I*, where
"= |ml.

In our experiments, we choose domains encoded in PDDL
(Fox and Long 2003), where a planning problem is com-
pactly represented in a lifted form based on predicates and
operators. This representation is grounded into a STRIPS
planning task II, which is subsequently solved by the plan-
ner using a heuristic search navigating in the state-action
transition system graph and resulting in a solution plan 7.

Planner’s Architecture

To learn a heuristic function for a planning domain that es-
timates the cost-to-go in a current state is one of the holy
grails in Al (Edelkamp and Schrodl 2012; Mostow and
Prieditis 1989).

In our approach, we combine a domain-independent plan-
ner with a trained neural network heuristic for an improved
guidance during the overall search. This is how we bridge
symbolic and sub-symbolic reasoning, given that neural net-
works are data-driven, and task planning requires symbolic
reasoning in some form of logical calculus.

To bridge this gap, we highlight that any (deterministic)
plan is a sequence of actions, but also on states. Given the
initial state I, each partial plan 7 = (a1, as,...,ax), k <
induces a sequence of states (s = I, 1, S2,...,S;) with
sk = ag(...az(a1(1)).

Any encoded state is an input for the network. In our set-
ting we use a one-hot bit vector encoding of the propositions.
The output of the network is the heuristic value called value
head, in some cases, together with a distribution of action
to take, called policy head. For imitation learning, we use
optimal plans for selecting training instances for the neural
network, which might be generated by any optimal planner.
More precisely, given the plans in the training set, we gener-
ate pairs (s;, d(s;)), where is cost of an optimal plan from
s; to the goal. For the sake of simplicity, d(s;) is the dis-
tance [— ¢ of the state s; to the goal s; in the optimal plan
(so = 1,81,82,...,8,...,5). Evaluating the network for
a given state, directly serves as an estimator in our heuris-
tic search planner. For curriculum learning, we use not only
the optimal plans, but we also include newly found close-to-
optimal plans to retrain the NN learner.

For some of our domains, we also take pairs of (s;_1,a;)
to train the network for its policy head. Since our aim is find-
ing (close-to-)optimal plans, we employed A* (Hart, Nils-
son, and Raphael 1968) as the search algorithm for explor-
ing the planning state space. For training the network, we
run the known backpropagation algorithm on input batches
together with stochastic gradient decent (Bottou and Bous-
quet 2007) to minimize the network error, that is computed
with a simple loss function applied to the predicted and real
value. Once trained, the heuristic estimate can be extracted
efficiently for each state from the value head. In some do-
mains, action selection can be based on the policy head.

Learning the Heuristic

This section describes the proposed neural network for plan-
ning in maze-like PDDL domains. But before, we introduce
the notation and briefly discuss the state-of-the-art along
with the proposed modification. In the end, we discuss the
concrete architecture we used for all the benchmark domains
(Sokoban, Floor-Tile and Maze-with-Teleports). We extract
the grid layout automatically, but for the time being, we as-
sume to have the grid dimensions h and w to define the net-
work.

Formal notations for the proposed neural networks

The input to the neural network is denoted as & € R»w»do
where h and w is the height and width of the maze respec-
tively, and dy varies with the number of channels as ex-
plained above. Intermediate outputs are denoted by 7' =
L;(z"~1), where L is some neural network layer (convolu-
tion C, attention A, or position encoding F) and for the sake
of convenience, we set 22 = . All Z* are three dimensional
tensors, i.e. 2% € R4 Notice that all intermediate out-
puts z* have the same width and height as the maze (ensured
by padding), while the third dimension which is the number
of output filter(s) differs. Value z’ denotes a vector cre-

w,v
ated from 2" as (2}, , 1,2, 425 - - » Zy.0.4,)- BelOw, this vec-
tor will be called a hidden vector at position (u,v) and can
be seen as a description of the properties of this position.

The proposed neural network

The best published NN implementing a heuristic function
for Sokoban was proposed by Groshev et al. (2017). The
network’s shape resembled letter Y, as it has two heads, and
it contains only convolution layers. The first seven convolu-
tion layers were shared (we call them pre-conv layer abbre-
viating preprocessing-convolution). Then, the network splits
to yield two sets of outputs: (i) the estimate of the heuristic
function and (ii) the policy. After the split, each path to the
output contained seven convolution layers followed by two
dense layers. Although the heuristic function should be suf-
ficient for planning purposes, Groshev et al. (2017) state that
training the network to estimate the policy helps in comput-
ing a better heuristic function.

Our criticism of the architecture is that convolution is
strictly a local operator. This means that the hidden vec-
tor it} is calculated from hidden vectors {z}, ,, |u' €
{u—1u,u+1},v € {v—1,v,v+ 1}}, where we as-
sume convolution to have dimension 3 x 3 as in (Groshev
et al. 2017). This limits the neural network in synthesizing
information from two distant parts of the maze. Yet, we be-
lieve that any good heuristic requires such features, since
Sokoban, Floor-Tile and Maze-with-Teleports are non-local
problems.

Convolution, Attention, and Position Encoding

Therefore, we turn our attention to self-attention mecha-
nism, (Vaswani et al. 2017) first introduced in NLP, as it
allows to relate distant parts of input together. The output

Cy A By
block1l

Ay B, Cs As Es Cy Ay Ey 1*1 win

block2 block3 block4

9

FC2-H

FC1

C, A By
blockl

Cy Ay Es
block2 block3 block4

Cy As Es Cy Ay Ey 1*1 win

Figure 1: The structure of our neural network. A current state s and a goal state s, are fed into a variable number of pre-
processing convolution (pre-conv) layers, P, .. P, . In our case, we use 7 pre-conv layers. All convolution filters in the pre-conv
layers are of the same shape 3 x 3 with 64 filters. Then the network splits into two branches and each branch has four blocks,
each block containing a convolution layer (C) followed by a multi head attention operation with 2 heads (A) and a positional
encoding layer (E). There are 180 filters in each of these convolution layers in the blocks. At all stages, the original dimension
of the input is preserved. The output from block 4 is flattened by applying a 1 x 1 window around the agent’s location before
being passed onto the fully connected layers (FC1) and the action prediction output (FC2-A) and a single output for heuristic
prediction (FC2-H). For the sake of picture clarity, skip connections are not shown in the neural network.

of self-attention from 2z is calculated in the following man-
ner. At first, the output from previous layer z* is divided into
three tensors of the same height, width, and depth, i.e.

7 i . di
k:Z.’A’j]E{l,,3}

2t | € ﬁJrl 2ds
L] 3 g

— i . 2di

V=20]E{3—|—1,,d1}

then, the output 2 at position (u, v) is calculated as

2y
Il

h,w N g
ikl exp(Gu,v an) 1
b= D). e (D)
r=1,s=1 Z’[":l,s’:l eXp(Qu,v : kr’,s/)

Self attention, therefore, makes a hidden vector z}*' de-
pendent on all hidden vectors {2/ |Jr € {1,...,h},s €
{1,...,w}}, which is aligned with our intention. The self-
attention also preserves the size of the maze. A multi-head
variant of self-attention means that 2 is split along the third
dimension in multiple Es, s, and Us. The weighted sum is
performed independent of each triple (k, ¢, z) and the result-
ing tensors are concatenated along the third dimension. We
refer the reader for further details to (Vaswani et al. 2017).
While self-attention captures information from different
parts of the maze, it does not have a sense of a distance.
This implies that it cannot distinguish close and far neigh-
borhoods. To address this issue, we add positional encoding,
which augments the tensor z* € R with another ten-
sor & € R"w-de containing outputs of harmonic functions

along the third dimension. Harmonic functions were chosen,
because of their linear composability properties (Vaswani
et al. 2017)3. Because our mazes are two dimensional, the
distances are split up into row and column distances where
p,q € [0,d;/4) assigns positions with sine values at even
indexes and cosine values at odd indexes. The positional en-
coding tensor € € R"™de has elements equal to

€u,v,2p = Sin (O(p)u) €u,v,2p+1 = COS (O(p)u)
Cuvzqrde =S (0(q)v) €, 01110 = cos(0(q)v),

where 0(p) = —=L 4. On appending this tensor to the input
‘ 10000 e
z" along the third dimension, we get
o .
ZZJ,FU,- = [ZTZ,L,U," euavv']'

With respect to the above, we propose using blocks com-
bining Convolution, Attention, and Position encoding, in
this order (we call them CoAt blocks), as a part of our NN ar-
chitecture. The CoAt blocks can therefore relate hidden vec-
tors from a local neighborhood through convolution, from a
distant part of the maze through attention, and calculate dis-
tances between them through position encoding, as has been
explained in (Tsai et al. 2019). Since CoAt blocks preserve
the size of the maze,* they are scale-free” in the sense that
they can be used on a maze of any size. Yet, we need to pro-
vide an output of a fixed dimension to estimate the heuristic

>The composability of harmonic functions is based on
the following property cos(61 + 62) = cos(01)cos(62) —
sin(61) sin(f2) = (cos(1),sin(61)) - (sin(61), sin(f2)), where
- denotes the inner product of two vectors, which appears in Equa-
tion (1) in inner product of G, , and k. s.

*Convolution layers are appropriately padded to preserve sizes.

function and the policy. The output of the last CoAt block is
flattened by a 1 x 1 window, centered around the agent’s lo-
cation and fed to a fully-connected layer and an output head
(see Figure 1). For example, assuming z” to be the very last
layer, and agent is on position u, v, the vector z,,,. is of
constant dimension equal to the number of channels and is
used as an input to the fully-connected layers providing the
desired outputs (heuristic values, policy).

Next, we describe the implementation of CoAt blocks in
the network architectures we used for all the domains. The
network is shown in Figure 1 and its structure is similar to
that of (Groshev et al. 2017). It uses preprocessing convo-
lution layers Py, ..., P,, n = 7, (further called pre-conv)
containing 64 filters where each convolution filter is of the
shape 3 x 3; after the network splits into two heads, it uses
four CoAt blocks in each head instead of seven convolution
layers used in (Groshev et al. 2017). The convolution layers
in the CoAt blocks contain 180 filters of size 3 x 3 each.
The attention block uses two attention heads. Each head is
finished by two fully-connected layers with reduction to a
fixed dimension as described above.

The input to the network is the current state of the game
and a goal state, s and s, respectively. Each state is repre-
sented by a tensor of dimensions equal to width and height
(fixed to 10 x 10 for Sokoban, to 15 x 15 for Maze-with-
Teleorts, and to 4 x 4 for Floor-Tile) of the maze x objects.
The objects stands for one-hot encoding of the object states
on a grid position (e.g., for Sokoban, we have wall, empty,
box, agent and box target, for Maze-with-Teleport agent,
wall, floor, goal and teleports 1-4, and for Floor-Tile agentl,
agent2, black and white), which we could derive automati-
cally from the grounded representation. An important design
detail is that all convolutions are padded, which means that
the output has the same dimension as the input, and they fea-
ture skip-connections’ alleviating a possible vanishing gra-
dient (He et al. 2016).

We have implemented two different versions of the net-
work according to their heads: dual-head estimating policy
and heuristic value and a single-head estimating the heuristic
value. In Maze-with-Teleports and Sokoban, the dual-head
representation performed best, while the best network for
Floor-tile uses just a single head estimating heuristic value
(which means there is no separate head estimating the pol-
icy). The presence of two agents would make it difficult to
design a policy network in a domain-independent setting and
would result in a much larger network, which is inconve-
nient, time-consuming and computationally expensive. The
other implementation details of the Floor-Tile network are
the same as the heuristic networks of Sokoban and Maze-
with-Teleports (see Figure 1).

Imitation and Curriculum Learning

Imitation learning (Pomerleau 1989) is a framework for
learning a behavior policy from demonstrations. We present
demonstrations in the form of optimal state-action plans,

3 A layer ¢ augmented by a skip connection calculates the output
as x + ¢(z) instead of the usual x.

with each pair indicating the action to take at the state be-
ing visited. Generally, imitation learning is useful when it
is easier for an expert to demonstrate the desired behaviour
rather than to specify a reward function which would gener-
ate the same behaviour or to directly learn the policy.

A curriculum refers to an interactive system of instruction
and learning with specific goals, contents, strategies, mea-
surement, and resources. The desired outcome of curriculum
is a successful transfer and/or development of knowledge,
skills, and attitudes. In the context of Al, curriculum learn-
ing is a way of training a machine learning model where
more difficult aspects of a problem are gradually introduced
in such a way that the model is always optimally challenged.

Curriculum learning (Elman 1993) describes a type of
learning in which we first start out with only easy exam-
ples of a task and then gradually increase the task difficulty.
Humans have been learning according to this principle ever
since, but in the common learning setting, we train the neural
network on the whole data set.

Curriculum learning strategies have been successfully
employed in different areas of machine learning, for a wider
range of tasks (Bengio et al. 2009). However, the necessity
of finding a way to rank the samples from easy to hard, as
well as the right pacing function for introducing more diffi-
cult data can limit the usage of the curriculum approaches.

In order to extend the training set without providing any
additional plans that the neural network would not be able
to solve, we turn our attention to a form of curriculum learn-
ing for neural networks. This approach partially circumvents
this problem by re-training from unseen test samples of in-
creasing complexity.

In our case, curriculum learning is used to develop scale-
free heuristic values for a wider selection of Al planning
problems. Specifically, in our experiments, we have quickly
reached the capability of planners at larger sizes. To further
improve our heuristic function to scale to bigger problems,
we re-train our network by extending the training set to in-
clude harder problem instances.

We first train the heuristic network on a training set con-
taining easy problem instances quickly solvable by an opti-
mal planner, then use this NN as a heuristic function inside
A*, and then extend the training set by more difficult prob-
lem instance the NN has solved and finally, re-train the NN.
Thus, we perform a bootstrap, where the NN is gradually
trained on more difficult problem instances.

This way, curriculum learning plays an important role in
improving the performance of the heuristic network on not
just the trained dimensions but also on higher dimensions
by extrapolation. For curriculum learning, the learning rate
is reduced in successive training iterations.

Experimental Results

This section briefly describes the details of training and
presents the experimental results on the compared PDDL
benchmark domains: Sokoban, Maze-with-Teleports, and
Floor-Tile. A* algorithms with learnt heuristic functions re-
alized by the proposed convolution-attention-position net-
works (further denoted as A*-CoAt) are compared to A*

with learned heuristic function realized by convolutional
networks as proposed in (Groshev et al. 2017) (denoted
as A*-CNN), and to the state of the art planners LAMA
(Richter and Westphal 2010), SymBA* (Torralba et al.
2014), and Mercury (Katz and Hoffmann 2014). We em-
phasize that A*-CNN and A*-CoAt uses vanilla A* search
algorithm (Hart, Nilsson, and Raphael 1968) without any
additional tweaks. In case of Sokoban, we also compare
our planner to a solution based on Reinforcement Learn-
ing (Racaniere et al. 2017).

On all the compared domains, we analyse the strength of
our learnt heuristic and generalization property by solving
grid mazes of increasing complexities, approximated by the
number of boxes in Sokoban, grids of higher dimensions in
Floor-Tile and Maze-with-Teleports, and rotated mazes in
Maze-with-Teleports.

Training

Sokoban: The policy-heuristic network we wish to learn
accepts a state of a game, s as an input and returns the next
action, a, and a heuristic value, h(s), as an output. The train-
ing set Xipn = {(8i,ai, |7*(s:)|) } ;. therefore consists of
n = 10° of these triples, i.e. Xy = {(54, as, |7 (s:)]) g
The triples in the training set were created by randomly
generating 40000 Sokoban instances using gym-sokoban
(Schrader 2018). Each instance has dimension 10 x 10 and it
always contains only 3 boxes (and an agent). SymBA* (Tor-
ralba et al. 2014), a planner that generates optimal solutions,
was used to generate optimal plans 7* for each of these n
Sokoban instances. In each plan trajectory, the distance from
a current state to the goal state is learned as the heuristic
value, h(s;). Thus, the collection of all state-action-heuristic
triples form the training set X},,.

The Sokoban mazes in the training set were created with
only three boxes. This means that in the testing set, when
we are solving instances with more boxes, we are evaluat-
ing its extrapolation to more complex unseen environments,
which cannot be solved by naive memorisation. However,
our limited training set (containing 3 boxes) hinders the full
potential of the neural network. With curriculum learning,
we fine-tune the neural network using a training set contain-
ing Sokoban mazes of dimensions 10 x 10 with 3,4 5 6 and
7 boxes that have been already solved by the A*-NN with
the corresponding architecture. This, therefore improves the
heuristic function without the need to train the network from
scratch and, more importantly, without the need to use other
planners to create new plans.

Maze-with-Teleports: The policy and heuristic network
returns an action a, and a heuristic value, h(s) as out-
puts. The set Xi.,consists of training triplets from about
10000 maze problems of dimension 15 x 15. The mazes in
XimWwere generated using a maze creator® by breaking ran-
dom walls. We added a total of 4 pairs of teleports that con-
nect different parts of the maze inside each training sample.
As in the case of Sokoban, SymBA* (Torralba et al. 2014)
was used to generate optimal solutions for the problems in

Shttps://github.com/ravenkls/Maze-Generator-and-Solver

the training set. The mazes for training were generated such
that the initial position of the agent was in the upper-left cor-
ner and the goal was in the lower-right corner. Later, in our
evaluations, we rotate each maze to investigate whether the
heuristic function is rotation independent.

Floor-Tile: The Floor-Tile heuristic network accepts a
state of a game, s as an input and returns a heuristic value,
h(s) as an output. The training set initially consists of
triplets from about 10000 Floor-Tile instances of dimension
4 x 4 with 2 agents. In our version of Floor-Tile, we assign
white to the first agent and black to the second agent. The
colors assigned to the agents are fixed and cannot be flipped
at any stage of the game. SymBA* (Torralba et al. 2014) was
used to generate optimal solutions for the Floor-Tile domain.

Since it is easy to generate Floor-Tile instances of increas-
ing complexity (by increasing the size and varying the initial
positions of the two agents), we experiment again with cur-
riculum learning (Bengio et al. 2009) to develop scale-free
heuristic values. Specifically, in our experiments we have
quickly reached the capability of planners at size 6 x 5 (more
on this below). To further improve our heuristic function to
scale to bigger problems, we re-train our network by extend-
ing the training set to include harder problem instances (of
size4d x 4,5 x 5,6 x 5and 6 x 6) the heuristic network has
already solved.

All neural networks were trained by the Adam optimiser
(Kingma and Ba 2014) with a default learning rate of 0.001
for optimisation. In Sokoban and Maze-with-Teleports, the
categorical cross entropy loss function was used to minimise
the loss in the action prediction network and the mean abso-
lute error loss was the loss function in the heuristic network.
In Floor-Tile, the mean absolute loss was used in the heuris-
tic network. For curriculum learning, the learning rate was
reduced to about 1 x 10~% in successive training iterations.
Our experiments were conducted in Keras-2.4.3 framework
with Tensorflow-2.3.1 as the backend. We used a NVIDIA
Tesla GPU model V100-SXM2-32GB for training the neu-
ral networks.

Comparison to prior State-of-the-Art

Sokoban: The evaluation set consists of 2000 mazes of
dimensions 10 x 10 with 3, 4, 5, 6 or 7 boxes (recall that
the training set contain mazes with only 3 boxes). Unless
said otherwise, the quality of heuristics is measured by the
relative number of solved mazes, which is also known as
coverage. Table 1 shows the coverage of compared plan-
ners, where all planners were given 10 minutes to solve each
Sokoban instance. We see that the classical planners solved
all test mazes with three and four boxes but as the num-
ber of boxes increase, the A*-NN starts to have an edge.
On problem instances with six and seven boxes, A*-CoAt
achieved the best performance, even though it was trained
only on mazes with three boxes. The same table shows, that
A*-CoAt offers better coverage than A*-CNN, and we can
also observe that curriculum learning (see column captioned
curr.) significantly improves the coverage.

We attribute SymBA*’s poor performance to its feature
of always returning optimal plans while we are content with

normal Curr.

#b SBA* Mrcy LAMA CNN CoAt CoAt
3 1 1 1 092 094 0.95
4 1 1 1 0.87 091 0.93
5 095 075 0.89 0.83 0.89 0.91
6 0.69 0.60 0.65 0.69 0.76 0.85
7 045 024 032 0.58 0.63 0.80

Table 1: Fraction of solved Sokoban mazes (coverage,
higher is better) of SymBA* (SBA*), Mercury (Mrcy),
LAMA, A*-CNN (caption CNN) and the proposed A*-
CoAt (caption CoAt). A*-CNN and A*-CoAt (with caption
normal) use networks trained on mazes with three bozes;
A*-CoAt (with caption curr.) used curriculum learning.

SBA* Mrcy CNN CoAt
3 21.40 2170 2420 22.20
4 34.00 3433 40.53 36.00
5 38.82 4283 45.52 39.11
6 41.11 - 51.00 42.11
7 - - 5433 44.17

Table 2: Average plan length of SymBA*, Mercury, A* -
CNN (Grosheyv et al. 2017) (denoted as CNN) and that with
the A*-CoAt. For clarity, we do not show results of LAMA,
as it is performs exactly like SymBA* for 3 and 4 boxes.
Column captioned #b indicates the number of boxes in dif-
ferent categories.

sub-optimal plans. LAMA had even lower success in solv-
ing more complicated mazes than SymBA*, despite having
the option to output sub-optimal plans. To conclude, with an
increase in the complexity of the mazes, the neural networks
outshine the classical planners which makes them a useful
alternative in the Sokoban domain.

The average plan length, shown in Table 2, reveals that
the heuristic learnt by the CoAt network is strong, as the av-
erage length of the plans is close to that of SymBA* which
always returns optimal solutions. We conclude that the pro-
posed CoAt network delivers a strong heuristic outside its
training, much better than that of the CNN (Groshev et al.
2017) network and the planners (for mazes with more than
6 boxes).

CoAt network is also on par with Deep Mind’s imple-
mentation of Reinforcement Learning (DM-RL) in solving
Sokoban (Racaniere et al. 2017). Instead of re-implementing
DM-RL by ourselves, we report the results on their test set’
containing 10 x 10 Sokoban mazes with 4 boxes. While DM-
RL had a coverage of 90%, our A*-CoAt (trained on mazes
with three boxes) has a coverage 87%, and our A*-CoAt
with curriculum learning has a coverage of 98.29% . Taking
into account that DM-RL’s training set contained 10'° state-
action pairs from mazes with 4 boxes, A*-CoAt achieves
higher coverage using several orders of magnitude smaller

7 Available at https://github.com/deepmind/boxoban-levels.
8https://github.com/deepmind/boxoban-
levels/blob/master/unfiltered/test/000.txt

training set.

Maze-with-Teleports: The evaluation set contains a total
of 2100 training samples of dimensions 15 x 15, 20 x 20,
30 % 30, 40 x 40, 50 x 50, 55 x 55 and 60 x 60. Each maze in
the evaluation set contains 4 pairs of teleports that connects
different parts of the maze. From Table 3, we see that the
performance of A*-CNN and A*-CoAt (initially trained on
15 x 15 mazes) is the same as SymBA*® for dimensions up
to 40 x 40 and is consistently better for problem instances
of size 50 x 50, 55 x 55 and 60 x 60.

All ”No Rotation” mazes were created such that the
agents start in the top left corner and the goal is in the bot-
tom right corner. This allows us to study to which extent the
learnt heuristic is rotation-independent (domain independent
planners are rotation invariant by default). The same Table
therefore reports fraction of solved mazes that have been ro-
tated by 90°, 180° and 270°. The results clearly show that
the proposed heuristic function featuring CoAt blocks gener-
alizes better than the one utilizing only convolutions, as the
solved rotated instances of A*-CoAt network are compara-
ble to the non-rotated case. Rotating mazes have no effect
on SymBA* (the complexity is solely dependent on the grid
size) and the coverage rate stays unaffected.

From the results in Table 3, it can be concluded that
the CoAt blocks (1) improve detection of non-local ac-
tions (teleports) compared to state-of-the-art planners such
as SymBA*; (2) learn ‘useful’ information from the mazes
which makes the network robust to rotations; (3) learn to
approximate distances inside the mazes which results in a
scale-free heuristic function.

Floor-Tile: The evaluation set consists of 400 problem in-
stances of sizes 5 X 5,6 x 5,6 x 6 and 7 x 7. Similarly to
Sokoban, we first trained the CNN and CoAt NNs on small
problem instances of size 4 x 4 (see columns denoted as
“normal”) and extrapolated it to instances of higher dimen-
sions outside of the training set. Table 4 shows the cover-
age of SymBA* and the heuristics learnt by the NN inside
A* for different problem instances. The results are similar
to those we have observed in Sokoban. On smaller problem
instances, the classical planner SymBA* is better; on larger
problem instances, the NNs are better. The test set deliber-
ately includes problem instances of size 6 x 5 to demon-
strate the exact break point up to which SymBA¥* is able to
generate solutions. Beyond grid size 6 x 5, all state-of-the-
art planners fail and the solutions are generated only by the
NNs. The heuristics generated by the A*-CoAt network can
be extrapolated to solve 71% of the tiling problems of size
6 x 6. On further increasing the grid dimension, the cover-
age of the A*-CoAt decreases to 29% and even lower while
A*-CNN is unable to generate solutions. The rightmost col-
umn (see column captioned “curr’”) in Table 4 shows an im-
provement in coverage for dimensions 6 x 6 and 7 X 7 on
implementing curriculum learning.

The planners and NNs were given 10 minutes to solve each
maze instance.

No Rotation 90° rotation 180° rotation 270° rotation

size SBA* CNN CoAt CNN CoAt CNN CoAt CNN CoAt
15 x 15 1 1 1 1 1 1 1 1 1
20 x 20 1 1 1 1 1 1 1 1 1
30 x 30 1 1 1 1 1 1 1 1 1
40 x 40 1 1 1 1 1 1 1 1 1
50 x 50 | 0.92 0.94 1 091 1 0.92 1 0.91 1

55 x 55 | 0.55 0.78 0.89 0.71 0.85 0.70 0.87 0.69 0.87

60 x 60 - 0.73 0.76 0.68 0.75 0.66 0.74 0.68 0.75

Table 3: Fraction of solved mazes with teleports (coverage) of SymBA*, A* algorithm with convolution network (Groshev et al.
2017) (denoted as CNN) and that with the proposed Convolution-Position-Attention (CoAt) network. Only non-rotated mazes
(No Rotation) of size 15 x 15 were used to train the heuristic function. On mazes rotated by 90°, 180°, 270°, the heuristic

function has to extrapolate outside its training set.

normal curr.
size SBA* CNN CoAt CoAt
4 x4 1 092 0.96 0.96
5x5 1 0.89 0.93 0.93
6 x5 1 0.78 0.88 0.91
6 x6 - 054 0.71 0.89
Tx 7 - - 0.29 0.76

Table 4: Fraction of solved Floor-Tile problem instances
(coverage) of SymBA*, A*-CNN, and the proposed A*-
CoAt. Fractions in columns captioned “normal” / “curr.” are
of A* with heuristic functions trained on problem instances
of size 4 x 4 / by curriculum training respectively (see details
in the text).

Conclusion and Future Work

We showed that learning a strong heuristic function for
PDDL domains with an underlying grid structure is pos-
sible without the need for any specific domain knowledge.
In fact, the architecture of the learning approach is general
to any PDDL-type planning problem, and the learning can
be executed on any vector of propositions, or finite-domain
variables as states forming input to the neural network. Iden-
tifying some structure(s) in advance is advantageous.

While the heuristic function can generate sub-optimal
plans, our experiments suggest that the plan quality is not
far from the optimum. Moreover, while we have gener-
ated training data from a classical planner on small prob-
lem sizes, the proposed architecture is able to generalize and
successfully solve more difficult problem instances, where it
surpasses classical domain-independent planners, while im-
proving on previously known state-of-the-art.

Our experiments further suggest that the learnt heuristic
can further improve, if it is retrained / fine-tuned on problem
instances it has previously solved. This form of curriculum
learning aids the heuristic function in solving mainly large
and more complex problem instances that are otherwise not
solvable by domain independent planners within 10 minutes.

As future work, our next goal would be to better under-
stand if the learnt heuristic function is similar to something
that is already known, or something so novel that it can fur-
ther enrich the field; i.e., what kind of underlying problem

structure we can learn by which network type, possibly in
form of studying generic types (Long and Fox 2000).

Our experiments with curriculum learning suggest that the
neural network might boot-strap itself by first learning on
simple trivial examples and gradually solving more difficult
ones by adding them to the training set. This raises two ques-
tions, mainly regarding the limit of this process and if the
gains obtained by using larger networks will vanish.

We believe that an improvement in the heuristic function
is tied to the generation of problem instances that inherently
possess the right level of difficulty, by which we mean that
they have to be just on the edge of solvability, such that
the plan can be created and added to the training set. We
are fully aware that the problem instance generation itself is
a hard problem, but we cannot imagine the above solution
to be better than specialized domain-dependent Sokoban
solvers without such a generator (unless the collection of all
Sokoban mazes posses this property). We also question the
average estimation errors minimized during learning of the
heuristic function. It might put too much emphasis on simple
problem instances that are already abundant in the training
set while neglecting the difficult ones. We wish to answer
some of the above question in the future in an endeavour to
generate strong, scale-free heuristics.

Acknowledgement
The research leading to this paper has received funding from
OP VVV project CZ.02.1.01/0.0/0.0/16_.019/0000765 “Re-

search Center for Informatics” and from Czech Ministry of
Education 19-29680L

References

Agostinelli, F.; McAleer, S.; Shmakov, A.; and Baldi, P. 2019.
Solving the Rubik’s cube with deep reinforcement learning and
search. Nature Machine Intelligence, 1(8): 356-363.

Arfaee, S. J.; Zilles, S.; and Holte, R. C. 2011. Learning heuristic
functions for large state spaces. Artificial Intelligence, 175(16-17):
2075-2098.

Asai, M.; and Fukunaga, A. 2017. Classical planning in deep la-
tent space: Bridging the subsymbolic-symbolic boundary. arXiv
preprint arXiv:1705.00154.

Bengio, Y.; Louradour, J.; Collobert, R.; and Weston, J. 2009. Cur-
riculum learning. In Proceedings of the 26th annual international
conference on machine learning, 41-48.

Bonet, B.; and Geffner, H. 2001. Planning as heuristic search. Ar-
tificial Intelligence. 2001 Jun; 129 (1-2): 5-33.

Bottou, L.; and Bousquet, O. 2007. The Tradeoffs of Large Scale
Learning. In Platt, J. C.; Koller, D.; Singer, Y.; and Rowesis, S. T.,
eds., NIPS, 161-168.

Culberson, J. 1999. Sokoban is PSPACE-complete. Proceedings
of the International Conference on Fun with Algorithms, 65-76.
Edelkamp, S.; and Schrodl, S. 2012. Heuristic Search - Theory and
Applications. Academic Press.

Elman, J. L. 1993. Learning and development in neural networks:
the importance of starting small. Cognition, 48(1): 71-99.
Ernandes, M.; and Gori, M. 2004. Likely-admissible and sub-
symbolic heuristics. In Proceedings of the 16th European Con-
ference on Artificial Intelligence, 613—617. Citeseer.

Fern, A.; Khardon, R.; and Tadepalli, P. 2011. The first learning
track of the international planning competition. Machine Learning,
84: 81-107.

Fikes, R. E.; and Nilsson, N. J. 1971. STRIPS: A new approach to
the application of theorem proving to problem solving. Artificial
intelligence, 2(3-4): 189-208.

Fox, M.; and Long, D. 2003. PDDL2. 1: An extension to PDDL
for expressing temporal planning domains. Journal of artificial
intelligence research, 20: 61-124.

Gomoluch, P.; Alrajeh, D.; Russo, A.; and Bucchiarone, A. 2020.
Learning Neural Search Policies for Classical Planning. In Pro-
ceedings of the International Conference on Automated Planning
and Scheduling, volume 30, 522-530.

Grosheyv, E.; Goldstein, M.; Tamar, A.; Srivastava, S.; and Abbeel,
P. 2017. Learning generalized reactive policies using deep neural
networks. arXiv preprint arXiv:1708.07280.

Hart, P. E.; Nilsson, N. J.; and Raphael, B. 1968. A formal ba-
sis for the heuristic determination of minimum cost paths. /EEE
transactions on Systems Science and Cybernetics, 4(2): 100-107.
He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE conference
on computer vision and pattern recognition, 770-778.

Katz, M.; and Hoffmann, J. 2014. Mercury planner: Pushing the
limits of partial delete relaxation. IPC 2014 planner abstracts, 43—
47.

Kingma, D. P.; and Ba, J. 2014. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980.

Long, D.; and Fox, M. 2000. Automatic Synthesis and Use of
Generic Types in Planning. In AAAI, 196-205. AAAI Press.
Mostow, J.; and Prieditis, A. 1989. Discovering Admissible Heuris-
tics by Abstracting and Optimizing: A Transformational Approach.
In IJCAL

Pomerleau, D. A. 1989. Alvinn: An autonomous land vehicle in
a neural network. In Advances in neural information processing
systems, 305-313.

Racaniére, S.; Weber, T.; Reichert, D.; Buesing, L.; Guez, A;
Jimenez Rezende, D.; Puigdomeénech Badia, A.; Vinyals, O.;
Heess, N.; Li, Y.; et al. 2017. Imagination-augmented agents for
deep reinforcement learning. Advances in neural information pro-
cessing systems, 30: 5690-5701.

Richter, S.; and Westphal, M. 2010. The LAMA planner: Guiding
cost-based anytime planning with landmarks. Journal of Artificial
Intelligence Research, 39: 127-177.

Schaal, S. 1999. Is imitation learning the route to humanoid robots?
Trends in cognitive sciences, 3(6): 233-242.

Schrader, M.-P. B. 2018. gym-sokoban.
mpSchrader/gym-sokoban.

Shavlik, J. W. 1989. Acquiring Recursive Concepts with
Explanation-Based Learning. In IJCAI 688-693. Citeseer.

Sievers, S.; Katz, M.; Sohrabi, S.; Samulowitz, H.; and Ferber, P.
2019. Deep Learning for Cost-Optimal Planning: Task-Dependent
Planner Selection. In AAAI, 7715-7723. AAAI Press.

Silver, D.; Schrittwieser, J.; Simonyan, K.; Antonoglou, I.; Huang,
A.; Guez, A.; Hubert, T.; Baker, L.; Lai, M.; Bolton, A.; et al.
2017. Mastering the game of go without human knowledge. nature,
550(7676): 354-359.

Srivastava, S.; Immerman, N.; and Zilberstein, S. 2011. A new
representation and associated algorithms for generalized planning.
Artificial Intelligence, 175(2): 615-647.

Tesauro, G. 2002. Programming backgammon using self-teaching
neural nets. Artificial Intelligence, 134(1-2): 181-199.

Thrun, S. 1994. Learning to play the game of chess. Advances in
neural information processing systems, 7: 1069-1076.

Torralba, A.; Alcazar, V.; Borrajo, D.; Kissmann, P.; and Edelkamp,
S.2014. SymBA#*: A symbolic bidirectional A* planner. In Inter-
national Planning Competition, 105-108.

Torrey, L.; Shavlik, J.; Walker, T.; and Maclin, R. 2006. Skill ac-
quisition via transfer learning and advice taking. In European Con-
ference on Machine Learning, 425-436. Springer.

Tsai, Y.-H. H.; Bai, S.; Yamada, M.; Morency, L.-P.; and Salakhut-
dinov, R. 2019. Transformer Dissection: An Unified Understanding
for Transformer’s Attention via the Lens of Kernel. arXiv preprint
arXiv:1908.11775.

Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.;
Gomez, A. N.; Kaiser, L.; and Polosukhin, I. 2017. Attention is
all you need. Advances in neural information processing systems,
30: 5998-6008.

Virseda, J.; Borrajo, D.; and Alcédzar, V. 2013. Learning heuristic
functions for cost-based planning. Planning and Learning, 6.
Yoon, S. W.; Fern, A.; and Givan, R. 2012. Inductive policy selec-
tion for first-order MDPs. arXiv preprint arXiv:1301.0614.

https://github.com/

