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Abstract

We consider the problem of forming collectives of agents
for real-world applications aligned with Sustainable Develop-
ment Goals (e.g., shared mobility, cooperative learning). We
propose a general approach for the formation of collectives
based on a novel combination of an attention model and an
integer linear program (ILP). In more detail, we propose an
attention encoder-decoder model that transforms a collective
formation instance to a weighted set packing problem, which
is then solved by an ILP. Results on two real-world domains
(i.e., ridesharing and team formation for cooperative learning)
show that our approach provides solutions that are compara-
ble (in terms of quality) to the ones produced by state-of-the-
art approaches specific to each domain. Moreover, our solu-
tion outperforms the most recent general approach for form-
ing collectives based on Monte Carlo tree search.

1 Introduction
In recent years, more and more scenarios require Collective
Intelligence solutions enabling novel ways of social produc-
tion, promoting innovation and encouraging the exchange
of ideas (European Commission 2021). Such new forms of
collaborative consumption and production rely on a com-
mon and fundamental task, i.e., the formation of collectives.
This task plays a crucial role in a general class of real-world
applications aligned with the UN Sustainable Development
Goals, which enable agents to complete tasks and achieve
benefits by means of cooperation.

As an example of this class of domains, in ridesharing
commuters can form groups and travel together with the ob-
jective of reducing transportation costs, mitigate pollutant
emissions and alleviate the traffic congestion in urban en-
vironments (Bistaffa et al. 2021; Alonso-Mora et al. 2017).
Another prominent example can be found in modern educa-
tional institutions that aim at implementing cooperative and
active learning techniques, which engage students in teams
to participate in all learning activities in the classrooms. In-
deed, as recently shown in (Andrejczuk et al. 2019) collec-
tive formation approaches can improve the overall perfor-
mance of the students by grouping them in teams that maxi-
mize the synergies among members.
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Due to the inherent complexity and specificity of each
application domain, researchers usually tackle the forma-
tion of collectives by designing very specific sub-optimal
approaches that can solve the associated large-scale opti-
mization problem in a feasible runtime. Unfortunately, one
domain-specific approach usually cannot be applied in a dif-
ferent scenario.

In contrast, in this paper, we propose a novel, general
approach for the formation of collectives that is based on
two fundamental steps. First, we apply deep reinforcement
learning techniques to train an attention encoder-decoder
model, with the objective of automatically generating a set
of promising collectives on the basis of the structure of
the considered scenario. In the second step, we compile
a weighted set packing (WSP) instance that, by only tak-
ing into account the promising candidates generated in the
first step, can be solved by off-the-shelf ILP solvers in a
manageable time budget. Thus, our approach does not re-
quire to manually specify any domain-specific knowledge,
in contrast with the above-mentioned sub-optimal state-of-
the-art approaches. Furthermore, by only considering a set
of promising candidates rather than the entire set of possible
collectives1, we reduce the complexity of the original prob-
lem by several orders of magnitude without sacrificing the
quality of the final solution that we produce.

As such, this paper advances the state-of-the-art as fol-
lows:

• We propose a general approach for the formation of col-
lectives in real-world domains based on the novel combi-
nation of an attention model and WSP.

• We proposed a novel training procedure for our attention
model based on Maximum Entropy Reinforcement Learn-
ing. In contrast to previous approaches which use atten-
tion based models for optimization (Kool, van Hoof, and
Welling 2019), our solution achieves a wide variety of
promising candidates. Such variety is a key feature that
allows the ILP solver to group collectives of high value.

• We evaluate our approach in two real-world scenar-
ios (i.e., ridesharing and team formation for coopera-
tive learning) by comparing it with state-of-the-art ap-

1The number of possible collectives grows exponentially with
the number of agents, hence it is not manageable in real-world ap-
plications that involve more than a few tens of agents



proaches specific to each domain. Our results show that
our approach can produce, in some settings, solutions
of comparable quality without requiring any domain-
specific knowledge. Moreover, we compare our approach
with the most recent general approach for forming collec-
tives based on Monte Carlo tree search (Wu and Ram-
churn 2020), showing that our solutions clearly outper-
form (in terms of quality) the ones computed by the coun-
terpart.

2 Background & Related Work
2.1 Formation of Collectives
The general problem of forming collectives of agents has
been deeply studied from many different perspectives in the
scientific literature. In this paper we specifically focus on
the optimization problem (Cerquides et al. 2014) of com-
puting the set of non-overlapping collectives (i.e., subsets)
of agents belonging to a universal set A. Each collective is
associated to a value provided by a domain-specific utility
function, e.g., the reduction in terms of cost or CO2 emis-
sions associated to the arrangement of a shared trip (Bistaffa
et al. 2021) or the improvement thanks to cooperation within
a team of students (Andrejczuk et al. 2019). Thus, our ob-
jective is to maximize the sum of the values associated with
each formed collective.

By and large, the formation of collectives requires solv-
ing a set partitioning problem (Lin 1975) or, equivalently,
a coalition structure generation problem (Michalak et al.
2016). A wealth of approaches have been proposed to tackle
the formation of collectives from this perspective (Rahwan
et al. 2015). General algorithms (Changder et al. 2020;
Michalak et al. 2016) usually make no assumptions on the
structure of the utility function, which is treated as a black-
box oracle. Unfortunately, the mere act of providing the in-
put to the solution algorithm (without even considering the
runtime of the algorithm itself) requires enumerating a num-
ber of values that grows exponentially with the number of
agents and hence becomes quickly not manageable. Notice
that in many application domains it is possible to exploit do-
main specific constraints that limit the number of possible
collectives. For example, cardinality constraints that limits
the maximum size of the collectives to k naturally arise in
ridesharing and team formation. However, even consider-
ing such a constraint the number of collectives is O(|A|k),
which can require hours to enumerate when the computation
of the utility function is complex.

To overcome this limitation, the formation of collectives
in real-world domains is usually tackled by means of sub-
optimal approaches that trade generality for scalability, i.e.,
that exploit the specific structure of the considered domain
to compute good-quality solutions in a feasible amount of
time. For instance, (Bistaffa et al. 2021) proposed a solu-
tion algorithm for large-scale ridesharing that, by heavily
relying on the greedy nature of the domain, is capable of
computing solutions of very good quality for hundreds of
agents within one minute. Unfortunately, this approach can-
not be applied in collective formation domains that are not
characterized by such a greedy nature, e.g., the team forma-

tion domain discussed in (Andrejczuk et al. 2019). Here, the
authors proposed a local-search algorithm that, once again,
heavily relies on the structure of the problem and the con-
sidered dataset.

Against this background, in this paper we propose an ap-
proach for the formation of collectives that does not re-
quire to manually specify any domain-specific knowledge
but aims at learning such structure by applying deep rein-
forcement learning techniques.

2.2 Machine Learning for Optimization
The use of machine learning techniques to solve combinato-
rial optimization problems is a recent yet very active topic
that has received a lot of attention during the last years.
According to (Bengio, Lodi, and Prouvost 2020), machine
learning can contribute to the optimization field in a twofold
way: i) replace some heavy computations by building fast
approximations and ii) improve the optimization approach
by learning domain-specific structure.

In the first and most common case, machine learning is
employed to train a model so as to “imitate” the behavior of
the original algorithm in terms of solution quality, but being
much faster. Relevant examples are the work of (Kool, van
Hoof, and Welling 2019), which proposes a machine learn-
ing approach based on an attention model to solve several
variations of the vehicle routing problem (VRP) or the work
of (Nair et al. 2021), which proposes a deep learning model
to solve mixed-integer linear programs (MILPs).

The second direction mentioned by (Bengio, Lodi, and
Prouvost 2020) is more aligned with our work. Indeed, we
consider a scenario where the algorithmic decisions (in our
case, deciding what are the best collectives to form) rely on
highly specific hard coded knowledge that is difficult and
costly to acquire. Thus, our goal is to employ machine learn-
ing to automatically exploit the structure of the domain and
learn the best performing behavior (i.e., a policy) to guide
the formation of collectives.

In the following section we discuss our proposed ap-
proach that aims at achieving this objective.

3 Our Solution Approach
Given a pool of n agents A = {a1, a2, . . . , an}, we tackle
the formation of collectives as the problem of computing the
best set S of non-overlapping subsets of A which optimizes
the sum of the values associated to each subset S ∈ S by a
utility function f : F(A) → R. Such utility function maps
every collective in the feasible set2 of collectives F(A) to a
real number. This problem can be naturally formulated as an
ILP:

maximize
∑

S∈F(A)

f(S) · xS ,

subject to
∑

S∈F(A)

bi,S · xS ≤ 1, ∀ai ∈ A,
(1)

2Depending on the considered domain, such a set of feasible
collectives can be the entire set of subsets of A or, for example, the
set of all collectives that satisfy a given constraint (e.g., a cardinal-
ity constraint).



where xS is a binary decision variable that encodes whether
collective S is in the set S and bi,S is a binary value that
encodes whether agent ai ∈ A belongs to the collective S.

The problem in (1) can be easily recognized as a WSP
and, for small-scale instances (i.e., A with less than a couple
of tens of agents), directly solved as an ILP by means of off-
the-shelf solvers. On the other hand, in real-world scenarios
the generation of such an ILP (let alone its solution) can
require hours of computation, due to the necessity of enu-
merating all feasible collectives. This complexity is further
increased in scenarios where determining each value f(S)
requires a significant computational effort (Andrejczuk et al.
2019).

On the other hand, usually, by exploiting the inherent
structure of the domain, an expert might propose a re-
duced set of promising collectivesR(A), from which a sub-
optimal solution of high quality can be obtained. Following
this approach, in this paper we propose an attention-based
model that learns this structure to generate an ILP of man-
ageable size, i.e.,

maximize
∑

S∈R(A)

f(S) · xS ,

subject to
∑

S∈R(A)

bi,S · xS ≤ 1, ∀ai ∈ A.
(2)

In Figure 1 we provide an overall scheme that illustrates
our approach for the formation of collectives.

Figure 1: Proposed approach for the formation of collec-
tives. The attention model generates a reduced set of col-
lectives from which an ILP solver obtains the solution.

Following a standard practice (Bistaffa et al. 2021), we
assume that the entire approach depicted in Figure 1 is pro-
vided with a time budget t in which a solution has to be
computed. Notice that, since our approach comprises two
phases, we need to distribute such a time budget for each of
the two steps, hence we assign a runtime of k · t to the first
phase (i.e., generation of the WSP instance via the attention
model) and the remaining part (1 − k) · t to the solution of
such instance by the ILP solver.

3.1 Attention Model
Our attention model can be considered as a decision-making
process, where collectives are built incrementally by select-
ing elements from the set of agents A and adding them to
the collective. Our model receives the set A as a list of dx
dimensional vectors, where dx is the number of features, and
a binary encoding of a collective S = {b1,S , b2,S , . . . , bn,S},
where bi,S are binary values determining whether the re-
spective agents ai are in the collective or not. Therefore, the
state of the problem at each step is represented by the tuple
s = (A,S)

Given a state s, we design an attention-based encoder-
decoder model based on the one proposed by (Vaswani et al.
2017) which defines a stochastic policy πθ(s) parameterized
by θ, determining the probability for each element in the
pool of agents A to be included in the collective S. The en-
coder produces an embedding for each element in the pool.
Then, as illustrated in Figure 2, the decoder receives the em-
bedding and the collective in order to compute the probabil-
ities.

Figure 2: The encoder-decoder approach computes the prob-
ability πθ for each agent in A to be added to the collective
S.

Encoder Our encoder is similar to the one in the architec-
ture discussed by (Vaswani et al. 2017). In contrast with the
original model, we omit positional encoding, since the or-
der of the elements in the pool of agents is not relevant for
the formation of collectives. Nevertheless, we use an input
feed-forward layer to encode elements in the pool of agents
A from its dx dimensional feature representation to a dh di-
mensional embedding before main attention blocks. To get
the encoded representation of the pool of agents hA, the in-
put embeddings are updated using N attention blocks de-
picted in Figure 3, each one consisting of two sub-layers:
a multi-head self-attention and a feed-forward layer. Each
sub-layer adds a residual connection (He et al. 2016) and
performs layer normalization (Ba, Kiros, and Hinton 2016)
on its outputs, i.e., LayerNorm(x + sub-layer(x)). To facil-
itate residual connections, all sub-layers in the encoder use
the same dimensionality dh.

Decoder In order to compute the probabilities πθ(s), the
decoder performs attention between the encoded pool hA =
{h1,h2, ...,hn} and an encoding of the collective hS . To
obtain this encoding, the following reduction is applied on
the encoded pool:

hS =

∑
i bi,S · hi∑

i bi,S
. (3)

At the initial state the collective is empty, which means that∑
i bi,S = 0, in that case we use a dh dimensional learnable

parameter v as a placeholder, hS = v.
Finally, to obtain the probabilities πθ(s), the decoder per-

forms two last attention steps. The first one computes atten-
tion between hA and hS to obtain a combined encoding h′.
The second step computes the compatibility ui between hS

and h′,

ui =
(hSW

q)(h′
iW

k)T√
dh

, (4)

where W q and W k are two learnable linear transformations
and the output is scaled with a factor of 1√

dh
. The compati-



Figure 3: Encoder architecture.

bility is normalized by applying a softmax in order to obtain
the probability of each agent being added to a collective S:

πθ,i(s) =
eγ tanhui∑
j e

γ tanhuj
, (5)

where the function γ tanhui is applied onto the compatibili-
ties so as to control the exploration of the model by adjusting
parameter γ.

Maximum Entropy Policy Gradient In the previous sec-
tion we defined the attention model for computing the prob-
abilities πθ(s) for the formation of collectives modeled as
a decision making process. In this section, we elaborate on
how we optimize the parameters θ for this task.

In the context of such a discussion, it is important to recall
our ultimate goal: forming a set of collectives R(A) from
which, by means of an ILP solver, it can be obtained a so-
lution of good quality for a particular instance of a collec-
tive formation problem. For our approach to be effective, we
have to guarantee (i) that R(A) contains collectives associ-
ated to high utility values by the function f , but also that (ii)
such set contains a sufficient number of diverse collectives.
Such a diversity is fundamental because, due to the presence
of the non-overlapping constraint in (1), the optimal solu-
tion is likely to contain, not only collectives with the highest
possible value, but also collectives of lower value. Hence-
forth, providing a sufficient number of alternatives to the ILP
solver is crucial to achieve a final solution of good quality.
Along these lines, we define the loss:

L(θ|s) = Eπθ(S|s) [f(S)] + τH(πθ(s)), (6)

whereH(πθ(s)) is the entropy of the model at state s and τ
is a temperature parameter. Optimizing the first term in (6)
produces a policy which builds collectives of high utility.
In addition, we consider a second entropy term to the loss,
whose objective is to foster diversity.

Similar to (Kool, van Hoof, and Welling 2019) we op-
timize our model by gradient descent with the well-known
REINFORCE algorithm (Williams 1992). However, in con-
trast to such work, we introduce an additional entropy term:

∇θL = Eπθ(S|s) [(f(S)− b(s))∇θ log πθ(S|s)] +
+ τ∇θH(πθ(s)),

(7)

where b(s) is a baseline to reduce the variance of the gra-
dient. Popular choices for the baseline are using an expo-
nential moving average or training a critic to estimate value
function given an state s. While the first one does not provide
a baseline for a particular state s, the second one produces a
complex training setup with two networks to optimize simul-
taneously. Therefore, we opted to compute the value with a
rollout baseline, which estimates the value by performing
rollout from a given state with the best policy obtained so
far.

Algorithm 1: REINFORCE with Rollout Baseline
Input: number of epochs E, number of iterations per epoch
I , batch size B, significance α
Output: trained model parameters θ

1: Init θ
2: for epoch = 1, . . . , E do
3: for iter = 1, . . . , I do
4: si ← randomState() ∀i ∈ {1, . . . , B}
5: Si ← rollout(si,θ) ∀i ∈ {1, . . . , B}
6: SBL

i ← rollout(si,θBL) ∀i ∈ {1, . . . , B}
7: ∇L ←

∑B
i=1

(
f(Si)− f(SBL

i )
)
∇θ log πθ(Si|si)

8: ∇LH ← τ
∑B

i=1∇θH(πθ(si))
9: θ ← Adam(θ,∇L+∇LH)

10: end for
11: if OneSidedPairedTTest(πθ, πθBL

) ≤ α then
12: θBL ← θ
13: end if
14: end for
15: return θ

After the loss is computed, the model parameters θ are
updated using an Adam optimizer (Kingma and Ba 2014).
At the end of each epoch, the model and the baseline are
evaluated by performing a complete rollout over several ex-
amples. Then, the models are compared by means of a paired
T-test. In the case that the model outperforms the baseline,
the last one is updated with the model parameters. The full
training procedure is detailed in Algorithm 1.

4 Experimental Evaluation
The main objective of our experimental evaluation is to as-
sess the performance of our general collective formation ap-
proach in two structurally different real-world scenarios. On
the one hand, we consider the ridesharing scenario discussed
in (Bistaffa et al. 2021), where, as the authors show, an al-
gorithm characterized by a strongly greedy component can
produce solutions close to the optimal for hundreds of agents
within one minute. On the other hand, we consider the team
formation scenario discussed in (Andrejczuk et al. 2019), in



which greedy approaches cannot be used due to the presence
of domain-specific constraints.

4.1 Application Domains
The ridesharing problem discussed in (Bistaffa et al. 2021)
takes place in a map of zones Z = {z1, z2, . . . , zm}. An
instance of this problem involves a pool of agents A =
{a1, a2, . . . , an}, where each agent wants to travel from
an origin to a destination, formally ai ∈ Z × Z . In the
ridesharing domain we consider collectives with cardinal-
ity 1 ≤ |S| ≤ 5 to reflect the usual capacity of cars. Each
collective has an associated value assigned by a utility func-
tion f(S) which represents the quality of service (e.g., the
delay experienced by the users) and environmental benefits
(e.g., the reduction of pollutant emissions or traffic) for the
agents inside the collective.

The team formation problem discussed in (Andrejczuk
et al. 2019) consists of a set of students A =
{a1, a2, . . . , an}, which are assigned a task that has to be
solved cooperatively in a team. In all our experiments, we
consider the “English” task. Each student is represented by a
tuple (g,p, l), where g is a binary value indicating the gen-
der, p is a vector with four personality traits, evaluated in
the range [−1, 1], and l is a vector with seven competence
levels in the range [0, 1]. Each task involves covering differ-
ent competences that have to be covered by a student in the
team.

Notice that, since the goal of team formation is to obtained
a balanced set of teams so as to foster cooperation and inclu-
siveness, the authors of (Andrejczuk et al. 2019) originally
defined the team formation problem as the maximization of
a Nash product, which is then transformed into a linear opti-
mization problem by considering the sum of the logarithms
of the utility values of the teams. Here we adopt the same
transformation, i.e., we consider the linearized formalization
of team formation.

4.2 Baselines
To evaluate the performance of our approach in each of
the above-mentioned domains, we employ the state-of-the-
art approaches proposed in (Bistaffa et al. 2021) and (An-
drejczuk et al. 2019), which we denote as PG2 and Syn-
Team, respectively. For both approaches we use the param-
eters specified by the authors.

We remark that, as already mentioned in Section 2.1, these
approaches already achieve close-to-optimal performance in
their respective domains, hence our goal here is not to claim
an improvement over these domain-specific solutions. We
also remark that neither PG2 nor SynTeam can be used out-
side of the domain in which they were originally designed.
Thus, our goal is to show that our general approach can pro-
vide a performance comparable to these approaches without
being restricted to any specific application domain.

Additionally, we compare our approach to the Monte
Carlo tree search (MCTS) algorithm presented in (Wu and
Ramchurn 2020), which, to the best of our knowledge, is the
most recent general approach for the formation of collec-
tives. Notice that such approach uses a greedy rollout policy
based on selecting collectives with the best value increment

at each step. As already mentioned above, such a greedy pol-
icy can not be directly used in the team formation domain,
which prevents the approach from (Wu and Ramchurn 2020)
from finding any feasible solution in this case.

For this reason, we decided to consider a second version
of MCTS that employs an heuristic which prevents choosing
actions which might lead to an unfeasible collective during
rollout. For the sake of completeness, we also consider a
standard MCTS that employs a random rollout, i.e., that se-
lects actions from a uniform distribution. These three MCTS
approaches are referred to as G-MCTS (greedy), A-MCTS
(i.e., adapted) and R-MCTS (i.e., random), respectively.

4.3 Methodology
We test the above-mentioned algorithms using real-world
datasets obtained by the authors of the articles of the two
considered case studies. Specifically, we consider 50 prob-
lem instances for ridesharing and 20 problem instances for
team formation. For each instance, we run each algorithm
using 50 different seeds (i.e., 0, . . . , 49) and we compute the
ratio between the average of the obtained solution values and
the value of the optimal solution, i.e., the one obtained by
solving (1) to optimality. In the experiments we scale to sizes
for which we cannot compute the optimal, thus we used the
state-of-the-art approach as a reference for these sizes. We
then report the average over all instances of such optimality
ratios. We do not report standard deviations since in all cases
is < 0.02.

Training & Evaluation The runtime and the hardware
employed for training and evaluation are the following:

• Training times may vary depending on the size of the
training instances, but in general it takes between 12 and
24 hours on standard hardware (NVIDIA RTX 2080 Ti
GPU).

• For evaluation we consider a total time budget of 60 sec-
onds. We employ IRACE (López-Ibáñez et al. 2016), a
widely used software for tuning algorithmic parameters.
Specifically we use it to determine the portion of the total
time budget devoted to each part of our algorithm, as dis-
cussed in Section 3. The optimal portion of time budget
devoted to the generation of promising candidates is 50
seconds. We observed that our model is capable of gen-
erating tens of thousands of collectives during this time
budget on a Tesla Volta V100 PCIe GPU.

Our attention model is implemented in PyTorch. We employ
CPLEX 20.1.0.0 as an ILP solver.

Hyperparameters We initialize the model parameters
with Uniform(−1/

√
d, 1/
√
d), where d is the input size.

For the attention mechanism we use 8 heads and d = 256,
whereas for the feed-forward layers we use d = 512. The en-
coder is composed of 3 attention blocks. We train the mod-
els during 100 epochs consisting of 400 batches with 256
instances each. For evaluation we use 100 batches with the
same number of instances. For optimization of the model pa-
rameters we use a learning rate of 10−4 and a significance of
α = 0.05 for the one-sided paired T-test. For the purposes of



Figure 4: Probability density of the values of collectives
generated by our attention model employing τ = 0.00 and
τ = 0.05 for an example ridesharing problem instance.

this work, we did not perform an exhaustive parameter opti-
mization. We recommend doing further parameter search in
order to obtain more refined models.

4.4 Results
One of the most important findings we report from our ex-
perimental evaluation is that a higher entropy term produces
more variety in the set of candidate collectives. Indeed, Fig-
ure 4 shows the distribution of values of the collectives gen-
erated by our model for one example ridesharing instance.
It is clear that the model with the higher entropy term re-
sults in a higher diversity, while also producing collectives
characterized by slightly higher utility values. During train-
ing, we also noticed that increasing τ > 0.05 was effecting
negatively to the convergence of the models. Therefore, we
trained all models with τ = 0.05, since it produced bet-
ter results for our models. All our results we report refer
to this value of τ . We now proceed to discuss the results
of our comparison between our approach and the baselines
discussed in Section 4.2 in the two considered collective for-
mation domains.

Ridesharing Table 1 reports the results of our experiments
on the ridesharing domain. Our results show that the opti-
mality ratio obtained by our approach is comparable to the
one obtained by the best performing MCTS approach (i.e.,
the greedy one), and clearly superior to the other MCTS
approaches (including R-MCTS, the only true general ap-
proach in our comparison), who cannot compute a solution
of acceptable quality. Our approach is comparable with the
state-of-the-art PG2 for n = 50 and 100, but PG2 still outper-
forms our model for n = 200. This result is not surprising,
since PG2 is the state-of-the-art specifically designed for this
problem domain.

Team Formation Table 2 reports the results of our exper-
iments on the team formation domain. The optimality ratio
obtained in that case is significantly better than the one ob-
tained by other MCTS approaches. Moreover, by compar-

n AM (ours) G-MCTS A-MCTS R-MCTS PG2

50 0.89 0.92 0.09 0.08 0.98
100 0.76 0.88 0.04 0.04 0.98
200* 0.65 < 0.01 0.01 0.02 1.00

Table 1: Optimality ratio of the attention model and base-
lines for a time budget of 60s for Ridesharing. *For n = 200
we report the ratio with respect to the solution computed by
PG2 since computing the optimal solution is not possible.

n AM (ours) G-MCTS A-MCTS R-MCTS ST

50 0.97 < 0.01 0.84 < 0.01 0.99
60 0.95 < 0.01 0.78 < 0.01 0.99
100* 0.92 < 0.01 < 0.01 < 0.01 1.00

Table 2: Optimality ratio of the attention model and base-
lines for a time budget of 60s for Team Formation. *For
n = 100 we report the ratio with respect to the solution
computed by SynTeam, since computing the optimal is not
possible.

ing our approach to SynTeam we can see that the gap be-
tween our approach and the domain-specific state-of-the-art
approach for team formation is smaller than for ridesharing,
specially for the smaller problem instances. Notice that our
approach clearly outperforms all MCTS approaches on team
formation, even the one we specifically adapted for this do-
main (i.e., A-MCTS).

5 Conclusions
In this work we proposed a general approach for the forma-
tion of collectives in real-world domains based on the novel
combination of an attention model and an ILP. We show
that our approach is superior to previous general approaches
for the formation of collectives, despite domain-specific ap-
proaches still show superior performance in some settings.

Closing the gap with respect to domain-specific ap-
proaches is an important direction for future research. We
believe that investigating alternatives to introduce diversity
in the generation of collectives is a promising line of re-
search, since we accredit entropy for a big part of the suc-
cess of the attention model as an heuristic for the formation
of collectives. Moreover, generalizing to larger problem in-
stances is something our model does not excel at. Address-
ing these problems in future work is an important step to
release the potential of our method, which is already com-
petitive with respect to other general approaches for the gen-
eration of collectives.

Overall, we believe that this work is a first important step
to foster the use of machine learning approaches for the for-
mation of collectives. The good results achieved in the two
structurally different domains that we used as benchmarks
show that our attention model can indeed learn the inherent
structure of the domain and exploit this to generate solutions
of high quality.
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