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Abstract

Reinforcement learning in problems with symbolic state
spaces is challenging due to the need for reasoning over
long horizons. This paper presents a new approach that uti-
lizes relational abstractions in conjunction with deep learning
to learn a generalizable Q-function for such problems. The
learned Q-function can be efficiently transferred to related
problems that have different object names and object quanti-
ties, and thus, entirely different state spaces. We show that the
learned, generalized Q-function can be utilized for zero-shot
transfer to related problems without an explicit, hand-coded
curriculum. Empirical evaluations on a range of problems
show that our method facilitates efficient zero-shot transfer
of learned knowledge to much larger problem instances con-
taining many objects.

1 Introduction
Deep Reinforcement Learning (DRL) has been successfully
used for sequential decision making in tasks using image-
based state representations (Mnih et al. 2013). However,
many problems in the real world cannot be readily expressed
as such and are naturally described in factored representa-
tions in a symbolic representation language such as the Plan-
ning Domain Definition Language (PDDL) (Long and Fox
2003) or the Relational Dynamic Influence Diagram Lan-
guage (RDDL) (Sanner 2010). For example, in a logistics
problem, the objective consists of delivering packages to
their destined locations using a truck to carry them. Sym-
bolic description languages such as first-order logic (FOL)
can easily capture states and objectives of this scenario us-
ing predicates such as in-truck(p) where p is a parameter that
can be used to represent any package. Symbolic representa-
tions for such problems are already available in the form of
databases and converting them to image-based representa-
tions would require significant human effort. Due to their
practical use, symbolic descriptions and algorithms utilizing
them are of keen interest to the research community.

A key difficulty in applying RL to problems expressed in
such representations is that their state spaces generally grow
exponentially as the number of state variables or objects in-
creases. However, solutions to such problems can often be
described by compact, easy-to-compute “generalized poli-
cies” that can transfer to a class of problems with differing
object counts, significantly reducing the sample complexity

for learning a good, instance-specific policy.
Running Example We illustrate the benefits of com-

puting generalized policies using the SysAdmin(n) domain
(Guestrin, Koller, and Parr 2001) that has been used as
a benchmark domain in several planning competitions. A
problem in this domain consists of a set of n computers con-
nected to each other in an arbitrary configuration. At any
time step, the computers can shutdown with an unknown
probability distribution that depends on the network connec-
tivity wherein a shutdown computer increases the tendency
of its neighbors to shutdown. The agent is also awarded a
positive reward that is proportional to the total number of
running computers. Similarly, at each time step, the agent
may reboot any one of the n computers bearing a small neg-
ative reward or may simply do nothing. In our problem set-
ting, action dynamics are not available as closed-form prob-
ability distributions making RL the natural choice for solv-
ing such problems.

A state in this problem is succintly described by a fac-
tored representation with boolean state variables (proposi-
tions) that describe which computers are running and their
connectivity. It is easy to to see that the state spaces grow ex-
ponentially as n increases. However, this problem has a very
simple, greedy policy that can provide a very high cumula-
tive reward; reboot any computer that is not running or do
nothing. Even though a general policy for such a problem is
easy to express, traditional approaches to RL like Q-learning
cannot transfer learned knowledge, and thus, have difficul-
ties scaling to larger problems with more computers. Our
major contribution in this paper is learning a generalized,
relational Q-function that can express such a policy and use
it to efficiently transfer knowledge to larger instances.

Many existing techniques that compute generalized poli-
cies do so by using human-guided or automatic feature engi-
neering to find relevant features that facilitate efficient trans-
fer (see Sec. 5 for a detailed discussion of related work). For
example, Ng and Petrick (2021a) use an external feature dis-
covery module to learn first-order features for Q-function
approximation. API (Fern, Yoon, and Givan 2006) uses a
taxonomic language with beam search to form rule-based
policies.

In this paper, we approach the problem of learning gen-
eralized policies from a Q-function approximation perspec-
tive. We utilize deep learning along with an automatically



generated feature list to learn a nonlinear approximation of
the Q-function. Our approach learns a generalizable, rela-
tional Q-function that facilitates zero-shot transfer of knowl-
edge to larger instances at the propositional level. We ex-
tend our previous work on leapfrogging, a data-efficient au-
tomatic self-training technique, to RL settings. Our empiri-
cal results show that our approach can outperform existing
approaches for zero-shot transfer.

The rest of this paper is organized as follows: The next
section presents the required background. Sec. 3 describes
our approach for transfer followed by a description of our
algorithm for generalized reinforcement learning (Sec. 3.3).
Sec. 4 presents an extensive empirical evaluation along with
a discussion of some limitations and future work. Sec. 5 pro-
vides an account of related work in the area and Sec. 6 con-
cludes this paper by summarizing our contributions.

2 Formal Framework
We establish our problem in the context of reinforcement
learning for Markov Decision Processes (MDPs). We repre-
sent relational MDPs using the notation used by Fern, Yoon,
and Givan (2006). Let D = ⟨P,A⟩ be a problem domain
where P is a set of predicates of arity no greater than 2,1 and
A is a set of parameterized action names. An MDP problem
for a domain D is a tuple M = ⟨O,S,A, T,R, γ, s0⟩ where
O is a set of objects. A fact is an instantiation of a predi-
cate p ∈ P with the appropriate number of objects from O.
A state s is a set of true facts and the state space S is a fi-
nite set consisting of all possible sets of true facts. Similarly,
the action space A is composed of all possible instantiations
of action names a ∈ A with objects from O. T is a transi-
tion system, implemented by a simulator, that returns a state
s′ according to some fixed, but unknown probability distri-
bution P (s′|s, a) when applying action a in a state s. We
assume w.l.o.g. that the simulator only returns actions that
are executable in a given state and that there is always one
such action (which can be easily modeled using a no-op).
R : S × A → R is a reward function that is also imple-
mented by the simulator. γ is the discount factor, and s0 is
the initial state.
Example The SysAdmin domain introduced in the pre-
ceding section can be described by predicates run-
ning(cx) and connected(cx, cy). The possible actions are
reboot(cx), and no-op(). cx and cy are parameters that
can be grounded with objects of a specific problem.
A state of a problem Meg drawn from SysAdmin(2)
with connectivity K2 using computer names c0 and
c1 where only c0 is running can be described as
seg = {running(c0), connected(c0, c1), connected(c1, c0)}.
The action space of Meg would consist of actions no-op(),
reboot(c0), and reboot(c1) with their dynamics implemented
by a blackbox simulator.

A solution to an MDP is expressed as a deterministic pol-
icy π : S → A, which is a mapping from states to actions.
Let t be any time step, then, given a policy π, the value of
taking action a in a state s is defined as the expected return

1Predicates with arity greater than 2 can be easily converted to
binary predicates using a simple compilation.

starting from s, executing a, observing a reward r and fol-
lowing the policy thereafter (Sutton and Barto 1998).

qπ(s, a) = Eπ

[ ∞∑
i=0

γirt+i+1

∣∣∣∣st = s, at = a

]
The optimal action-value function (or Q-function) is de-

fined as the maximum expected return over all policies for
every s ∈ S and every a ∈ A; q∗(s, a) = max

π
qπ(s, a). It is

easy to prove that the optimal Q-function function satisfies
the Bellman equation (expressed in action-value form):

q∗(s, a) = Es′∼T

[
rt+1 + γmax

a′∈A
q∗(s

′, a′)

∣∣∣∣st = s, at = a

]
Reinforcement learning algorithms iteratively improve

the Q-function estimate Q(s, a) ≈ q∗(s, a) by converting
the Bellman equation into update rules. Given an obser-
vation sequence (st, at, rt+1, st+1), the update rule for Q-
learning (Watkins 1989) to estimate Q(st, at) is given by:

Q(st, at) = Q(st, at) + αδt

where δt = rt+1 + γmax
a′∈A

Q(st+1, a
′) − Q(st, at) is the

temporal difference, TD(0), error, and α is the learning
rate. Q-learning has been shown to converge to the opti-
mal Q-function under certain conditions (Sutton and Barto
1998). Q-learning is an off-policy algorithm and generally
uses an ϵ-greedy exploration strategy, selecting a random
action with probability ϵ, and following the greedy policy
π(s) = argmax

a
Q(s, a) otherwise.

We define a feature f for a domain D as a first-order for-
mula over P with one free variable. We then define a feature
kernel ϕf (s) for a problem M as the set of objects o ∈ O
that satisfy f in a state s ∈ S. We utilize description logic
to derive and express feature kernels building upon the re-
cent work by Bonet, Francès, and Geffner (2019). This is
described in Sec. 3.1.

3 Our Approach
Our goal is to compute approximate Q-functions whose in-
duced policies zero-shot generalize to problem instances
with differing object counts in a way that allows RL ap-
proaches to find good policies with minimal learning. To do
so, we automatically generate domain-specific relational ab-
stractions that lift problem-specific characteristics like ob-
ject names and numbers (Sec. 3.1). Sec. 3.2 describes our
method of representing these abstractions as input features
to a deep neural network. Finally, Sec. 3.3 and Sec. 3.4 ex-
pand on how our algorithm, Generalized Reinforcement
Learning (GRL), performs iterative automatic self-training
of the deep neural network to learn approximate Q-values of
abstract states and uses them for transfer, especially in the
zero-shot setting.

3.1 Relational Abstraction
This paper develops a novel approach for learning, express-
ing, and transferring generalized Q-functions using logic-
based features. One challenge in Q-function approximation



is the selection of a representation language in which it
would be possible to express features that provide useful in-
formation for the decision making process. Prior work on
computing generalized plans and policies considers using
logic-based features to develop lifted policy languages for
feature synthesis (Khardon 1999; Cumby and Roth 2002;
Martı́n and Geffner 2004; Fern, Yoon, and Givan 2006).
Counters derived from logic-based features have been found
to be useful for expressing generalized plans (Srivastava, Im-
merman, and Zilberstein 2008) and can be used to derive
measures of progress for proving correctness (Srivastava,
Immerman, and Zilberstein 2010; Srivastava et al. 2011,
2015). Bonet, Francès, and Geffner (2019) develop new ap-
proaches for learning logic-based features that can express
such counters. Karia and Srivastava (2021) use such feature-
based counters to learn generalized heuristics for planning.

We now provide a formal description of the general
classes of abstraction-based, domain-independent, auto-
matic feature synthesis algorithms that we used to yield
counters for RL.

Description Logics (DLs) are a family of representation
languages often used for knowledge representation (Baader
et al. 2017). We chose DLs since they provide a good bal-
ance between expressiveness and tractability in feature ex-
pression.

In the relational MDP paradigm, unary predicatesP1 ∈ P
and binary predicates P2 ∈ P of a domain D can be viewed
as primitive concepts C and roles R in DL. DL includes con-
structors for generating compound concepts and roles from
primitive ones to form expressive terms. Our feature list FDL
consists of concepts and roles formed by using a reduced set
of grammar from Bonet, Francès, and Geffner (2019):

C,C ′ → P1 | ¬C | C ⊓ C ′ | ∀R.C | ∃R.C | R = R′

R,R′ → P2 | R−1

where P1 and P2 represent the primitive concepts and
roles, and R−1 represents the inverse. ∀R.C = {x |
∀y R(x, y)∧C(y)} and ∃R.C = {x | ∃y R(x, y)∧C(y)}.
R = R′ denotes {x | ∀y R(x, y) = R′(x, y)}. We also use
Distance(c1, r, c2) features that compute the minimum num-
ber of role r steps between two objects satisfying concepts
c1 and c2 (Francès, Bonet, and Geffner 2021). We found this
reduced grammar (that excludes transitive closure) to gener-
ate features that facilitated good generalization in our exper-
iments.

We control the total number of features generated by only
considering features up to a certain complexity k (a tunable
hyperparameter) that is defined as the total number of gram-
mar rules required to generate a feature.
Example The primitive concepts and roles of the SysAd-
min domain are running(cx) and connected(cx, cy) respec-
tively. For the running example Meg, the feature kernel for
a feature fup ≡ running(cx) evaluates to the set of objects
satisfying it, i.e., ϕfup(seg) = {c0}. This feature can be in-
terpreted as tracking the set of computers that are running
(or up). Similarly, ϕfcon(seg) = {c1} for a different feature
fcon ≡ ∃connected.running. fcon can be viewed as tracking
the set of computers that are connected to at least one run-
ning computer. It is easy to see that DL features such as fup
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Figure 1: Our process for estimating generalized Q-values.

and fcon capture relational properties of the state and can be
applied to problems with differing object names and quanti-
ties.

We implemented a reduced version of the D2L system
(Francès, Bonet, and Geffner 2021) for generating such DL
based features and describe our process for doing so in
Sec. 4.2.

3.2 Deep Learning for Q-value Approximation
Given a list of DL features F , the key challenge is to identify
a subset F ′ ⊆ F of features that can be used to learn a good
approximation of the Q-function. We use deep learning, uti-
lizing the entire feature list F for Q-value estimation.

Given a feature list F and a domain D, the input to our
network is a vector of size |F | + |A| +N × |F | where |A|
is the total number of actions in the domain, and N is the
maximum number of parameters of any action in A. Since
the dimensionality of the input vector is fixed and does not
depend upon a specific problem instance, the same network
can be used to predict Q-values across problem instances.
This is the key insight into our method for transfer.

Given a concrete state s, the abstract state feature vec-
tor is defined as s = ⟨|ϕf1(s)|, . . . , |ϕfn(s)|⟩ for all features
fi ∈ F . Similarly, given a grounded action a(o1, . . . , on),
the abstract action feature vector is defined as a vector
a = ⟨Aname|Fo1 | . . . |FoN ⟩ where Aname is a one-hot vector
of length |A| encoding the action name a, Foi is a vector of
length |F | encoded with values 1[oi∈ϕfj

(s)] for every feature
fj ∈ F , and | represents vector concatenation. The vector
⟨s|a⟩ comprises the input to our network.

Since Distance features directly return numerical values,
we simply define |ϕf (s)| = ϕf (s) and ∀o ∈ O, o ∈
ϕf (s) = 0 for such distance-based features.
Example Let FDL = ⟨fup, fcon⟩ for the SysAdmin domain
where fup ≡ running(cx) and fcon ≡ ∃connected.running.
Then, the abstract state vector seg for the concrete state seg
of the running example would be ⟨1, 1⟩ and it indicates an
abstract state where there is a single computer running and
where there is only a single computer that is connected to
a running computer. The same vector would be generated
for any SysAdmin problem where these properties hold irre-
spective of the total number of computers or what computer
names are used to represent the objects in the state.



Assuming actions are indexed in alphabetical order, for
seg, no-op() would be encoded as ⟨1, 0|0, 0⟩. Similarly,
reboot(c0) and reboot(c1) would be encoded as ⟨0, 1|1, 0⟩
and ⟨0, 1|0, 1⟩ respectively.

Fig. 1 illustrates our process for estimating the Q-values.
Given a concrete state s and action a, our network (that
we call QGRL) predicts the estimated Q-value QGRL(s, a) ≈
q∗(s, a) by converting s and a to abstract state s and action
a feature vectors based on the feature list F .

The abstract state captures high-level information about
the state structure, whereas the abstract action captures the
membership of the instantiated objects in the state, allowing
our network to learn a generalized, relational Q-function that
can be transferred across different problem instances.

3.3 Generalized Reinforcement Learning
Intuitively, Alg. 1 presents our approach for Generalized Re-
inforcement Learning (GRL). For a given MDP M , an initial
QGRL network, and a list of features F , GRL works as fol-
lows: Lines 1−5 transfer knowledge from the QGRL network
by converting every concrete state s and action a to abstract
state s and abstract action a vectors using the approach in
Sec. 3.2. Next, every concrete Q-table entry Q(s, a) is ini-
tialized with the predicted value QGRL(s, a). The Q-table for
different problems M ′ ̸= M are different since their state
and action spaces are different, however, s and a are fixed-
sized vector representations of any state and action in these
problems. This allows QGRL to transfer knowledge to any
problem M ′ with any number of objects. Lines 9−12 do Q-
learning on M to improve the bootstrapped policy further.
Lines 13 − 16 further improve the generalization capabili-
ties of QGRL by incorporating any policy changes that were
observed while doing Q-learning on M . GRL returns the
task-specific policy Q and the updated generalized policy
QGRL.

Algorithmic Optimization Lines 2−5 can be intractable
for large state spaces. We optimized transfer by only initial-
izing entries in a lazy evaluation fashion, i.e., we start with
an empty Q-table and only transfer values for states that do
not have an entry in the Q-table. An added benefit is that up-
dates to QGRL for any abstract state can be easily reflected
when encountering a new state that maps to the same ab-
stract state. We empirically observed this to be helpful in
improving the sample efficiency for solving the task.
Theorem 3.1. Solving problem M using GRL converges un-
der standard conditions of convergence for Q-learning.

Proof (Sketch). The proof is based on the following intu-
ition. QGRL is used to initialize every Q(s, a) entry of M
exactly once after which Q-learning operates as normal. The
rest of the proof follows from the proof of convergence for
Q-learning (Sutton and Barto 1998).

3.4 Scaling Up Q-learning and Transfer
Transfer capabilities can often be improved if the training
strategy uses a curriculum that organizes the tasks presented
to the learner in increasing order of difficulty (Bengio et al.
2009). However, the burden of segregating tasks in order of
difficulty often falls upon a domain expert.

Algorithm 1: Generalized Reinforcement Learning (GRL)
Require: MDP M , GRL network QGRL, feature list F ,

epsilon ϵ, learning rate α
1: Q← initializeEmptyTable()
2: for s ∈ S, a ∈ A do
3: s, a← abstraction(F, s, a)
4: Q(s, a) = QGRL(s, a)
5: end for
6: B← initialize replay buffer
7: s← s0
8: while stopping criteria not met do
9: a← getEpsilonGreedyAction(s, ϵ)

10: s′, r ← executeAction(s, a)
11: δ = r + γmax

a′∈A
Q(s′, a′)−Q(s, a)

12: Q(s, a) = Q(s, a) + αδ
13: s, a← abstraction(F, s, a)
14: Add (s, a,Q(s, a)) to B
15: Sample a mini-batch B from B
16: Train QGRL using B
17: s← s′ {s← s0 if episode ends}
18: end while
19: return Q,QGRL

We extend our work on leapfrogging, which is an au-
tomatic, data-efficient self-training method (Groshev et al.
2018; Karia and Srivastava 2021), to RL settings. Leapfrog-
ging follows the “learning-from-small-examples” paradigm
by using a problem generator to automatically create a cur-
riculum for learning. It is an iterative process for speeding
up learning when used in conjunction with a transfer learn-
ing algorithm such as GRL. Leapfrogging is analogous to a
loose curriculum, enabling self-supervised training in con-
trast to curriculum learning, which on its own, does not en-
able automatic self-training.

Leapfrogging operates by initially generating a small
problem, Msmall, that can be easily solved by vanilla Q-
learning without any transfer. It applies GRL (Alg. 1) to
this problem using an uninitialized QGRL network. Once this
problem is solved, leapfrogging generates a slightly larger
problem and invokes GRL again. The QGRL network learned
in the previous iteration allows GRL to utilize knowledge
transfer to solve this new problem quickly while also im-
proving the generalization capabilities of the next generation
QGRL network.

4 Empirical Evaluation
We performed an empirical evaluation on four different tasks
and our results show that GRL outperforms the baseline in
zero-shot transfer performance. We also show that GRL is
competitive with approaches receiving additional informa-
tion in the form of closed-form action models. We now de-
scribe the evaluation methodology that we employed for as-
sessing these hypotheses.

We ran our experiments utilizing a single core and 16 GiB
of memory on an Intel Xeon E5-2680 v4 CPU containing 28
cores and 128 GiB of RAM.



We used the network architecture from Fig. 1 for all of our
experiments. Our system is implemented in Python2 and we
used PyTorch (Paszke et al. 2019) with default implementa-
tions of mean squared error (MSE) as the loss function and
Adam (Kingma and Ba 2015) as the optimization algorithm
for training each domain-specific QGRL network.

Our system uses RDDLsim as the simulator, and thus, ac-
cepts problems written in a subset of RDDL.

4.1 Baselines
As our baseline, we compare our approach with a first-
order Q-function approximation based approach for transfer;
MBRRL (Ng and Petrick 2021a,b). We also compare with
SymNet (Garg, Bajpai, and Mausam 2020), an approach that
requires access to closed-form action models, information
that is unavailable to MBRRL and GRL in our setting.3

MBRRL computes first-order abstractions using conjunc-
tive sets of features and learns a linear first-order approxi-
mation of the Q-function over these features. They employ
“mixed approximation,” where both the concrete Q(s, a)
values as well as the approximated Q-values are used to se-
lect actions for the policy.

SymNet uses a Graph Neural Network (GNN) representa-
tion of a parsed Dynamic Bayes Network (DBN) for a prob-
lem. SymNet thus has access to additional domain knowl-
edge in the form of closed-form action models, and as a re-
sult, it is not directly applicable in the RL setting that we
consider. Nevertheless, it can serve as a good indicator of
the transfer capabilities of GRL, which does not need such
closed-form representations of action models. We also tried
modifying TraPSNet (Garg, Bajpai, and Mausam 2019), a
precursor of SymNet that does not require action models,
but could not run it due to the limited support for the do-
mains we considered.

4.2 Tasks, Training, and Test Setup
We consider tasks used in the International Probablistic
Planning Competition (IPPC) (Sanner 2011, 2014), some of
which have been used by SymNet and MBRRL as bench-
marks for evaluating transfer performance.

SysAdmin(n) is the IPPC version of the SysAdmin do-
main that was described earlier in the paper. The IPPC ver-
sion also allows for computers to automatically restart with
a fixed probability p.

Academic Advising(l, c, p) is a domain where the ob-
jective is to complete a degree program by passing a cer-
tain number of levels l containing c courses, each of which
need p prerequisites to be passed first. Courses have a higher
probability of passing if all of their prerequisites have been
passed first. At each time step, the agent is provided with a
large negative reward if the agent has not yet completed the
program. Thus, the objective is to complete the program in
the shortest number of time steps.

Game of Life(x, y) is John Conway’s Game of Life en-
vironment on a grid of size x× y (Izhikevich, Conway, and

2Our code is available at: https://github.com/AAIR-lab/GHN
3We thank the authors of SymNet and MBRRL for help in set-

ting up and using their source code.

Training Sizes

Domain Baselines GRL Test Sizes

SysAdmin 210 − 220 23 − 26 230 − 250

Academic Advising 220 − 230 28 − 232 240 − 260

Game of Life 29 − 29 24 − 29 216 − 230

Wildfire 218 − 232 28 − 232 250 − 272

Table 1: Sizes of the state spaces (min−max) for the prob-
lems used in training and testing the baselines and GRL.

Seth 2015). The rules are as follows: (a) a live cell with fewer
than two or greater than three live neighbors dies, (b) cells
with two or three live neighbors live on to the next time step,
and (c) any dead cell with exactly three live neighbors be-
comes a live cell. At each time step, the agent is awarded
with a positive reward proportional to the total number of
live cells.

Wildfire(x, y) is an environment set in a grid of size x×y
with some cells containing fuel. Cells that contain fuel can
spontaneously ignite with a probability proportional to the
total number of their neighbors that are on fire. At each time
step, the agent is awarded a large negative reward for each
cell that is burning. The initial state starts with some cells
already on fire and thus the objective is to put out all the
fires as quickly as possible.

The IPPC versions of Game of Life and Wildfire con-
tain 4-ary predicates that we converted to an equiva-
lent binary version by converting predicates like neigh-
bor(x1, y1, x1, y2) to neighbor(l11, l12) for use with all
baselines and GRL.

Training For SymNet, we utilized the same problems
(IPPC instances 1, 2, and 3) for training as published by the
authors. We trained each problem for 1250 episodes. For
MBRRL, we utilized the original authors’ training proce-
dure wherein we used IPPC instance #3 for training. We
trained this problem for 3750 episodes using Q-learning
with an initial ϵ = 1 and a decay rate of 0.997.

For training GRL with our leapfrogging approach,
we used problem generators that were used in the
IPPC to randomly generate problems for training. We
used SysAdmin(n) with n ∈ {3, 4, 6}, Academic
Advising(n, n, n) with n ∈ {2, 3, 4}, Game of Life(n, n)
with n ∈ {2, 3} and Wildfire(n, n) with n ∈ {2, 3, 4} for
generating problems used for training each domain respec-
tively. We trained each problem for 1250 episodes using
GRL using a fixed ϵ = 0.1. for each problem.

Testing We used the same set of problems as SymNet: in-
stances 5 − 10 from the IPPC problem collection. The only
exception was Academic Advising where we used instances
5, 7, and 9 since instances 6 and 10 used concurrent ac-
tions and this was not compatible with our system. To better
evaluate transfer performance, the test problems are selected
such that their state spaces are much larger than the training
problems used by GRL. For example, the state space size of
SysAdmin(n) is 2n. For training, the largest problem used
by GRL was SysAdmin(6), whereas the largest test problem,
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instance 10 (SysAdmin #10) of the IPPC is SysAdmin(50).
Table 1 lists the minimum and maximum state space sizes

of the training and test problems that we used in our eval-
uation respectively. A detailed description of the problem
instances and parameters that we used in our training and
test sets can be found in the extended version of this paper
(Karia and Srivastava 2022).

Hyperparameters We used the IPPC horizon H of 40
time steps for each episode after which the simulator was
reset to the initial state. To train a QGRL network, we used
a replay buffer of size 20000, a mini-batch size of 32, and
a training interval of 32 time steps with 25 steps of opti-
mization per interval. For our test setup, we used Q-learning
with ϵ = 0.1 for GRL and MBRRL. We used γ = 0.9 and
α = 0.05 for the SysAdmin and Game of Life domains and
used γ = 1.0 and α = 0.3 for Academic Advising and
Wildfire.

For MBRRL and SymNet, we used the default values of
all other settings like network architecture, feature discovery
threshold, etc., that were published by the authors.

Evaluation Metric To showcase the efficacy of transfer
learning, our evaluation metric compares the performance
of MBRRL and our approach after zero-shot transfer. We
freeze the policy after training, transfer it to the test instances
and run it greedily for 100 episodes. We report our results
using mean and standard deviation metrics computed using
10 individual runs of training and testing.

Feature Generation We generated sampled state spaces
and transitions between states using random walks on the
first problem used by GRL for training per domain. These
transitions were used in conjunction with the DL grammar
from Sec. 3.1 to generate the DL feature list FDL using a
modified version of the D2L system (Francès, Bonet, and
Geffner 2021), which does not require closed-form action
models or knowledge of goals. We set a complexity bound
of k = 5 for goal-independent feature generation. We empir-

ically observed that using this single small problem instance
and complexity bound together with the reduced DL gram-
mar from Sec. 3.1 to generate FDL was sufficient in generat-
ing features that enabled good generalization using GRL.

4.3 Analysis of Results

Our results are shown in Fig. 2. It is easy to see that GRL
has excellent zero-shot transfer capabilities and can easily
outperform or remain competitive with both MBRRL and
SymNet. We now present our analysis followed by a brief
discussion of some limitations and future work.

Comparison with MBRRL Our approach is able to sig-
nificantly outperform MBRRL on SysAdmin, Academic
Advising, and Wildfire. The DL abstractions used by GRL
are more expressive than the conjunctive first-order features
used by MBRRL, allowing GRL to learn policies that are
more expressive. Additionally, leapfrogging allows scaling
up training and learning of better generalized policies in the
same number of training episodes in contrast to using a fixed
instance for training.

For the Game of Life domain, we observed that even a
random policy performs similarly to GRL and the baselines.
This is surprising since PROST (Keller and Eyerich 2012),
an approach that requires closed-form action models, has
demonstrated that it is possible to achieve high reward in
this domain (Sanner 2011). We leave this investigation to
future work.

Comparison with SymNet SymNet utilizes significant
domain knowledge in constructing the graphs. For exam-
ple, edges are added between two nodes iff an action affects
them. Such information is unavailable when just observing
states as sets of predicates. It is impressive that despite not
using such knowledge, GRL is able to remain competitive
with SymNet in most of the problems.



4.4 Limitations and Future Work
In the SysAdmin domain, the probability with which a com-
puter shuts down depends on how many shutdown comput-
ers it is connected to. Our representation of o ∈ ϕf (s) for
representing the action vectors cannot capture such depen-
dencies. However, this is easy to mitigate using a new feature
that counts the number of shutdown computers a specific
computer is connected to. We plan to investigate the auto-
matic generation and use of such features in future work.

Leapfrogging requires an input list of object counts for the
problem generator that we hand-coded. However, we believe
that our approach is a step forward in curriculum design by
relieving the designer from knowing intrinsic details about
the domain, which is often imperative for assessing the dif-
ficulty of tasks. The lack of a problem generator can be mit-
igated by combining leapfrogging with techniques that sam-
ple “subgoals” (Fern, Yoon, and Givan 2006; Andrychowicz
et al. 2017) and utilizing GRL to learn a generalized pol-
icy that can later be efficiently transferred to any subsequent
problems.

5 Related Work
Our work adds to the vast body of literature on learning in
relational domains. Several of these approaches (Khardon
1999; Guestrin et al. 2003; Wu and Givan 2007; Garg, Baj-
pai, and Mausam 2020) assume that action models are avail-
able in an analytical form and thus are not directly applicable
to RL settings. For example, FOALP (Sanner and Boutilier
2005) learns features for approximating the value function
by regressing over action models. D2L (Francès, Bonet, and
Geffner 2021) learns abstract policies for deterministic prob-
lems assuming an action model where actions can incre-
ment or decrement features. We focus our discussion on re-
lational RL (see Tadepalli, Givan, and Driessens (2004) for
an overview).

Q-estimation Approaches Q-RRL (Dzeroski, Raedt, and
Driessens 2001) learns an approximation of the Q-function
by using logical regression trees. GBQL (Das et al. 2020)
learns a gradient-boosted tree representation of the Q-
function. Their tree representations use “lifted” predicates
thus enabling transfer across problem instances with differ-
ing object counts. These approaches were evaluated on rel-
atively simple tasks using hand-coded support predicates,
demonstrating the difficulty of transfer using a tree-based
approach. Our evaluation does not use any support predi-
cates and shows that GRL can learn good policies that trans-
fer well to larger problems.

RePReL (Kokel et al. 2021) uses a high-level planner to-
gether with hand-coded abstractions to train task-specific RL
agents for transfer learning. Rosenfeld, Taylor, and Kraus
(2017) use hand-crafted features and similarity functions
to speed up Q-learning. MBRRL (Ng and Petrick 2021a,b)
learns conjunctive first-order features for Q-function ap-
proximation using hand-coded contextual information for
improved performance. In contrast to these approaches,
GRL does not require any hand-coded or expert knowledge.

Policy-based approaches Fern, Yoon, and Givan (2006)
use taxonomic syntax with beam search and approximate

policy iteration to learn decision-list policies. They sample
sub-goals using random walks to scale up learning. How-
ever, it is not clear how to apply their approach to prob-
lems that do not have goals. GRL can work on problems
with or without goals. Janisch, Pevný, and Lisý (2020) use
graph neural network (GNN) representations of the state to
compute policies. GNNs are reliant on the network’s recep-
tive field unlike QGRL which uses multilayer perceptrons and
thus have limited generalization capabilities w.r.t. the num-
ber of objects. TraPSNet (Garg, Bajpai, and Mausam 2019)
also uses a GNN and is limited to domains with a single
binary predicate and actions with a single parameter. More-
over, the binary predicate in TraPSNet is required to be a
non-fluent meaning that its truth value in a problem can
never change. GRL can be used in domains with any number
of action parameters and binary predicates and allows binary
predicates to change their valuations across different states.

Automatic Curriculum Generation Fern, Yoon, and Gi-
van (2006) sample goals from random walks on a single
problem. Their approach relies on the target problem to ad-
equately represent the goal distribution for generalization.
Similar ideas are explored in Ferber, Helmert, and Hoff-
mann (2020) and Andrychowicz et al. (2017). These tech-
niques are intra-instance, sampling different goals from the
same state space and are orthogonal to GRL, that addresses
inter-instance transfer. Our approach of leapfrogging is most
similar to that of Groshev et al. (2018) and Karia and Sri-
vastava (2021) and the learn-from-small-examples approach
of Wu and Givan (2007). We extend their ideas to RL set-
tings and demonstrate its efficacy in transfer. Narvekar and
Stone (2019) automatically generate a curriculum for tasks
by solving a curriculum MDP (CMDP). However, they re-
quire domain-dependent, hand-coded basis features for ef-
fective curriculum learning whereas leapfrogging does not
require any domain-dependent hand-coding.

6 Conclusion
We presented an approach for reinforcement learning in re-
lational domains that can learn good policies with effective
zero-shot transfer capabilities. Our results show that De-
scription Logic based features acquired simply through state
trajectory sequences can offer performance similar to that of
of analytical (closed-form) action models. In the future, we
plan to investigate improving the features so that abstract
actions can also take into account relationships between the
instantiated parameters and the abstract state.
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