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Abstract
When solving planning problems with Reinforcement Learn-
ing (RL) algorithms, great care should be taken in defin-
ing action spaces. A naive translation of the planning ac-
tion space incurs severe degradation in sample complexity,
and thus in practice action spaces are often engineered manu-
ally in a domain-specific manner. Here, we propose an auto-
mated way of reducing the action spaces, by leveraging lifted
mutex groups. Our experiments show a significant reduction
in the action space size of the RL environments, across all
tested planning domains, improving sample complexity of
RL agents.

Introduction
AI planning tasks are commonly described in the planning
domain definition language (PDDL) (McDermott 2000)
(RL) tasks are often formulated as a Markov Decision Pro-
cess (MDP). When planning problems are tackled with RL
approaches, these problems can and often are formulated as
an MDP. The state space of this MDP is defined over the
set of ground fluents and the action space is defined over
the set of ground operators. As the number of objects in
the planning problem increases, the MDP state and action
spaces grow significantly. While RL approaches are resilient
to large state spaces, large discrete action spaces are prob-
lematic (Zahavy et al. 2018; Pazis and Parr 2011).

To remedy the large discrete action spaces of planning
tasks, researchers either design the action space of the MDP
manually from scratch (e.g., Dzeroski, Raedt, and Driessens
(2001)) or modify the grounding process of the PDDL oper-
ators to generate reduced actions. In this work we focus on
the latter approach. Intuitively, the number of ground opera-
tors defined by a PDDL operator is dictated by the number of
parameters in that operator. If some parameters of an opera-
tor are removed, the number of ground operators generated
by that operator would reduce. Building up on this intuition
Silver and Chitnis (2020) propose to reduce the number of
actions by eliminating the manually annotated inessential
parameters while grounding.

Consider a gripper domain (McDermott 2000) where
a robot moves balls between two rooms. Figure 1 de-
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picts a sample initial state and the PDDL task in this do-
main. Here, for the schematic operator drop(?b:ball,
?r:room, ?g:gripper), the parameters ?b and ?r
are inessential—they are not required by the RL agent—as
the ball ?b and the room ?r can be inferred from the se-
lected gripper. That is, the ball carried by the gripper is ?b
and, the current location of the robot is ?r. So, only the pa-
rameter ?g is essential and rest can be dropped while defin-
ing the MDP action. PDDL operators encode transition dy-
namics and hence require all the parameters occurring in the
preconditions and effects. Whereas, MDP actions are mere
labels and do not encode transition dynamics. Hence, pa-
rameters required by the PDDL operator are not necessary
for MDP actions. To make this distinction explicit, we refer
to the action space of MDP as label set.

In this paper, we prove that existing methods for discov-
ering lifted mutex groups can be leveraged to automatically
identify the inessential parameters of the operators effec-
tively. Our contributions are as follows. We propose an au-
tomated way of reducing the labels by defining the notion of
valid label reduction and applicable operator mutex groups.
We formally define the problem of obtaining a parameter
seed set. Next, we propose to solve this problem by trans-
lating it to delete-free planning task and prove that the solu-
tion obtained is a valid label reduction. Then we empirically
evaluate our approach on 14 STRIPS domains and show that
it achieves significant reduction in action labels. And finally,
we empirically show that the label reduction significantly
improves the sample efficiency of standard RL agents.

Preliminaries
In this section, we first introduce the notations for a normal-
ized PDDL task, then describe the semantics behind convert-
ing a PDDL task to MDP and provide brief overview of the
lifted mutex groups that we use in our proposed approach.

PDDL task We follow the notation of Röger, Sievers, and
Katz (2018) for normalized PDDL tasks, dropping axioms
and conditional effects for simplicity. A normalized PDDL
task Π = ⟨L,O, I, G⟩ is defined over a first-order language
L that consists of a finite number of fluent predicates, vari-
ables, and objects. For formulas over L the free variables are
defined as usual in first-order logic. Formulas not containing
any free variables are called grounded. Otherwise, they are
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A normalized PDDL Gripper task Π = ⟨L,O, I, G⟩.
• Language L includes:

typed objects: r1, r2, b1, b2, g1, g2 and
predicates: at robby(?r), at(?b, ?r),
free(?g), carry(?b, ?g)

• Initial state I is: {at(b1, r1), at(b2, r1),
at robby(r2), free(g1), free(g2)}

• Goal state G is: {at(b2, r2)}
• Schematic operators O consists:
move
: params {?from : room, ?to : room}
: pre {at robby(?from)}
: add {at robby(?to)}
: del {at robby(?from)}

pick
: params {?b : ball, ?r : room, ?g : gripper}
: pre {at(?b, ?r), at robby(?r),

free(?g)}
: add {carry(?b, ?g)}
: del {at(?b, ?r), free(?g)}

drop
: params {?b : ball, ?r : room, ?g : gripper}
: pre {carry(?b, ?g), at robby(?r)}
: add {at(?b, ?r), free(?g))}
: del {carry(?b, ?g)}

(b)

Figure 1: A running example of Gripper task, (a) an initial
state with balls b1 and b2 in room r1 and robot in room r2,
and (b) a normalized PDDL description of the Gripper task.

called lifted. The initial state specification I is a conjunction
of ground atoms with fluent predicates. The goal specifica-
tion G is a conjunction of ground literals (atoms or its nega-
tions). O is a finite set of schematic operators. A schematic
operator o = ⟨head(o), pre(o), add(o), del(o)⟩ consists of
the atom head(o) indicating the name of the operator, the
preconditions pre(o), the add-effects add(o), and the delete-
effects del(o), each of which is a conjunction of literals over
L.

For each operator o, the set of operator parameters
params(o) is defined as free(pre(o)) ∪ free(add(o)) ∪
free(del(o)). All the variables of a schematic operator are

free. Operators with empty parameter sets are called ground
operators. Otherwise, an operator can be grounded by re-
placing parameters with possible objects in the domain.

We use notation o↓(P/a) to denote a set of ground op-
erators induced by assigning objects a to parameter subset
P and grounding the remaining parameters with all possible
objects. For instance, in the gripper example, the ground op-
erator set of the schematic operator o=pick(?b,?r,?g)
induced by the assignment {?b/b1,?g/g1} is

o↓
(
{?b/b1,?g/g1}

)
=
{
pick(b1,r1,g1),

pick(b1,r2,g1)
}
,

where the parameters ?b and ?g are replaced by the given
objects but the parameter ?r is replaced with all possible
room objects, {r1, r2}.

A state s assigns values TRUE and FALSE to all ground
atoms with fluent predicates. The initial state s0 of the task
assigns value TRUE to all atoms occurring in I , and FALSE

to all other fluent ground atoms. A ground operator o is ap-
plicable in state s if s |= pre(o), that is, the preconditions
of o are satisfied in the state s. A ground atom a is TRUE in
the successor state if and only if either it has been TRUE in
s and a ̸∈ del(o) or a ∈ add(o). A plan for the task is a
sequence of ground operators whose subsequent application
leads from s0 to some state s∗ with s∗ |= G.

PDDL task as MDP A Markov decision process (MDP)
M = ⟨S,A, P,R⟩ contains a set of states S, a set of actions
A, a transition probability distribution P : S × S × A 7→
[0, 1], and a reward function R : S 7→ R. When a PDDL
task Π is cast as an MDP M , the states S ∈ M is defined
as the set of all states reachable from I ∈ Π, the action set
A ∈ M is defined as the set of labels L that is composed of
a unique label for each of the ground operators, the proba-
bility distribution P is defined to respect the state-transition
in the PDDL operators, and the reward function R is de-
fined as some positive integer when s |= G. In practice, for
each of the ground operators, the head of the ground opera-
tor head(o) is assigned as the unique label.

Lifted Mutex Groups A mutex group is a set of mu-
tually exclusive ground predicates M , of which at any
given (reachable from I) state s at most one can be
TRUE. That is ∀s, |M ∩ s| ≤ 1 or equivalently ∀s, |{a | s |=
a, a ∈ M}| ≤ 1 . For example, in the gripper domain,
{at(b1,r1),at(b1,r2)} is a mutex group as, in any
given state, ball b1 can only be in one of the rooms. Any
subset of a mutex group is also a mutex group. A Lifted Mu-
tex Group (LMG) is a set of lifted predicates that produces a
mutex group when grounded. Formally, a lifted mutex group
is defined using an invariant candidate.

An invariant candidate is a tuple c =
⟨vf (c), vc(c), atoms(c)⟩ where vf (c) is a finite set of
fixed variables, vc(c) is a finite set of counted vari-
ables, and atoms(c) is a finite set of atoms such that
all the variables of the atoms are present in either
vf (c) or vc(c), i.e. free(atoms(c)) = vf (c) ∪ vc(c)
and vf (c) ∩ vc(c) = ϕ. For example, consider an in-
variant candidate c = ⟨{?b},{?r},{at(?b,?r)} ⟩.



Different groundings of fixed variables vf (c) = {?b}
generate different sets of ground atom and different
grounding of counted variable vc(c) = {?r} gener-
ates ground atoms within each set. We denote ground
atom set with downarrow ↓. One of the ground atom
sets for {?b/b1} is c↓(?b/b1) = {at(b1,r1),
at(b1,r2)} and another ground set for {?b/b2} is
c↓(?b/b2) = {at(b2,r1),at(b2,r2)}.

An invariant candidate is called a lifted mutex group
if all of its ground atom sets are mutex groups, that is,
∀x, s, |{a | s |= a, a ∈ c↓(v

f (c)/x)}| ≤ 1. Here
without loss of generality, we assume that each LMG has
only one atom. If an LMG does not have any fixed vari-
able, then it can generate only one ground mutex group.
For example, ⟨∅,?r,{at robby(?r)}⟩ induces only one
ground atoms set {at robby(r1),at robby(r2)}.
Fiser (2020) provides a method to identify the set of LMGs
for a PDDL task. In what follows, a lifted mutex group l is
called relevant to an operator o if atom(l) ∈ pre(o).

Label Reduction
The paper aims to reduce the action space of an AI planning
task, described as an MDP for RL. As discussed in previous
section, the set of RL actions or the label set L for such an
MDP consists of label head(o) for each ground operator o.
Here, we identify an assignment of labels to planning op-
erators such that it generates a smaller label set L′, while
producing an equivalent transition system. We capture this
requirement by specifying the criteria for a valid label re-
duction. A label reduction is valid if it assigns distinct labels
to any two ground operators that can be applied in a reach-
able state. For example, operators pick(b1,r1,g1) and
pick(b2,r2,g1) cannot be applied in the same state as
the gripper g1 cannot be in two different rooms in the same
state. Thus, assigning the same label to both would be valid.
But pick(b1,r1,g1) and pick(b2,r1,g2) can be
applied in the same state, and hence cannot be assigned the
same action label. Formally,

Definition 1 A label reduction function α : L 7→ L′ is valid
if any two distinct operator labels head(o1), head(o2) ∈
L that are applicable in the same reachable state
(s |= pre(o1) ∧ s |= pre(o2)) are assigned distinct labels,
that is α(head(o1)) ̸= α(head(o2)).

This definition ensures that any two operators that are ap-
plicable in a same state are distinguishable. For each reduced
label, the set of corresponding operators must include at
most one applicable operator for each reachable state. Notic-
ing the resemblance to predicate mutex groups, we call such
operator sets applicable operator mutex groups.

Definition 2 The set of ground operators O′ is an appli-
cable operator mutex group (AOMG) if for any reachable
state s, |{o | s |= pre(o), o ∈ O′}| ≤ 1.

Naturally, any subset of an AOMG is also an AOMG, and
any subset of operators of size 1 is an AOMG. A partitioning
of operators into AOMGs defines a valid label reduction,
and vice versa, a valid label reduction defines a partitioning
of operators into AOMGs. The problem of finding a label set

L′ of size m ≤ |L| is equivalent to the problem of finding a
set cover of size m given a set of AOMGs O′

1 . . .O′
k such

that
⋃k

i=1 O′
k is the set of all ground operators induced by

O and m < k. However, the set cover problem is defined
over ground operator sets, and it becomes impractical to
compute when the set of ground operators is large. Thus, we
focus on finding AOMGs for (lifted) schematic operators.
We find AOMGs for each schematic operator separately,
by reducing its parameters. For example, given a schematic
operator o= pick(?b,?r,?g) as a robot can only be in
one specific room in any state, only one specific assignment
to ?r is satisfiable in any state. So one possible set of
AOMGs can be obtained by defining partial grounding
of operator o on the subset of parameters obtained after
removing ?r. That is {o↓({?b/b,?g/g}) | ∀b,g} =
{{pick(b1,r1,g1),pick(b1,r2,g1)},
{pick(b1,r1,g2),pick(b1,r2,g2)}, ...}.

Any (partial) parameter grounding defines a partitioning
over set of (ground) operators, where each partition corre-
sponds to a particular assignment of objects to a subset of
parameters. Thus, we want to identify a subset of parame-
ters (X) such that any assignment (c) to this subset results
in the ground operator set (o↓(X/c)) being an AOMG (like
the subset {?b, ?g} in the above example). Note that LMGs
have a similar property. Any assignment to their fixed vari-
ables results in a ground atom set being a mutex group. Next
we show how LMGs can be used to identify the required
parameter subset.

Theorem 1 Given a schematic operator o and a lifted mu-
tex group l = ⟨vf (l), vc(l), atom(l)⟩, if atom(l) ∈ pre(o),
then any assignment c to X = params(o) \ vc(l) results in
o↓(X/c) being an AOMG.

Proof: Given an assignment vf (l)/c, any state s can only
satisfy at most one of the ground atoms from the mutex
group l↓(v

f (l)/c) (from the definition of LMG). Conse-
quently, as atom(l) ∈ pre(o), the state can satisfy at most
one of the preconditions of the ground operators in the set
o↓(X/c). Hence, o↓(X/c) is an AOMG.

The parameters from set vc(l) need not be included in
X , as given the assignment to vf (l) ⊂ params(o), the
LMG l guarantees a unique assignment to parameters vc(l).
Once the assignment to these parameters is identified, an-
other LMG l′ could now be used to identify the assignment
to parameters vc(l′) and hence vc(l′) can also be removed
from X . Essentially, we can leverage multiple LMGs to fur-
ther reduce the subset X . Formally, this corresponds to the
following problem, which we call parameter seed set:

Input: A schematic operator o with parameters params(o)
and a set of relevant lifted mutex groups L.
Find: A subset X ⊆ params(o) of parameters s.t.
∃X1, . . . Xk with (i) X = X1 ⊆ X2 ⊆ . . . ⊆ Xk =
params(o), and (ii) Xi+1 =Xi∪vc(l) for some l ∈ L s.t.
vf (l)⊆Xi.

Any assignment of objects to the parameter seed set X
will result in a unique assignment to all the remaining pa-
rameters of o for any reachable state.



Theorem 2 Let o be a schematic operator over parameters
params(o) and X be a solution to the parameter seed set
problem above. Any assignment c of objects to X results in
o↓(X/c) being an AOMG.

Proof: Let X1 ⊆ X2 ⊆ . . . ⊆ Xk = params(o) and let
l1 . . . lk−1 be lifted mutex groups such that vf (li) ∈ Xi and
Xi+1 = Xi ∪ vc(li). Then, each Xi is a solution to the
parameter seed set problem. We prove the claim by induc-
tion over the number of lifted mutex groups starting from k.
Base claim of o↓(Xk/x) (one lifted mutex group) is AOMG
results from Theorem 1. Now we assume that o↓(Xi+1/c1)
is an AOMG for any assignment ĉ to Xi+1 and prove that
o↓(Xi/c̃) is an AOMG for any assignment c̃ to Xi. Since
li = ⟨vf (li), vc(li), atom(li)⟩ is a lifted mutex group with
vf (li) ⊆ Xi, we have that li↓(Xi/c̃) is a mutex group. Let
o1, o2 be two ground operators in o↓(Xi/c̃). If both o1 and
o2 belong to o↓(Xi+1/ĉ), we are done. Otherwise, assume
o1 in o↓(Xi+1/c1) and o2 in o↓(Xi+1/c2), where c1 and
c2 agree on Xi but differ on Xi+1 \ Xi. However, since
Xi+1 = Xi ∪ vc(li), we have Xi+1 \ Xi ⊆ vc(li), mak-
ing c1 and c2 being mutually exclusive. Thus, o↓(Xi/c̃) is
an AOMG.

The parameter seed set problem is at least as hard as
(optimal) delete-free STRIPS planning: a reduction intro-
duces a lifted mutex group for each STRIPS ground oper-
ators, fixed variables as preconditions and counted variables
as add effects. Interestingly, going in the other direction, to
solve the parameter seed set problem, we cast it as a (delete-
free) STRIPS planning task. We first find a set L of relevant
LMGs. Then, for each schematic operator o we define a sep-
arate planning task Πo = ⟨Lo,Oo, Io, Go⟩, where
• Language Lo contains a single predicate mark and an

object for each parameter in params(o).
• The set of operators Oo consists of two schematic op-

erators seed and getl, one per each relevant LMG l,
where seed :=

〈
seed(x), ∅, {mark(x)}, ∅

〉
and getl :=〈

getl,{mark(x) |x∈vf (l)}, {mark(y) | y∈vc(l)}, ∅
〉
.

• Initial state Io = ∅
• Goal state Go = {mark(x) | ∀x ∈ params(o)}.

Here, the operator seed marks each parameter x ∈
params(o) as an element of the seed set. Operator getl indi-
cates that a unique assignment for the parameters x ∈ vc(l)
can be identified if all parameters y ∈ vf (l) are known.
Therefore, the parameters vc(l) can be reduced. A plan for
Πo corresponds to a sequence of seed and getl operators.
The parameters marked by seed operator form the seed set
and the rest are reduced.

Theorem 3 For a plan π of Πo, Xπ = {c | seed(c) ∈ π},
is a solution to the parameter seed set problem of o.

Proof: Let π be a plan for Πo (assume there are no redundant
repetitions of operators in π). Further, since seed operators
have no preconditions, assume these operators come before
getl operators, and let π = πsπg denote the partition of π
into the two sequences of seed and getl operators, respec-
tively. Further, let s1 be the state resulting from applying πs

in the initial state Io and s1, . . . , sk be the sequence of states
along πg applied to s1. Then, we have (i) s1 ⊆ s2 ⊆ . . . ⊆
sk and sk = {mark(x) | x ∈ params(o)}, as well as (ii)
si+1 = si ∪ add(getl) = {mark(y) | y ∈ vc(l)} for some
getl with pre(getl) = {mark(x) |x ∈ vf (l)} ⊆ si. De-
noting now the parameters of o mentioned in the state s by
X(s) = {x | mark(x) ∈ s}, we get that Xπ = X(s1) as
requested.

Different plans may correspond to different parameter
seed sets X and thus different AOMGs. To find the small-
est possible label set L′, we want to minimize the number
of AOMGs. So our objective is to find a seed set X with a
minimal number of possible assignments. This objective is
not linear. To overcome this issue, we generate all plans of
the planning problem and choose the plan that minimizes an
estimate of the possible number of assignments. This esti-
mate for a seed set X is the product of the number of objects
for each parameter in X .

To summarize, we find a parameter seed-set X for each
schematic operator such that assigning objects to X will re-
sult in a set of ground operators that is an AOMG. Hence,
all the ground operators in that set can be assigned the same
reduced label.

Experiments
We explicitly aim at answering the following questions:
Q1: Does our approach reduce the size of the action label
set? Is the reduction substantial?
Q2: Can the reduction help with learning RL policies?

To address Q1, we compare the size of label sets, ob-
tained with and without the proposed reduction, on a rep-
resentative set of 14 STRIPS domains from various IPC
(using the typed versions where available). We use the im-
plementation by Fiser (2020) for inferring the lifted mutex
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Figure 2: Comparison of label set sizes.



0 1 2 3 4 5

0

0.2

0.4

0.6

0.8

1

Steps in Environment (×105)

A
ve

ra
ge

R
ew

ar
d

Action Labels
All
Reduced

0 1 2 3 4 5

0

0.2

0.4

0.6

0.8

1

Steps in Environment (×105)

Action Labels
All
Reduced

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

Steps in Environment (×105)

Action Labels
All
Reduced

0 1 2 3 4 5

0

0.2

0.4

0.6

0.8

1

Steps in Environment (×105)

Action Labels
All
Reduced

(a) (b) (c) (d)

Figure 3: Learning curve in (a) ferry, (b) gripper, (c) blocks, and (d) logistics; with and without action label reduction.

groups, the ForbidIterative (FI) unordered top quality plan-
ner (Katz, Sohrabi, and Udrea 2020) to solve the parame-
ter seed set planning task, and the Fast Downward planning
system translator (Helmert 2006) to ground the schematic
operators. As explained in the previous section, we get all
the solutions to the parameter seed set planning task with FI
planner (using |params(o)| quality multiplier) and choose
one that has the lowest estimate of possible assignments.

Figure 2 compares the size of the label sets L′ and L, ob-
tained with and without the reduction resp., for each PDDL
problem instance of the 14 STRIPS domains. Both axes
are log-scaled. Points below the diagonal indicate instances
where the label set with proposed reduction is smaller than
the original one. The distance from the diagonal indicates
the significance of the reduction. Gray dashed lines below
the diagonal represents the order of magnitude of the reduc-
tion. Our experimental results show a substantial reduction
of the label set in most problem instances, going beyond 2
orders of magnitude on some problems.

Table 1 summarizes the number of schematic operators
that were reduced by our approach in those 14 IPC do-
mains. It also presents the mean and max number of re-
ducible parameters found in the schematic operators, i.e.,
|params(o)| − |X|. Each row of the table represents a do-
main, aggregating results over the instances of that domain.
Of the 14 domains considered, in 11 domains we were able
to reduce at-least one parameter in all the schematic op-
erators. The largest reduction, in terms of the number of
reducible parameters, is observed in freecell, pipesworld,
thoughtful, tpp, and zenotravel domains. Each having 3–5
parameters reduced for some schematic operators. Note that
the number of reduced parameters (in Table 1) is not propor-
tional to the number of reduced actions (in Figure 2). Never-
theless, the number of reduced parameters indicate the im-
portance of parameter reduction. The total compute time did
not exceed 4 seconds for any of these problems.

Moving on to question Q2, to evaluate the advantage of
reducing the label set size, we cast the PDDL task as an
MDP with the reduced label set and learn an RL policy. We
focus on 4 classical planning domains from Rivlin, Hazan,
and Karpas (2020): Ferry, Gripper, Blocks, and Logistics.
Since our aim is to evaluate the advantage of reducing the
action space, and not to evaluate the generalization of poli-
cies, we fixed the number of objects in each domain. We

Domain # reduced reducible parameters
operators max % (#) mean % (#)

blocks 3/4 50% (0.75) 50% (0.75)

gripper 3/3 49% (1.33) 49% (1.33)

logistics 6/6 58% (1.83) 55% (1.76)

visitall 1/1 50% (1.00) 50% (1.00)

barman 10/12 42% (2.00) 42% (2.00)

pipesworld 6/6 79% (5.00) 60% (3.87)

rovers 9/9 63% (2.40) 54% (2.10)

depot 5/5 47% (1.80) 47% (1.80)

driverlog 6/6 47% (1.50) 47% (1.50)

tpp 4/4 62% (4.00) 62% (4.00)

satellite 5/5 93% (2.60) 52% (1.46)

zenotravel 5/5 79% (3.40) 62% (2.68)

thoughtful 20/21 73% (3.24) 73% (3.24)

freecell 10/10 65% (3.30) 65% (3.30)

Table 1: Summary of lifted operators reduced by our ap-
proach in 14 IPC domains. Column 2 presents the number
of lifted operators that were reduced out of total number of
lifted operator in the domain file. Column 3 & 4 presents the
maximum & mean of percent (number) of reducible param-
eters found per operator, i.e |params(o)| − |X|.

generate 500 unique pairs of initial and goal state in each
domain. Of these, 250 were used in training and remain-
ing were set aside for evaluation. Table 2 summarizes the
number of objects selected in each domain and the num-
ber of action labels. We used PDDLEnv1 library to con-
vert the PDDL domain and problem files to RL Environ-
ment. Inspired by the work of Gehring et al. (2022), we used
a domain-independent planning heuristic, hFF, as dense re-
ward function. We employed the Double DQN (van Hasselt,
Guez, and Silver 2016) implementation from the ACME RL
library (Hoffman et al. 2020) to learn a state-action value
function and applied a greedy policy π(s) = max

a
Q(s, a)

1https://github.com/gehring/pddlenv



Domain Objects # Action Labels

Grounded Reduced

Blocks 4 blocks 40 13

Ferry 3 cars 24 7

3 locations

Gripper 4 balls 36 14

2 locations

Logistics 2 packages, 2 cities, 68 20

2 trucks, 1 airplane

Table 2: Summary of domains used in RL evaluations.

Hyperparameters Values Exception
Learning Rate 0.003 −
Batch Size 4 16 in Logistics

Input Size # possible state literals

Output Size # Action labels

Hidden layers 3 −
Hidden units 64 512 in Logistics

Discount 0.95 −
Max Episode Length 100 −

Table 3: Summary of hyperparameters used in RL evalua-
tions.

in our evaluation. Table 3 describes all the hyperparameters
used in the domains. The experiments were performed on
computing clusters with Intel(R) Xeon(R) CPU E5-2667 v2
@ 3.30GHz and Tesla K80.

Figure 3 shows learning curves aggregated over 5 runs
with random seeds. For Ferry and Gripper domains (Figure
3 a and b), the reduction of action labels improves the sam-
ple efficiency by as many as 300, 000 steps. In Blocks and
Logistics domains (Figure 3 c and d), the baseline without
the label reduction was not able to learn a policy. Once a
reduced label set is used, the training becomes feasible. It
is clear from these plots that reducing the action label set
yields significant gain in terms of sample efficiency. The
problem files that are used for the RL evaluation can be con-
sidered minuscule, since there are only a few objects (4–7)
in each of the domains and there are not too many labels
to begin with. However, our results show that even in such
small-scale problems reducing the action labels is advanta-
geous. In large problems (with many objects) our approach
can provide tremendous leverage for training RL algorithms
as action set is reduced by order of magnitudes. With this,
we answer the Q2 affirmatively.

Related Work
Various approaches have been studies in RL to reduce the
action space. Stochastic action sets (Boutilier et al. 2018)
and invalid action masking (Huang and Ontañón 2020; Bam-
ford and Ovalle 2021; Kanervisto, Scheller, and Hautamäki
2020) restricts the action selected by an agent to a small
subset of actions that are feasible in the given state. This
is done by assigning zero probability (or -inf score) to in-
valid actions. While the stochastic action sets and invalid
action masking define a state-dependent subset of feasible
actions, our action reduction is independent of the current
state. Indeed, our approach can be combined with invalid
action masking to further accelerate the convergence.

Another approach to manage large number of actions
in an MDP is by using factored action spaces (Pazis
and Lagoudakis 2011; Geißer, Speck, and Keller
2020; Guestrin, Lagoudakis, and Parr 2002). With
factored action space, an action is decomposed into
multiple components and represented as either a deci-
sion tree or a vector. It is straight forward to convert
predicate action space (for example, gripper actions
{drop(b1, r2, g1), pick(b2, r1, g2), . . .})
to a factored action space (a0, a1, . . . , an) with a0 denoting
the action identifier (for example, drop or pick) and
a1, . . . , an, denoting the parameters. Our approach of
identifying the parameter seed set can be used to reduce the
number of factors in the factored action spaces.

In planning literature, label reduction techniques are used
to reduce the number of transition labels in an abstract
transition graph (Helmert et al. 2014; Sievers, Wehrle, and
Helmert 2014). The aim of label reduction in this setting is
to simplify the transition system by creating equivalence be-
tween labelled transitions. In this work, the purpose of label
reduction is different. Labels of operators that are never ap-
plicable together are reduced to the same label, allowing to
differentiate applicable operators in a given state.

Discussion and Future Work
In this work, we have introduced definitions of a valid label
reduction and applicable operator mutex groups and have
shown the connection between the two. We have presented a
method for automatically deriving operator label reductions
for planning tasks based on operator parameter reduction.
For that, a parameter seed set problem was introduced, and
a solution to the problem was suggested by translating it to
delete-free planning. Our experimental evaluation shows a
significant reduction in operator labels when using our ap-
proach, across all tested planning domains. This reduction
translates into improved performance of standard RL agents
on the tested problems.

Our method, however, does not guarantee optimality of
the valid reduction size, even for the restricted case consid-
ered in this work. Finding provably minimal size reductions
is an interesting topic for future research. Further, we have
not explored the possible benefits of operator parameter re-
duction for lifted planning, such as for faster successor gen-
eration (Corrêa et al. 2020) or heuristic computation (Corrêa
et al. 2021; Lauer et al. 2021).
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