
Model-Based Adaptation to Novelty in Open-World AI

Roni Stern1,2, Wiktor Piotrowski2, Matthew Klenk 3, Johan de Kleer 1, Alexandre Perez 1, Jacob
Le 1 Shiwali Mohan 1

1 Palo Alto Research Center, CA, USA
2 Ben-Gurion University of the Negev, Beer-Sheva, Israel

3 Toyota Research Institute, CA, USA
roni.stern@gmail.com, {wiktorpi,dekleer,jale,smohan}@example.com, matt.klenk@tri.global, alexandreperez@gmail.com

Abstract
Most model-based agents are ill-equipped to han-
dle novel situations in which their model of the
environment no longer sufficiently represents the
world. We introduce HYDRA, an architecture for a
model-based agent operating in open-world, mixed
continuous-discrete environments that detects and
effectively adapts to novelties encountered during
performance. HYDRA does so by using a com-
positional model of the environment and employ-
ing a range of AI techniques including domain-
independent automated planning, anomaly detec-
tion, model-based diagnosis, and heuristic search.
We also present a design for a HYDRA agent that
uses PDDL+, a rich domain-independent planning
domain description language, to define its com-
positional model. An empirical evaluation on the
well-known balancing cartpole problem, a standard
Reinforcement Learning (RL) benchmark, demon-
strates that our PDDL+-based HYDRA agent is able
to quickly and effectively detect and adapt to some
classes of novelties, outperforming an off-the-shelf
deep q-network (DQN) agent.

1 Introduction
One hallmark of human cognition is our ability to function in
an open world. People navigate to previously unseen places,
perform new tasks, and integrate new technology into their
lives. In games, human flexibility supports inventing new
strategies along with adapting to changing rules. In contrast,
current AI systems perform with superhuman capability in
many closed-world game domains, but minor perturbations
of the game can lead to significant drops in performance. For
example, Witty et al. [2018] demonstrated that even changes
which made the game easier could cause catastrophic results
for superhuman-performing deep Q-learning agents. This
mismatch between human cognitive abilities and machine ca-
pabilities indicates that effectively responding to novelty is a
major problem in current AI systems [Senator, 2019].

In this work, we explore the novelty response problem in
the context of an autonomous agent acting in the world. The
agent performs actions, collects observations, and accumu-
lates rewards which it aims to maximize. At some stage, a

novelty is introduced, that is, the dynamics of the environ-
ment changes. To continue to function effectively, the agent
must adapt its behavior. A naive approach for this novelty
response problem is to re-train the agent on the modified en-
vironment using an off-the-shelf RL algorithm. Yet, such re-
training may require numerous interactions with the environ-
ment and ignores knowledge about aspects of the environ-
ment that has not changed.

The first contribution of this work is HYDRA, a model-
based architecture of an autonomous agent that plans and
acts effectively in a changing environment. A key element in
the HYDRA architecture is the use of a compositional model
of the environment, i.e., a model whose components repre-
sent meaningful aspects of the environment, as opposed to a
black-box prediction model such as a deep neural network.
This compositional model is used to plan which actions to
perform, but also to monitor their execution and detect nov-
elties by comparing the outcomes of executed actions with
the model’s expectation. When novelty is detected, the HY-
DRA agent responds by employing a model-based diagnosis
engine to identify the components of its compositional model
that need to be adapted to be consistent with detected novel-
ties. The main benefit of using a compositional model is that
planning is more robust to changes and adapting to novelty
does not require re-training the agent from scratch.

Our second contribution is a complete implementation of
a HYDRA agent that uses PDDL+ [Fox and Long, 2006] to
represent its compositional environment model. PDDL+ is
a feature-rich domain-independent planning modeling lan-
guage that has been used to model a range of complex plan-
ning problems, including Chemical Batch Plant [Della Penna
et al., 2010a], Atmospheric Reentry [Piotrowski, 2018], Ur-
ban traffic Control [Vallati et al., 2016], and Planetary Lan-
der [Della Penna et al., 2010b]. Using PDDL+ allows such a
HYDRA agent to be used in a broad range of domains, in-
cluding domains that require discrete and continuous state
variables as well as exogenous events and continuous pro-
cesses. We describe our PDDL+-based HYDRA agent in de-
tail, and highlight the challenges in doing so. The third contri-
bution of this paper is an empirical evaluation of a PDDL+-
based HYDRA agent on a standard Reinforcement Learning
(RL) benchmark - OpenAI Gym’s balancing Cartpole do-
main [Barto et al., 1983; Brockman et al., 2016]. Our results
show that HYDRA is resilient to novelties; i.e, the degrada-



tion in its performance is not as severe as the standard deep
Q-network (DQN) RL agent. Second, we show that HYDRA
adapts quickly, requiring less than 20 episodes to return to top
performance after novelty has been introduced, much faster
than the DQN RL agent. Finally, adaptations in HYDRA are
interpretable. They are represented in terms of changes to
the elements of its domain model enabling inspection of pro-
posed changes.

2 Problem Definition
HYDRA is designed to interact with the environment in a
standard RL setup. That is, the agent plays a sequence of
episodes, every episode consists of a sequence of steps, and
every step consists of observing a state, performing an action,
observing the resulting state, and receiving reward. The re-
ward of an episode is the sum of rewards in its constituent
steps. We assume that the environment is a transition system
E = 〈S,A, SI , ST , R〉 where S is the possibly infinite set of
states; A is the set of possible actions; SI ⊆ S is a set of
possible initial states, ST ⊆ S is set of terminal states, and
R is a reward function R : S → R, where R(s) returns the
reward of reaching state s.1 An agent plays an episode in the
environment E means that the agent selects and performs an
action in the environment starting from a randomly selected
initial state sI ∈ SI and ending when reaching a terminal
state sT ∈ ST . The result of an agent playing an episode is a
trajectory, which comprises a sequence of tuples of the form
〈s, a, s′, r〉, representing that the agent performed action a at
state s, reached the state s′ and collected a reward r.

Following the Theory of Environmental Change [Langley,
2020], we view novelty as a transformation of the underlying
environment E that occurs at some point in time. Formally,
we consider novelty here as a function ϕ that can be applied
to an environment E and outputs an environment ϕ(E) that
is different from E in some way.2 Introducing a novelty ϕ
in an environment E means that the underlying environment
E changes to ϕ(E). In an open world, sequences of novel-
ties can, in general, be introduced at multiple points in time.
However, in this work we impose constraints and assume that
(1) novelty is not introduced during an episode, only between
episodes; (2) at most one novelty will be introduced; (3) once
a novelty is introduced all subsequent episodes are played in
the modified environment. We refer to this setup as the single
persistent novelty setup.
Definition 1 (The Novelty Response Problem). A novelty re-
sponse problem is defined by a tuple Π = 〈E,ϕ, tN 〉 where
E is a transition system, ϕ is a novelty function, and tN is a
non-negative integer specifying the episode in which novelty
ϕ is introduced. In this setup, an agent plays tN episodes
from environment E and all subsequent episodes in environ-
ment ϕ(E).

The objective of an agent faced with this novelty response
problem is to maximize its cumulative reward over time. A
key challenge for an agent of this setup is that the agent does

1Other reward function formulations are also common, e.g.,
where the reward function includes both state and action (R(s, a)).

2Boult et al. [Boult et al., 2021] referred to this type of novelty
as a world novelty.

1/12/2022 8

Action Selection

Consistency 
Checking

Model Repair

World

Diagnosis 
Engine

Diagnosis 
Engine

Surrogate World 
Model

Surrogate World 
Model

The Hydra Agent

Planning 
Engine

Planning 
Engine

Observation

Action

Consistency Score, Observation

MMO

Figure 1: An overview of an HYDRA agent.

know the values of neither tN nor ϕ. That is, the agent does
not known when novelty will be introduced and how it will
change the environment. Next, we describe HYDRA, our pro-
posed architecture for a model-based agent faced with a nov-
elty response problem.

3 The HYDRA Agent
HYDRA assumes the availability of a compositional model
Ê of the environment E that can make predictions about
the expected outcome of the agent’s actions. Obtaining
a compositional model for a given domain can be done
manually by human experts or learned from data by action
model learning algorithms such as ARMS [Wu et al., 2007],
LOCM [Cresswell et al., 2013], FAMA [Aineto et al., 2019],
and SAM Learning [Juba et al., 2021] and others [Asai and
Muise, 2020]. Recent work has even demonstrated learn-
ing such models from natural language [Feng et al., 2018;
Lindsay et al., 2017]. Note that while hydra has access to
the compositional model Ê, it may not have complete knowl-
edge of the actual environment E, and, more importantly, to
the environment after novelty has been introduced (ϕ(E)).
HYDRA has the following main modules.
• Action Selection. The role of this module is to select

which action to perform next given the current observed
state in the environment.
• Consistency Checking. The role of this module is to

associate an inconsistency score for the current observa-
tion, indicating how consistent it is with Ê. A high in-
consistency score indicates Ê and E are not sufficiently
aligned, possibly suggesting that novelty has been intro-
duced.
• Model Repair. The role of this module is to modify the

relevant components of Ê such that it is consistent with
the recent observations.

Figure 1 illustrates how these modules operate together.
When the agent collects a new observation from the envi-
ronment, it associates it with a consistency score using the
Consistency Checking module. If the inconsistency score is
reasonably low, HYDRA finds a state ŝ in Ê that best rep-
resents the current state in E and selects the next action to
perform using the Action Selection module. This is done by
running an automated planner to generate a plan that starts at
ŝ and is expected to maximize the collected reward accord-
ing to Ê.3 Based on this plan, the Action Selection module

3Practically, one may wish to limit the number of planning ses-



(:process movement
:parameters ()
:precondition (and (ready)(not (total_failure)))
:effect (and (increase (x) (* #t (x_dot)) )
(increase (theta) (* #t (theta_dot)))
(increase (x_dot) (* #t (x_ddot)) )
(increase (theta_dot) (* #t (theta_ddot)) )
(increase (elapsed_time) (* #t 1) ) ))

Figure 2: (CartPole) Continuous PDDL+ process updating over time
the positions and velocities of the cart and pole.

outputs the next action to perform. This process continues
until an episode is completed. At this stage, the Consistency
Checking module analyzes the executed trajectory to see if it
is consistent with Ê. This means analyzing every observed
transition, i.e., every 〈ŝ, a, ŝ′, r〉 tuple to see if all states and
transitions are consistent with Ê. If this is the case, no change
to Ê is needed and HYDRA will start a new episode. Other-
wise, the Consistency Checking module outputs a real value
γ quantifying the likelihood that this consistency indeed in-
dicates that novelty has been introduced. If this value passes
some pre-defined threshold, HYDRA declares that novelty has
been detected. This inconsistency value is then passed to
the Model Repair module along with the observed trajectory.
The Model Repair module attempts to modify Ê such that it
will be consistent with the observed trajectory. This is done
by applying a model-based diagnosis engine, e.g., GDE [de
Kleer and Williams, 1987], to identify the model components
that explain the observed inconsistency. To this end, HYDRA
requires a set Model Manipulation Operators (MMOs), de-
noted M. Each MMO represents a possible change to Ê.
The Model Repair searches for a sequence of MMOs such
that, when applied to Ê, yields a model that is most consis-
tent with the observed trajectory. Then, the selected MMO
is applied to Ê, and the process repeats for the next episode
with the repaired meta model.

4 Implementing HYDRA Agents using PDDL+
Next, we describe an implementation of a HYDRA agent us-
ing PDDL+ [Fox and Long, 2006] as our modeling language
for Ê. PDDL+ is an extension of the well-known Plan-
ning Domain Definition Language (PDDL) [McDermott et
al., 1998] that allows modeling of temporal hybrid systems as
planning domains that exhibit mixed discrete and continuous
system dynamics. In PDDL+, actions are defined by spec-
ifying their preconditions and effects in PDDL. In addition,
PDDL+ supports modeling exogenous behavior with discrete
events and continuous processes. Events apply discrete ef-
fects instantaneously, whereas processes apply changes over
time while their preconditions hold. The agent has no direct
control over processes and events, it can only interact with
exogenous activity indirectly. Figure 2 demonstrate a pro-
cess defined in PDDL+ for the movement of a cartpole. We
chose PDDL+ since it generalizes many previously proposed
planning languages, which highlights the generality of our

sions to save computational efforts.

approach and simplifies supporting additional domains. Also,
there exists off-the-shelf PDDL+ planners, such as UPMurphi
[Della Penna et al., 2009], which can be used to obtain plans.

4.1 Consistency Checking

In simple terms, consistency is a measure of how accurately
the compositional model of the environment describes the ac-
tual environment and its dynamics. Given a PDDL+ model
Π and plan π, one can simulate the trajectory we expect to
observe when executing π. Our implementation of the Con-
sistency Checking module computes the consistency score of
an observed trajectory by measuring how different it is from
the expected trajectory. In our implementation, we measured
difference by computing the maximal Euclidean distance be-
tween matching states along these trajectories (i.e., tracking
differences between the expected and observed positions and
velocities of the cart and pole over the course of an episode).
However, other ways to measure distances between trajec-
tories can also be applied. A novelty is detected when the
discrepancy between the observed and expected sequence of
states exceeds a predefined threshold.

This approach to detecting novelties is domain-
independent. However, it relies on the accuracy of the
PDDL+ model. In our implementation, this was sufficient
for the Cartpole domain. However, for other domains the
available PDDL+ model may not be accurate enough to
exactly match the observed state trajectory. To address this,
one may augment the PDDL+-based Consistency Checking
approach by creating a domain-specific consistency checking
module that incorporates qualitative analysis of the observed
and expected trajectories. Alternatively, one may employ
representation learning and train a neural network over
non-novelty episodes to do next state prediction.

4.2 Meta Model Repair

The key to implementing a PDDL+-based HYDRA agent is
to define appropriate MMOs. For a PDDL+-based HYDRA
agent, an MMO is a function that modifies some element of
the PDDL+ model, e.g., change an action, event, or process,
or even add a completely new event or process. In our imple-
mentation, we limited the MMOs we consider to only mod-
ify the different constants used in the PDDL+ model, e.g.,
changing the constant corresponding to gravity by some fixed
amount (either positive or negative).

To check if a sequence of MMOs should be used, we ap-
ply a model-based diagnosis approach, that is, we apply them
to the current PDDL+ model, simulate the expected sequence
of states according the modified model, and check if this se-
quence of states is consistent with the observed trajectory us-
ing the Consistency Checking module. The space of possi-
ble MMO sequences is combinatorial. To focus the search,
a model-based diagnosis engine can be used. We imple-
mented To search this space, we implemented a greedy best-
first search that uses a heuristic a linear combination of the
consistency score returned by the consistency checker and the
size of the evaluated MMO sequence. The latter considera-
tion biases the search towards simpler repairs.



5 Experimental Results
Next, we demonstrate the ability of our PDDL+-based HY-
DRA agent to detect and respond to novelty effectively by
performing experiments on the well-known balancing Cart-
pole domain. We also report on a small-scale comparison
with an off-the-shelf RL agent, showing that HYDRA can re-
spond effectively to some novelties using significantly fewer
interactions with the environment.

5.1 The Cartpole Domain and Novelties
The Cartpole domain is a classical RL benchmark in which a
pole is connected to a cart and the task is to balance the pole
in the upright position by pushing the cart either left or right.
There are multiple variants to the Cartpole domain. In our
experiment, we used the standard Cartpole implementation
from OpenAI Gym (https://gym.openai.com). This Cartpole
domain is defined by several parameters including mass of
the cart, length of the pole, gravity, and friction coefficient.
A state in this domain is represented by 4 state variables (ve-
locities and positions of the cart and the pole). In every step,
the agent’s action is to apply force to the cart in either left or
right direction. An episode ends when either 200 steps have
been performed or a limit is exceeded (i.e. pole angle or cart
position). Every step returns +1 reward, so the total reward
for an episode is between 1 and 200.

We ran experiments where the introduced novelty involves
changes the values of the pole’s gravity and the mass of the
cart. We experimented with a range of changes to these val-
ues. The results reported are for two such changes: (1) Type
1: gravity increases from 9.8 to 12 and the pole length grows
from 1.0 to 1.1; (2) Type 2: cart mass decreases from 1.0 to
0.9 and the pole length grows from 1.0 to 1.1. We selected to
report on these types of novelties as introducing them resulted
in a significantly decrease in performance for all agents but
the cartpole in the environment after introducing is still con-
trollable. The selected novelty type was introduced in the 8th

episode in a trial. Every trial consisted of 30 episodes, and
each experiment consisted of 5 trials.

5.2 Baselines and Experiment Setup
In addition to HYDRA, we report on the performance of two
baseline agents: a non-adaptive planning agent and a deep
Q-network (DQN) reinforcement learning agent. We refer to
these agents as the planning agent and DQN agent, respec-
tively. The planning agent uses the same PDDL+ modeling
and planner as HYDRA, but does not attempt any model re-
pair. The DQN agent uses a standard deep q-network im-
plementation with experience replay memory [Mnih et al.,
2013]. It is built with an input layer (4 × 16), a hidden layer
(16× 16), and an output layer (16× 2) and uses the Rectified
Linear Unit (ReLU) activation function. Both baseline agents
were designed and trained to achieve perfect performance in
the non-novelty case prior to the experiment.

The experiments we performed involved running each
agent through a series of trials. Each trial starts by running
the agent through a sequence of episodes in the non-novel
environment. Then, we introduce one of the novelty types
described above to the environment, and continue to run the
agent on episodes from the now novel environment. The

performance of the agent on the non-novel episodes reflects
its performance on the environment it has been designed or
trained for, while the performance on the novel episodes mea-
sure its ability to respond to the introduced novelty.

We conducted two types of experiments: (1) system detec-
tion experiments, in which the presence of novelty was not
indicated to the agent and it is expected to infer the pres-
ence of novelty and react to it autonomously, and (2) given
detection experiments, in which an oracle indicated the pres-
ence of novelty to the agent. Given detection experiments al-
low us to measure separately the agent’s ability to respond to
novelties, while system detection experiments better simulate
how agents act in the real-world, where novelty detection ora-
cles are not available. The planning agent does not attempt to
learn or adapt to novelty, so its behavior for both experiment
types (system detection and given detection) is the same. The
DQN agent does not explicitly attempt to detect novelty, thus
its behavior in the system detection experiments is to continue
to run with its trained Q-network. For the given detection ex-
periments, we allow the DQN agent to reset its learning fac-
tor and make Bellman updates to its trained Q-network when
novelty is indicated.

5.3 Results
The results are summarized in Figure 3. The x-axis shows the
episodes in a trial and the y-axis shows the total reward col-
lected by the agent per episode, represented as the proportion
of its score with a perfect controller. The red line indicates
the episode where the selected novelty was introduced. The
blue line shows the results for the “system detection” exper-
iments and the orange line shows the results for the “given
detection” experiments. The shaded areas for each represent
the 95% confidence interval computed over 5 trials.

As shown in Figure 3, all agents achieve perfect perfor-
mance at the beginning of the trial and then experience a
significant drop in performance as soon as the novelty is in-
troduced (episode 8). This shows the selected novelties are
meaningful for all agents. The are three key observations to
be made.

Resilience: The performance drop observed when novelty
is introduced is significantly more drastic for the DQN agent
than for the planning agent and HYDRA. For both types of
novelties, the performance of the DQN agent drops to approx-
imately 25% of its pre-novelty performance and below, while
the performance of the planning agent and HYDRA drop by
only 50%. This difference can be explained by the agents’
design. Both the planning agent and HYDRA are built with
composable component models. Even in novel situations, a
majority of the component models are still relevant and can
be exploited to drive behavior. In contrast, the knowledge that
drives behavior in end-to-end learning systems like the deep
Q-network is distributed and cannot be re-purposed to drive
behavior in an environment with changing dynamics. This
observation demonstrates that agents based on a composable
component models can be reselient to novelties.

Quick adaptation: Since the planning agent does not react
to novelties directly, its performance does not improve over
time in both experimental conditions (given detection and
system detection). The DQN agent does attempt to adapt to



DQN agent Planning HYDRA

Figure 3: Graphs showing performance of DQN agent, planning agent, and HYDRA in novelty experiments. Episodes in a trial are on the
x-axis and reward earned is shown on the y-axis. The results are averaged over 5 trials. Red line indicates the episode where novelty has been
introduced. In the top row, the novelty introduced is increasing the pole length to 1.1 and decreasing the cart mass to 0.9 (novelty type 1). In
the bottom row, the novelty introduced is the same increase in pole length and setting gravity to be 12. The results clearly show that HYDRA
adapts very quickly to the novelties in our experiment, returning to optimal performance in 10 episodes.

Figure 4: Example adaptations produced by HYDRA represented as
changes to various elements in the model (presented as delta from
the default value of each variable, 0 denotes no change).

the observed novelty. While it starts with worse performance
in the given detection condition, it improves towards the later
parts of the trial. This observation suggests that the agent is
learning a new Q-function that supports the new dynamics
of the environment under novelty conditions. However, this
learning is slow, requiring multiple interactions with the envi-
ronment to return to optimal performance (∼ 75 episodes). In
contrast, HYDRA adapts very quickly in less than 20 episodes
for all the types of novelty and experimental conditions we
considered. This observation supports our central thesis: HY-
DRA’s model-based design enable fast novelty response via
localized novelty detection and adaptation.

Interpretability: HYDRA adapts to presented novelties by
proposing how various elements of its model of the environ-
ment can be changed and consequently, its learning can be
inspected an analyzed by a human. Figure 4 shows exam-
ples of adaptation in hydra in response to the posed novelty
of Type 2.

6 Related Work
The topic of how to detect and react to novelties has been
gaining significant attention in the AI literature. The novelty

problems we address in this work has been described by Sen-
ator [Senator, 2019] and analyzed by Boult et al. [Boult et al.,
2021] and Langely [Langley, 2020]. Boult et al. [Boult et al.,
2021; Langley, 2020] did not propose an agent design for this
setting, but rather suggested a framework for characterizing
different types of novelties.

Langely also identified four elements an agent architecture
needs to properly address novelty detection and response —
“performance, monitoring, diagnosis, and repair.” HYDRA
implements these elements. It uses its meta model to gener-
ate plans, act (performance), and detect novelties (monitor).
Then, it uses heuristic search to identify elements of the meta
model that are incorrect (diagnosis) and modifies the meta
model accordingly (repair).

We are not the first to design a novelty-robust agent and
novelty detection and response algorithms. DiscoverHis-
tory [Molineaux et al., 2012] is an algorithm for inferring
the possible values of unobservable state variables from ob-
servations. While our current experiments are similar in na-
ture, HYDRA is designed to be more general, including nov-
elties such as adding new variables, process, and object types.
MIDCA [Paisner et al., 2014] is a cognitive architecture for
designing novelty-robust agents, where novelty is limited to
which goal to pursue next. The recently proposed Open-
MIND system [Musliner et al., 2021] addresses as similar
problem setup to ours, but on a different set of domains and
using a less expressive planning formalism.

More recently, there have been attempts at defining more
general frameworks for handling novelty in open-world envi-
ronments. Muhammad et al. [2021] proposed an approach for
a cognitive agent to detect, characterize, and accommodate



novelties based on knowledge and inference from the agent’s
internal predictions and the observed ground truth. While it
also exploits a planning-centric architecture and defines the
composition of the world in a planning paradigm, there exist
differences, the key of which is the richness of the environ-
ments that our approaches operate in and reason with. Most
notably, they do not consider scenarios with external activity
(i.e. beyond the executive of the agent), or continuous change
in the environment.

Other recent developments in the area have tackled yet
another class of application domains, such as the game of
Monopoly [Gopalakrishnan et al., 2021], a multi-player game
heavily skewed towards uncertainty (from dice rolls, card
draws, or adversaries’ actions). The agent behaves accord-
ing to a policy with a state-value function based on a short-
horizon lookahead approach, prioritizing robustness to nov-
elties in an already unpredictable game.

7 Discussion

Novelty types Domain adjustment Novelty examples
Spatio-temporal Fluent changes Increased gravity
Structures New objects and fluents Ball added to cart
Processes New and/or changing

existing processes
Introduced wind

Constraints New preconditions
and/or changed events

Limit direction
change frequency

Table 1: Description of example novelties that can be encountered
in Cartpole, changes to the PDDL+ model for accommodating them,
and their corresponding novelty types defined by [Langley, 2020].

Most modules in the HYDRA agent are domain-
independent and we are currently implementing it on two
other domains that can be expressed using PDDL+. To im-
plement HYDRA in a new domain that can be represented by
PDDL+, one needs to only (1) create the initial PDDL+ com-
positional model, and (2) select the appropriate MMOs for
the Model Repair module. In our current implementation, we
focused in MMOs that modify the value of constants in the
PDDL+ model such as gravity, pole length, and pole mass.
An open research challenge is how to identify the necessary
and sufficient set of MMOs for a given domain and types of
novelties. Table 1 maps possible types of MMOs to types of
novelties as defined by Langley [Langley, 2020] along with
examples from the cartpole domain. The number of MMOs
may be very large and thus finding a sequence of MMOs that
may yield a consistent model is a challenging combinatorial
search problem. We expect to need heuristics to guide the
search in an efficient manner. In our current implementa-
tion, we run a Greedy Best-First Search algorithm that uses a
heuristic that prefers shorter MMO sequences that yield mod-
els that are more consistent. Future work may explore more
sophisticated search techniques for this task.

The requirement to define MMOs a-priori also raises the
question: how will HYDRA work on novelties that cannot be
property characterized with the selected set of MMOs. In-
deed, HYDRA will fail if no sequence of MMOs can reach a
compositional model that sufficiently captures the novel as-
pects of the environment. However, note that even if the
MMOs do not allow exactly defining the modifications to the

environment, they might still allow finding a compositional
environment model that is close enough to allow reasonable
action selection. For example, consider the case where the
novelty introduced is an increase in air resistance, but the
available HYDRA agent only has an MMO that modify the
amount of force applied to the cart when pushed by the agent.
The Model Repair module of HYDRA might then apply that
MMO and incorrectly repair its model to assume the force it
applies is weaker than it really. While the new compositional
model is different from the actual changed environment, it
would allow effective acting for slow cart speeds. Neverthe-
less, such an agent will under-perform when the cart reaches
higher velocities. More broadly, one may ask whether the
novelty response problem is not amenable to a theory equiv-
alent to the “no free lunch” theorem, where any novelty re-
sponse solution will work on some novelties but fail on oth-
ers. This is another topic for future work.

8 Conclusions and Future Work
e presented an architecture for a model-based agent called
HYDRA, which can plan and act in an environment, as well as
detect and adapt to novel changes in the environment as they
occur. The key idea in the HYDRA architecture is the use of
compositional model of the environment. HYDRA uses this
model to (1) generate plans, using an automated planner; (2)
detect novelties, by matching observations with model pre-
dictions; and (3) adapt to novelties, by applying model-basd
diagnosis to identify the model components that need to be re-
paired. . We described a complete implementation of HYDRA
using the PDDL+ to describe its compositional model of the
environment. Finally, we empirically evaluated our PDDL+-
based HYDRA agent in the Cartpole domain, a well-known
DQN benchmark. Our results demonstrate several types of
novelty that our PDDL+-based agent can detect and adapt to
very rapidly, requiring at most 20 episodes before returning
to normal performance, which is significantly faster than an
off-the-shelf DQN for this domain.

9 Acknowledgement
This work was supported by the DARPA SAIL-ON program
under contract HR001120C0040. The views and conclu-
sions in this document are those of the authors and should
not be interpreted as representing the official policies, ei-
ther expressly or implied, of the Defense Advanced Research
Projects Agency or the U.S. Government

References
[Aineto et al., 2019] Diego Aineto, Sergio Celorrio, and Eva

Onaindia. Learning action models with minimal observ-
ability. Artificial Intelligence, 275:104–137, 05 2019.

[Asai and Muise, 2020] Masataro Asai and Christian Muise.
Learning neural-symbolic descriptive planning models via
cube-space priors: The voyage home (to STRIPS). In In-
ternational Joint Conference on Artificial Intelligence (IJ-
CAI), pages 2676–2682, 2020.

[Barto et al., 1983] Andrew G Barto, Richard S Sutton, and
Charles W Anderson. Neuronlike adaptive elements that



can solve difficult learning control problems. IEEE trans-
actions on systems, man, and cybernetics, (5):834–846,
1983.

[Boult et al., 2021] TE Boult, PA Grabowicz, DS Prijatelj,
Roni Stern, Lawrence Holder, Joshua Alspector, M Ja-
farzadeh, Toqueer Ahmad, AR Dhamija, Chunchun Li,
et al. Towards a unifying framework for formal theories
of novelty. In AAAI Conference on Artificial Intelligence,
pages 15047–15052, 2021.

[Brockman et al., 2016] Greg Brockman, Vicki Cheung,
Ludwig Pettersson, Jonas Schneider, John Schulman, Jie
Tang, and Wojciech Zaremba. Openai gym. arXiv preprint
arXiv:1606.01540, 2016.

[Cresswell et al., 2013] Stephen N Cresswell, Thomas L
McCluskey, and Margaret M West. Acquiring planning
domain models using locm. The Knowledge Engineering
Review, 28(2):195–213, 2013.

[de Kleer and Williams, 1987] Johan de Kleer and Brian C.
Williams. Diagnosing multiple faults. Artificial Intelli-
gence, 32(1):97–130, 1987.

[Della Penna et al., 2009] Giuseppe Della Penna, Daniele
Magazzeni, Fabio Mercorio, and Benedetto Intrigila. Up-
murphi: a tool for universal planning on pddl+ prob-
lems. In Nineteenth International Conference on Auto-
mated Planning and Scheduling, 2009.

[Della Penna et al., 2010a] Giuseppe Della Penna,
Benedetto Intrigila, Daniele Magazzeni, and Fabio
Mercorio. A pddl+ benchmark problem: The batch chem-
ical plant. In International Conference on Automated
Planning and Scheduling (ICAPS), 2010.

[Della Penna et al., 2010b] Giuseppe Della Penna,
Benedetto Intrigila, Daniele Magazzeni, and Fabio
Mercorio. Resource-optimal planning for an autonomous
planetary vehicle. International Journal of Artificial
Intelligence & Applications (IJAIA), 1(3):15–29, 2010.

[Feng et al., 2018] Wenfeng Feng, Hankz Hankui Zhuo, and
Subbarao Kambhampati. Extracting action sequences
from texts based on deep reinforcement learning. In Pro-
ceedings of the Twenty-Seventh International Joint Con-
ference on Artificial Intelligence (IJCAI), pages 4064–
4070, 2018.

[Fox and Long, 2006] Maria Fox and Derek Long. Mod-
elling mixed discrete-continuous domains for planning.
JAIR, 27:235–297, 2006.

[Gopalakrishnan et al., 2021] Sriram Gopalakrishnan,
Utkarsh Soni, Tung Thai, Panagiotis Lymperopoulos,
Matthias Scheutz, and Subbarao Kambhampati. Integrat-
ing planning, execution and monitoring in the presence
of open world novelties: Case study of an open world
monopoly solver. arXiv preprint arXiv:2107.04303, 2021.

[Juba et al., 2021] Brendan Juba, Hai S. Le, and Roni Stern.
Safe learning of lifted action models. In International
Conference on Principles of Knowledge Representation
and Reasoning (KR), pages 379–389, 2021.

[Langley, 2020] Pat Langley. Open-World Learning for Rad-
ically Autonomous Agents. AAAI, 2020.

[Lindsay et al., 2017] Alan Lindsay, Jonathon Read, Joao F
Ferreira, Thomas Hayton, Julie Porteous, and Peter Gre-
gory. Framer: Planning models from natural language ac-
tion descriptions. In International Conference on Auto-
mated Planning and Scheduling, 2017.

[McDermott et al., 1998] Drew McDermott, Malik Ghallab,
Craig Knoblock, Adele Howe, Ashwin Ram, Manuela
Veloso, Daniel Weld, and David Wilkins. Pddl — the plan-
ning domain definition language. Technical report, AIPS-
98 Planning Competition Committee, 1998.

[Mnih et al., 2013] Volodymyr Mnih, Koray Kavukcuoglu,
David Silver, Alex Graves, Ioannis Antonoglou, Daan
Wierstra, and Martin Riedmiller. Playing atari with deep
reinforcement learning. arXiv preprint arXiv:1312.5602,
2013.

[Molineaux et al., 2012] Matthew Molineaux, Ugur Kuter,
and Matthew Klenk. Discoverhistory: Understanding the
past in planning and execution. In Proceedings of the 11th
International Conference on Autonomous Agents and Mul-
tiagent Systems-Volume 2, pages 989–996, 2012.

[Muhammad et al., 2021] Faizan Muhammad, Vasanth
Sarathy, Gyan Tatiya, Shivam Goel, Saurav Gyawali,
Mateo Guaman, Jivko Sinapov, and Matthias Scheutz. A
novelty-centric agent architecture for changing worlds.
In International Conference on Autonomous Agents and
MultiAgent Systems (AAMAS), pages 925–933, 2021.

[Musliner et al., 2021] David J. Musliner, Michael J. S. Pel-
ican, Matthew McLure, Steven Johnston, Richard G.
Freedman, and Corey Knutson. Openmind: Planning and
adapting in domains with novelty. In Annual Meeting of
the Cognitive Science Society, 2021.

[Paisner et al., 2014] Matthew Paisner, Michael Cox,
Michael Maynord, and Don Perlis. Goal-driven autonomy
for cognitive systems. In Annual Meeting of the Cognitive
Science Society, 2014.

[Piotrowski, 2018] Wiktor Mateusz Piotrowski. Heuristics
for AI Planning in Hybrid Systems. PhD thesis, King’s
College London, 2018.

[Senator, 2019] Ted Senator. Science of ai and learning for
openworld novelty (sail-on). Technical report, DARPA,
2019.

[Vallati et al., 2016] Mauro Vallati, Daniele Magazzeni, Bart
De Schutter, Lukás Chrpa, and Thomas Leo McCluskey.
Efficient macroscopic urban traffic models for reducing
congestion: A pddl+ planning approach. In AAAI Con-
ference on Artificial Intelligence, 2016.

[Witty et al., 2018] Sam Witty, Jun Ki Lee, Emma Tosch,
Akanksha Atrey, Michael Littman, and David Jensen.
Measuring and characterizing generalization in deep re-
inforcement learning. arXiv preprint arXiv:1812.02868,
2018.

[Wu et al., 2007] Kangheng Wu, Qiang Yang, and Yunfei
Jiang. ARMS: An automatic knowledge engineering tool
for learning action models for ai planning. The Knowledge
Engineering Review, 22(2):135–152, 2007.


	Introduction
	Problem Definition
	The Hydra Agent
	Implementing Hydra Agents using PDDL+
	Consistency Checking
	Meta Model Repair

	Experimental Results
	The Cartpole Domain and Novelties
	Baselines and Experiment Setup
	Results

	Related Work
	Discussion
	Conclusions and Future Work
	Acknowledgement

