
A Proposal to Generate Planning Problems with Graph Neural Networks

Carlos Núñez-Molina, Pablo Mesejo, Juan Fernández-Olivares
Universidad de Granada, Spain

ccaarlos@ugr.es, pmesejo@decsai.ugr.es, faro@decsai.ugr.es

Abstract

In the field of Automated Planning, much effort has been de-
voted to learning planning domains from data. On the other
hand, the task of generating planning problems for a given
domain has received less attention. In most cases, these prob-
lems need to be created by hand or produced by hard-coded,
domain-specific generators, which is a time-consuming en-
deavor. Having a large set of planning problems is useful for
two main reasons. Firstly, they provide data to train Machine
Learning methods (e.g., for learning planning heuristics and
HTN domains) and, secondly, they can be used as benchmark
problems in planning competitions. In this preliminary work,
we propose a domain-independent method to generate plan-
ning problems for any typed STRIPS domain. We formulate
problem generation as a Markov Decision Process and pro-
pose the use of Graph Neural Networks, which are trained
with Reinforcement Learning in order to generate valid, qual-
ity (i.e., difficult to solve) and diverse problems. We hope our
approach will enable the effortless generation of large sets of
planning problems with the qualities desired by the user, thus
providing an alternative to existing problem generation meth-
ods.

Introduction
Throughout the years, many works (Shen and Simon 1989;
Pasula, Zettlemoyer, and Kaelbling 2007; Segura-Muros,
Pérez, and Fernández-Olivares 2021) have tried to automati-
cally learn planning domains from data, in order to alleviate
the burden on domain designers. On the other hand, the task
of generating planning problems for a given domain has re-
ceived less attention. In most cases, they need to be created
by hand or produced by hard-coded generators tailored to a
specific domain. Having a large set of planning problems is
useful for two main reasons. Firstly, many approaches that
apply Machine Learning (ML) (Alpaydin 2021) to AP re-
quire training data in the form of planning problems and
their solutions, such as those for learning planning heuris-
tics (Shen, Trevizan, and Thiébaux 2020) and HTN domains
(Hogg, Munoz-Avila, and Kuter 2008). Secondly, they can
be used as benchmarks in planning competitions to compare
the performance of different automated planners.

In this preliminary work, we design a method to automat-
ically generate planning problems for any typed STRIPS do-
main. We formulate problem generation as a Markov Deci-
sion Process (MDP), in which a problem is not generated all

at once but by executing a sequence of actions. We propose
the use of Graph Neural Networks (GNNs) (Battaglia et al.
2018) to direct this generation process, i.e., select the best
action to execute at each step in order to generate problems
with the desired qualities. GNNs are a family of neural net-
works designed to work with relational data, represented as
graphs. They receive a graph as input and perform iterative
message-passing computations where the information about
nodes (encoded as vector embeddings), and possibly also
about edges, is propagated through the graph. Then, they
output a prediction for every node, edge and/or the entire
graph, depending on the required task. Thanks to their suit-
ability for relational representations, GNNs have been suc-
cessfully applied to different AP tasks (Shen, Trevizan, and
Thiébaux 2020; Ma et al. 2020; Silver et al. 2020).

We will resort to Reinforcement Learning (RL) (Sutton
and Barto 2018) for training the GNNs in our approach be-
cause it enables agents to learn without labeled examples,
just from environment feedback (i.e., rewards). In our case,
this means no example planning problems will be required to
train our approach. The problems obtained with our method
must exhibit the following properties:

• Validity. Valid problems must meet two criteria. Firstly,
the initial state of the problem must represent a consis-
tent (possible) situation of the world (e.g., an object can
only be in a single place at the same time). These consis-
tency constraints do not appear in the domain description
and must be provided separately. Secondly, valid prob-
lems must be solvable, i.e., there must exist at least one
valid plan from the initial state to the goal.

• Quality. This property depends on the problem charac-
teristics desired by the user and, thus, must be defined
by them. In this work, we will use difficulty as the only
quality metric, i.e., the goal is to generate problems as
hard to solve as possible (in terms of planning time) by
an automated planner. This will encourage our generative
method to search for problems with particular properties
that make them challenging for a planner. In order to pre-
vent really large problems, we will limit the maximum
number of objects and atoms in the initial state.

• Diversity. The proposed method must generate prob-
lems very different from one another. More formally, the
generated problems must be representative of the entire

problem subspace that satisfies the validity and quality
requirements commented in the two previous points.

To the best of our knowledge, we propose the first
domain-independent method for generating planning prob-
lems with all the three properties presented above. Never-
theless, it is important to note that this work is preliminary
and only presents our proposal, leaving the actual implemen-
tation and experimentation for future work.

Related Work
Several works have proposed domain-independent methods
for planning problem generation but, to this date, none of
them have been able to generate problems that are simul-
taneously valid, of good quality and diverse. (Fern, Yoon,
and Givan 2004) proposes a random-walk approach to gen-
erate planning problems. It randomly creates an initial state
si and executes n actions at random to arrive at state sg .
Then, it selects a subset of the predicates of sg , which con-
stitutes the goal g, and returns the planning problem (si, g).
Although the problems generated with this method are al-
ways solvable, they may not exhibit the other properties
(consistency, quality and diversity), as they are generated at
random. (Fuentetaja and De la Rosa 2012) also employs a
random-walk approach but uses semantics-related informa-
tion, provided by the user, to guarantee the consistency of
the problems obtained. Thus, this method always generates
valid problems but provides no guarantees about their di-
versity or quality, since they are also generated at random.
(Marom and Rosman 2020) follows a different approach. It
starts from a predefined goal state and performs a backward
search for the initial state. The problems obtained are used to
learn a planning heuristic. The proposed method estimates
its uncertainty and uses this value to search for problems
with the right difficulty for training the heuristic. Hence, this
method is able to obtain valid and quality problems. How-
ever, it only works for domains with a single goal and for
which there exists an inverse transition model, i.e., for ev-
ery action a that transitions from state s to s′ must exist an
inverse action a′ that goes from s′ to s, which needs to be
provided to the method.

Finally, it is worth to mention several works that address
a similar problem to the one tackled in this work. (Katz and
Sohrabi) addresses the problem of generating planning tasks
whose causal graph matches a graph given as input. This
work generates complete planning tasks (planning domain
and problem) whereas our method generates planning prob-
lems for a given domain. (Torralba, Seipp, and Sievers 2021)
proposes a method for selecting a set of planning problems
with some desired properties. This method does not generate
planning problems and, thus, requires a problem generator
as input. For this reason, it can be seen as a complementary
method to the one proposed in this work.

Proposed Method
In this section we describe our proposal, shown in Figure
1a, corresponding to a method that receives a typed STRIPS
domain encoded in PDDL, along with a procedure to check

the consistency of the problems generated and a list of pred-
icates to consider for the goal, and outputs a set of valid,
diverse and quality PDDL problems for that domain. We de-
scribe the problem formulation, the state representation, how
GNNs can be used to direct problem generation and, finally,
the RL method proposed for their training.

Problem Formulation as MDP
We propose to generate problems (si, g) via an iterative pro-
cess which first generates the initial state si and, then, the
problem goal g. The initial state generation phase starts at an
empty state (with no objects or atoms) and successively adds
new objects (constants) and atoms to construct si. Then, the
goal generation phase starts at si and successively executes
the actions present in the planning domain to arrive at a goal
state sg . Finally, g is obtained as a subset of the atoms which
are true in sg . The subset of predicates considered for the
goal must be specified by the user.

This entire process is depicted in Figure 1b and a hand-
crafted example is given in Appendix B. It can be formulated
as an MDP (S,A, app, r, t):

• S is the state space of the MDP. In our case, states corre-
spond to (incomplete or fully-generated) planning prob-
lems (sic, sgc). The subindex c (which comes from cur-
rent) is used to denote that the initial state sic and goal
state sgc may not be completely generated yet.

• A is the action space, while app : S ×A → {0, 1} is the
applicability function which determines if an action can
be executed at a state or not. The set of applicable actions
Aapp is different for the initial state and goal generation
phases. In the initial state generation phase, Aapp cor-
responds to adding a new atom to the initial state. The
objects this new atom is instantiated on can be already
present in the initial state or not. If they are not, we re-
fer to them as virtual objects, and are added to the initial
state along with their corresponding atom. Thus, instanti-
ating atoms on virtual objects is the mechanism we use to
add new objects to the state. In the goal generation phase,
Aapp is the subset of actions in the planning domain for
which their preconditions are met at the current state.

• r : S×A → R is the reward function, accounting for the
validity and quality of the problems. Since all the gener-
ated problems are solvable (as sg is obtained by execut-
ing domain actions from si), we only need to consider
the consistency aspect of the validity. To do so, the user
must provide a procedure that receives the (incomplete)
initial state sic associated with an MDP state and returns
if it is consistent or not. If the agent selects an action that
would result in an inconsistent state, it receives a negative
reward as penalty. Once a problem has been completely
generated, it is solved with an automated planner. Then,
the agent receives a final reward directly proportional to
the resolution difficulty of the problem, e.g., the planning
time or number of nodes expanded by the planner.

• t : S ×A → S is the transition function. In our problem,
t is deterministic and returns the next state s′ resulting
from executing an applicable action at the current state s.

If an invalid action, i.e., one that produces an inconsistent
state, is selected, then s′ = s.

State Representation as Hypergraph
Since problem generation is guided by GNNs, we need to
encode the MDP states (sic, sgc) in a suitable representa-
tion for them. Thus, we choose to represent states as la-
beled directed hypergraphs. This hypergraph contains one
node for every object/constant in sic and sgc (the initial and
goal states contain the same set of objects). Each node is
labelled according to the type of the object it represents.
Additionally, for every atom a(o1, o2, ..., on) present in sic
or sgc, the hypergraph will contain a directed (hyper)edge
e(o1, o2, ..., on) linking the objects (nodes) o1, o2, ..., on that
appear in the atom in order. Each edge has a label which en-
codes the predicate type of the associated atom and whether
such atom appears in sic or sgc (unlike objects, an atom can
appear in the initial state, goal state or both).

Generative Policies as GNNs
We propose to use two different stochastic RL policies for
guiding the generation process, one for initial state genera-
tion and the other for goal generation, both implemented as
GNNs. More specifically, we propose to implement the poli-
cies as ACR-GNNs (Barceló et al. 2020), a special type of
GNN which is as expressive as FOC2 logic, a fragment of
first-order logic. In addition, they must be adapted to handle
our state representation as labeled directed hypergraphs, by
using the extension to GNNs proposed in (Ståhlberg, Bonet,
and Geffner 2021, Algorithm 1).
Initial state generation policy. This policy is used to iter-
atively generate si starting from an empty state s0 = (,),
with no objects or atoms. Our approach is heavily inspired
by the method employed in (You et al. 2018) to generate
molecular graphs. At each step, our policy receives the cur-
rent state (sic,), encoded as a hypergraph, and selects a new
atom to add (see Figure 1c). Firstly, it adds one virtual object
(node) of each existing type to the graph. These nodes make
possible to add predicates instantiated on objects which are
not present in the state and, thus, add new objects to the state,
as explained previously. After adding the atom selected by
the policy, the nodes representing virtual objects which do
not appear in the new atom are deleted. Once the virtual ob-
jects have been added, an ACR-GNN is used to compute an
embedding ei for each node ni in the graph and also an em-
bedding eG for the whole graph G. Then, the policy uses
these embeddings to select an action representing an atom
to add to the state. This action is composed of three different
components, which are predicted in the following order:

1. Predicate type. A multi-layered perceptron (MLP) re-
ceives eG and returns a probability distribution over the
existing predicate types. This distribution is sampled to
select the type of the atom to add.

2. Objects to instantiate the predicate on. We use a
Recurrent Neural Network (RNN) to iteratively decide
which objects to instantiate the predicate on. At the be-
ginning, the RNN hidden state is initialized with the

predicate type. Then, at each step, the RNN separately re-
ceives each ei and outputs a probability pi for each node,
representing how likely that node is to be selected as the
next object to instantiate the predicate on. This proba-
bility distribution is masked so that objects of type in-
compatible with the predicate are given zero probability.
Next, the probability distribution is sampled to select an
object ok and the RNN hidden state is updated with the
embedding ek of the associated node. This process is re-
peated a times, where a is the arity of the predicate.

3. Termination condition. Finally, another MLP receives
eG and outputs a termination condition probability. If
true, the initial state generation phase ends and si = sic.
Then, the goal generation phase starts.

Goal generation policy. This policy iteratively generates sg
starting from si. At each step, it receives the current state
(si, sgc) and selects a domain action to execute (see Figure
1d). To do so, it follows a very similar process to the initial
state generation policy. Firstly, it uses an ACR-GNN to com-
pute ei, for every ni, and eG, this time without adding virtual
objects to the state. Then, the policy uses these embeddings
to select the action to execute. This action is composed of
three different components, predicted in the following order:

1. Action type. An MLP receives eG and returns a probabil-
ity distribution over the existing domain actions, which is
sampled to select the action to execute. This probability
distribution is masked so that non-applicable actions, i.e.,
those for which their preconditions are not met at the cur-
rent state, are never chosen.

2. Action parameters. We use an RNN to iteratively de-
cide which objects to ground, i.e., instantiate, the action
on. At the beginning, the RNN hidden state is initialized
with the selected action. Then, at each step, the RNN
separately receives each ei and outputs a probability pi
for each node, representing how likely that node is to be
selected as the next object to instantiate the action on.
This probability distribution is masked so that objects of
type incompatible with the corresponding action param-
eter are given zero probability. Next, the probability dis-
tribution is sampled to select an object ok and the RNN
hidden state is updated with the embedding ek of the as-
sociated node. This process is repeated n times, where n
is the number of action parameters.

3. Termination condition. Finally, another MLP receives
eG and outputs a termination condition probability. If
true, the goal generation phase ends and the current goal
state sgc is output as sg . Then, the user-defined subset
of true atoms in sg is selected to obtain g and the final
problem (si, g) is returned.

Policy Training with RL
We propose to use RL to train the entire generative system,
composed of the initial state and goal generation policies,
in an end-to-end fashion. More specifically, we plan to use
the state-of-the-art RL algorithm known as Proximal Policy
Optimization (PPO) (Schulman et al. 2017). Since PPO re-
quires a critic module that predicts the value V (s) of the

Figure 1: Proposed method for problem generation. a) Method overview. It receives the PDDL domain, a procedure for
checking the consistency of the problems generated and the predicates to consider for the goal, and outputs a set of planning
problems. b) Process followed to generate a single problem. Dashed lines represent the application of several actions whereas
dotted lines are used to indicate the reward signal, used to train the generative policies with RL. c) Initial state generation
policy. It receives a state (sic,) corresponding to a partially-generated initial state and outputs the next atom to add. d) Goal
generation policy. It receives a state (si, sgc) representing a complete initial state but a partially-generated goal state and
outputs the next (grounded) domain action to execute.

current state s, we will augment each policy with an addi-
tional MLP that receives eG and ouputs V (s).

The loss function being optimized by PPO includes an
entropy term which encourages policies with high entropy,
i.e., highly stochastic policies. This ensures sufficient explo-
ration by the policies. Additionally, this entropy term should
also boost the diversity of the problems generated. This is
because highly stochastic policies should produce very dif-
ferent problems in distinct generation episodes.

Nonetheless, encouraging high-entropy policies may not
be enough to ensure effective exploration in some domains.
For example, let us assume a planning domain where an
agent must traverse a grid while collecting colored keys to
open doors of the same color. In this domain, there exist in-
teresting problems (in our case, problems which are difficult
to solve) corresponding to particular configurations of keys
and doors, e.g., problems where the keys must be collected
in a specific order and problems with dead ends. These prob-
lems seem unlikely to be uncovered by performing random
exploration, no matter how stochastic the policies are. Were
this be the case, we will resort to exploration schemes based
on intrinsic motivation (Chentanez, Barto, and Singh 2004),
where exploration is directed towards states with interesting
properties such as novelty.

Proposed Experimentation
Once our method has been implemented, it will be used to
generate problems for different planning domains, such as
those used in ICAPS planning competitions. Our method
will be compared against baseline methods that follow our
problem generation approach but, instead of using the gener-
ative policies, select actions at random in order to construct
si, g or both, as in (Fern, Yoon, and Givan 2004; Fuentetaja
and De la Rosa 2012). This way, it will be possible to assess
how effective the initial state and goal generation policies
are at guiding the generation process, as opposed to simply
picking actions at random.

We will evaluate the problems generated by our approach
and the baseline methods in terms of their validity, quality

and diversity. To evaluate problem validity, we only need
to measure how often the methods select an invalid action
and, to evaluate quality, we only need to solve the generated
problems with an off-the-shelf planner and measure plan-
ning times or number of expanded nodes. Diversity, how-
ever, is harder to evaluate. One straightforward, though time-
consuming, approach is to manually inspect the problems
generated by the different methods. An alternative approach
consists of using a metric that measures similarity or dis-
tance between problems, such as graph edit distance (Gao
et al. 2010).

Conclusions

In this preliminary work, we have proposed a domain-
independent method for generating planning problems for
typed STRIPS domains. We propose to formulate the prob-
lem generation process as an MDP and use RL to train
policies that learn to generate valid, quality and diverse
problems. These generative policies will be implemented as
GNNs which receive as input a (partially-generated) prob-
lem, encoded as a hypergraph, and select the next action
to apply in the generation process. Once implemented, our
method will be used to generate problems for several plan-
ning domains. These problems will be compared with the
ones obtained by baseline methods, which select actions at
random.

We hope our approach will provide a domain-independent
and easy-to-use alternative for planning problem generation,
thus replacing time-consuming, manual problem design and
domain-specific generators. If successful, our method will
enable the effortless generation of large amounts of valid,
quality and diverse planning problems, which will be greatly
useful to train ML/RL methods for AP and as benchmark
problems in planning competitions.

Appendix A: Problem Generation for Active
Learning

The purpose of the method proposed in this work is to fa-
cilitate the generation of large numbers of valid, diverse and
quality planning problems, regardless of their intended use.
Nevertheless, if our goal is to employ these problems as data
for training ML techniques (e.g., planning heuristics) that
learn to solve problems of the same domain, then our method
can be made more suitable for this specific case.

To achieve this, we can resort to the Active Learning (Set-
tles 2009) paradigm, in which the ML method being trained
has control over its own training data, resulting in better
sample efficiency. In order to integrate this paradigm into
our problem generation method, we can substitute the au-
tomated planner, in charge of solving the problems gener-
ated and measuring their difficulty, with the ML technique
being trained. This technique will receive the problems gen-
erated, perform several training iterations on them, and out-
put a metric measuring the quality of the problems used as
training data (e.g., the training loss/error). Then, this quality
metric will be used as feedback for the generative policies,
which will try to optimize it when generating the next batch
of problems to train the ML technique. As this process re-
peats, the problem generation method will learn to generate
problems of ever-increasing difficulty to train the ML tech-
nique, what should result in an increased sample efficiency
when compared to the “standard” problem generation ap-
proach proposed in this work (using an automated planner
to solve the problems generated).

Another benefit of this approach is that it will allow us to
more easily evaluate the quality and diversity of the prob-
lems generated. To do so, we can compare the sample effi-
ciency of the ML technique (e.g., how many training sam-
ples it needs to achieve a particular loss/error threshold)
when trained on problems generated by our method versus
those generated by the random baselines. If it is more sam-
ple efficient when trained on problems obtained with our ap-
proach, that will mean our problem generation method is
able to produce better problems (in terms of quality and di-
versity) than those obtained by the random baselines, thus
providing more useful information to train the ML tech-
nique. In addition to the baseline methods, we will also con-
sider the comparison of our approach with other active learn-
ing methods, like the one proposed in (Marom and Rosman
2020), where the problems generated are used to learn a
planning heuristic.

Appendix B: Problem Generation Example
In this appendix we provide a simple, handcrafted example
of our problem generation method that illustrates how a sin-
gle planning problem is created from start to finish. For this
example, we will use blocksworld as our domain and, at each
step (state), we will assume a random action is chosen from
the set of applicable actions Aapp. In the initial state gen-
eration phase, an action a ∈ Aapp corresponds to adding
an atom to the (current) initial state sic, where this atom is
obtained by instantiating a domain predicate (on, ontable,
handempty, holding and clear in blocksworld) on objects

of the correct type (block type in blocksworld, as all pred-
icates are only instantiated on objects of this type). These
objects can be in sic or not. In the latter case, we call them
virtual objects and they are added to sic along with their
corresponding atom. In the goal generation phase, an action
a ∈ Aapp corresponds to executing a domain action (stack,
unstack, pickup and putdown in blocksworld), in the (cur-
rent) goal state sgc, modifying the atoms in sgc according to
the add and delete effects of a. The selected action a must
be grounded, i.e., instantiated, on objects of the correct type
(block type in blocksworld, as all actions are applied to ob-
jects of this type) present in sgc and, also, its preconditions
must be true in sgc.

Additionally, we will assume we randomly choose when
to stop generating the states sic and sgc. In a real scenario,
the generative policies would be in charge of both selecting
the next action to execute and when to stop generating sic
and sgc. We represent the states of the MDP, corresponding
to (incomplete or fully-generated) planning problems, as a
tuple (sic, sgc). We represent sic and sgc as another tuple
(O,P), where O is a set containing the objects present in the
state (with their respective types), and P is a set containing
the atoms of the state. We now detail the process followed to
generate the example problem:
1. The generation process starts at an empty state s0 = (,)

and the initial state generation phase begins. The selected
action is add ontable(o1) to sic, where o1 is an object
of type block. Since o1 corresponds to a virtual object,
we also need to add it to the state. Thus, the resulting
state is s1 = (({block o1}, {ontable(o1)}),), which
corresponds to a consistent state as it does not violate any
consistency rule for the blocksworld domain.

2. The action add on(o2, o1) to sic is selected, where o2 is
a virtual object of type block. The resulting state is s2 =
(({block o1, block o2}, {ontable(o1), on(o2, o1)}),),
which corresponds to a consistent state.

3. The action add on(o1, o2) to sic is se-
lected. The resulting state would be s′3 =
(({block o1, block o2}, {ontable(o1), on(o2, o1),
on(o1, o2)}),). However, the state s′3 is not consistent
(since a block cannot be simultaneously on top of and
under another block), so the atom on(o1, o2) will not be
added to the state and s3 = s2.

4. The action add clear(o2) to sic is se-
lected and the resulting state is s4 =
(({block o1, block o2}, {ontable(o1), on(o2, o1),
clear(o2)}),), which corresponds to a consistent state.

5. The action add handempty() to sic is selected and the
resulting state is consistent. Assume the initial state
generation phase concludes at this step. If that is the
case, the initial state has been completely generated, i.e.,
si = sic, and the goal generation phase starts from si,
i.e., sgc = si. Thus, the next state is actually s5 =
(({block o1, block o2}, {ontable(o1), on(o2, o1),
clear(o2), handempty()}), ({block o1, block o2},
{ontable(o1), on(o2, o1), clear(o2), handempty()})).

6. As we are now in the goal generation phase, the set of
applicable actions Aapp corresponds to the domain ac-

tions whose preconditions are met in sgc. Assume the
action apply unstack(o2, o1) to sgc is selected. Then,
the current goal state sgc is modified with the effects
of the selected action. Thus, the next state is s6 =
(({block o1, block o2}, {ontable(o1), on(o2, o1),
clear(o2), handempty()}), ({block o1, block o2},
{ontable(o1), holding(o2), clear(o1)})).

7. The action apply putdown(o2) to sgc is
selected and the resulting state is s7 =
(({block o1, block o2}, {ontable(o1), on(o2, o1),
clear(o2), handempty()}), ({block o1, block o2},
{ontable(o1), clear(o1), clear(o2), handempty(),
ontable(o2)})). Assume the goal generation phase
concludes at this step, i.e., sg = sgc. If that is
the case, the goal g must be obtained by select-
ing from sg the subset of goal predicates given
by the user. Assume we only consider for g
the predicates on and ontable. Then, the goal is
g = {ontable(o1), clear(o1), clear(o2), ontable(o2)}
and the problem generation method outputs the problem
(si, g), which is shown in Listing 1.

Listing 1: Example problem generated with our method.
1 (define (problem

example_blocksworld_problem)
2
3 (:domain blocksworld)
4
5 (:objects o1 o2 - block)
6
7 (:init (ontable o1) (on o2 o1)
8 (clear o2) (handempty))
9

10 (:goal (ontable o1) (clear o1)
11 (clear o2) (ontable o2))
12)

Acknowledgements
This work is being partially funded by the Andalusian Re-
gional Project PYC20-RE-049-UGR and the Spanish Na-
tional Project RTI2018-098460-B-I00 with FEDER funds.

References
Alpaydin, E. 2021. Machine learning. MIT Press.
Barceló, P.; Kostylev, E.; Monet, M.; Pérez, J.; Reutter, J.;
and Silva, J.-P. 2020. The logical expressiveness of graph
neural networks. In ICLR.
Battaglia, P. W.; Hamrick, J. B.; Bapst, V.; Sanchez-
Gonzalez, A.; Zambaldi, V.; Malinowski, M.; Tacchetti, A.;
Raposo, D.; Santoro, A.; Faulkner, R.; et al. 2018. Relational
inductive biases, deep learning, and graph networks. arXiv
preprint arXiv:1806.01261.
Chentanez, N.; Barto, A.; and Singh, S. 2004. Intrinsically
motivated reinforcement learning. Advances in neural infor-
mation processing systems, 17.
Fern, A.; Yoon, S. W.; and Givan, R. 2004. Learning
Domain-Specific Control Knowledge from Random Walks.
In ICAPS, 191–199.

Fuentetaja, R.; and De la Rosa, T. 2012. A Planning-Based
Approach for Generating Planning Problems. In Workshops
at the Twenty-Sixth AAAI Conference on Artificial Intelli-
gence.
Gao, X.; Xiao, B.; Tao, D.; and Li, X. 2010. A survey
of graph edit distance. Pattern Analysis and applications,
13(1): 113–129.
Hogg, C.; Munoz-Avila, H.; and Kuter, U. 2008. HTN-
MAKER: Learning HTNs with Minimal Additional Knowl-
edge Engineering Required. In AAAI, 950–956.
Katz, M.; and Sohrabi, S. ???? Generating Data In Planning:
SAS Planning Tasks of a Given Causal Structure. HSDIP
2020, 41.
Ma, T.; Ferber, P.; Huo, S.; Chen, J.; and Katz, M. 2020. On-
line planner selection with graph neural networks and adap-
tive scheduling. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 34, 5077–5084.
Marom, O.; and Rosman, B. 2020. Utilising Uncertainty
for Efficient Learning of Likely-Admissible Heuristics. In
ICAPS, volume 30, 560–568.
Pasula, H. M.; Zettlemoyer, L. S.; and Kaelbling, L. P. 2007.
Learning symbolic models of stochastic domains. Journal
of Artificial Intelligence Research, 29: 309–352.
Schulman, J.; Wolski, F.; Dhariwal, P.; Radford, A.; and
Klimov, O. 2017. Proximal policy optimization algorithms.
arXiv preprint arXiv:1707.06347.
Segura-Muros, J. Á.; Pérez, R.; and Fernández-Olivares, J.
2021. Discovering relational and numerical expressions
from plan traces for learning action models. Applied Intelli-
gence, 51(11): 7973–7989.
Settles, B. 2009. Active learning literature survey.
Shen, W.; Trevizan, F.; and Thiébaux, S. 2020. Learning
domain-independent planning heuristics with hypergraph
networks. In ICAPS, volume 30, 574–584.
Shen, W. M.; and Simon, H. A. 1989. Rule Creation and
Rule Learning Through Environmental Exploration. In IJ-
CAI, 675–680. Morgan Kaufmann.
Silver, T.; Chitnis, R.; Curtis, A.; Tenenbaum, J.; Lozano-
Perez, T.; and Kaelbling, L. P. 2020. Planning with learned
object importance in large problem instances using graph
neural networks. arXiv preprint arXiv:2009.05613.
Ståhlberg, S.; Bonet, B.; and Geffner, H. 2021. Learning
General Optimal Policies with Graph Neural Networks: Ex-
pressive Power, Transparency, and Limits. arXiv preprint
arXiv:2109.10129.
Sutton, R. S.; and Barto, A. G. 2018. Reinforcement learn-
ing: An introduction. MIT press.
Torralba, A.; Seipp, J.; and Sievers, S. 2021. Automatic in-
stance generation for classical planning. In Proceedings of
the International Conference on Automated Planning and
Scheduling, volume 31, 376–384.
You, J.; Liu, B.; Ying, Z.; Pande, V.; and Leskovec, J.
2018. Graph convolutional policy network for goal-directed
molecular graph generation. Advances in neural information
processing systems, 31.

