
Hierarchies of Reward Machines

Daniel Furelos-Blanco,1 Mark Law,2 Anders Jonsson,3 Krysia Broda,1 Alessandra Russo1

1 Imperial College London, United Kingdom
2 ILASP Limited, United Kingdom
3 Universitat Pompeu Fabra, Spain

d.furelos-blanco18@imperial.ac.uk, mark@ilasp.com, anders.jonsson@upf.edu, {k.broda, a.russo}@imperial.ac.uk

Abstract

Hierarchical reinforcement learning (HRL) algorithms de-
compose a task into simpler subtasks that can be indepen-
dently solved. This enables tackling complex long-horizon
and sparse reward tasks more efficiently. Recently, several
efforts have focused on proposing discrete structures, such
as finite-state machines (FSMs), that can be exploited using
HRL and learned from experience. In this paper, we introduce
a formalism for hierarchically composing reward machines
(RMs). RMs are FSMs where each edge is labeled by (1) a
propositional logic formula over a set of high-level events
that capture a task’s landmark/subgoal, and (2) a reward for
satisfying the formula. The structure of an RM is naturally
exploited by HRL algorithms by treating each landmark as
a subtask and deciding which subtask to pursue from each
RM state. A hierarchy of reward machines (HRM) enables
the constituent RMs to call each other. We adapt HRL algo-
rithms to HRMs by defining each call to an RM as a subtask.
Given a set of hierarchically structured tasks, we describe a
curriculum-based method to induce an HRM for each task.
We evaluate our method in two domains and show that en-
capsulating each task’s structure within an HRM makes the
learning of a multi-level HRM more efficient than that of a
flat HRM since the size of the root machine is smaller. We
also study how efficient it is to use HRMs from lower levels
to drive the search for examples in higher level tasks.

1 Introduction
Reward machines (RMs) (Toro Icarte et al. 2018) are a re-
cent formalism for tackling sparse reward tasks in partially
observable environments by encoding the reward function of
a given task. RMs are finite-state machines whose edges are
labeled by propositional logic formulas over a set of high-
level events and a reward scalar. RMs capture a task’s sub-
goals through these formulas, and thus help to address par-
tial observability by acting as an external memory. These
structures are amenable to the use of hierarchical reinforce-
ment learning (HRL) frameworks, such as options (Sutton,
Precup, and Singh 1999), by associating an option to each
formula in the RM. Recent papers have proposed methods
for learning RMs (Toro Icarte et al. 2019; Xu et al. 2020;
Hasanbeig et al. 2021) and similar kinds of machines (Gaon
and Brafman 2020; Furelos-Blanco et al. 2021). The primary
shortcoming of the RMs considered by previous work is that
they cannot be reused within larger RMs, thus the same poli-

cies might be learned multiple times unnecessarily. Besides,
methods for learning RMs do not usually scale well when
the RMs consist of several states. In this work, we propose
a formalism for hierarchically composing RMs by allow-
ing calls between them. We introduce a curriculum-based
method for inducing these hierarchies given a set of tasks
classified into different levels according to their subtasks.
Hierarchies of RMs (HRMs) enable reusability and ease the
machine induction process since the constituent RMs are
smaller. Our method successfully learns and exploits HRMs
in environments with hierarchically composable tasks, out-
performing the learning of equivalent flat RMs. We empir-
ically show that using previously learned HRMs to explore
enables a efficient collection of example traces in new tasks.

Preliminaries An episodic partially observable
Markov decision process (POMDP) is a tuple
M = 〈S, ST , SG,Σ, A, p, r, γ, ν〉, where S, A, p, r
and γ are defined as for MDPs, ST ⊆ S is a set of terminal
states, SG ⊆ ST is a set of goal states, Σ is a set of
observations, and ν : S → ∆(Σ) is a mapping from
states to probability distributions over observations. The
POMDP is enhanced with a set of propositions P , and
a labeling function L : Σ → 2P mapping observations
into subsets of propositions (or labels) L ⊆ P . The aim
is to find a policy π : (Σ × A)∗ × Σ → A, a mapping
from histories of observation-action pairs to actions, which
maximizes the expected sum of discounted rewards (or
return), Rt = Eπ[

∑n
k=t γ

k−trt], where n is the last step
of the episode. We assume that the combination of an
observation and a history of labels seen during an episode is
sufficient to obtain the Markov property, i.e. a policy can be
defined as π : (2P)∗ × Σ→ A.

The interaction between the agent and a POMDP envi-
ronment is as follows. At time t, the state of the environ-
ment is st ∈ S, and the agent observes a tuple σt =
〈σΣ
t , σ

T
t , σ

G
t 〉, where σΣ

t ∼ ν(·|st) is an observation, and
σTt = I[st ∈ ST] and σGt = I[st ∈ SG] indicate whether
st is a terminal state and a goal state respectively. If the
state is non-terminal, the agent executes action at ∈ A,
the environment transitions to state st+1 ∼ p(·|st, at), and
the agent observes a new tuple σt+1 and receives reward
r(st, at, st+1). At the end of the episode, we will have a
trace λ = 〈σ0, a0, r1,σ1, a1, . . . , an−1, rn,σn〉, which can

be of three types: a goal trace if σGn = >, a dead-end trace
if σTn = > ∧ σGn = ⊥, and incomplete if σTn = ⊥. A label
trace λL,P can be derived by applying the labeling function
L to each observation σΣ

0≤i≤n in the previous trace.
The options framework (Sutton, Precup, and Singh 1999)

addresses temporal abstraction in reinforcement learning.
An option is a tuple ω = 〈Iω, πω, βω〉, where Iω and βω re-
spectively denote where the option initiates and terminates
(e.g., a subset of states), and πω is the option’s policy de-
scribing the behavior of the option between Iω and βω .

2 Contributions
We propose the CRAFTWORLD domain (cf. Figure 1a)
to describe our method. The agent () can move for-
ward or rotate 90◦, staying put if it moves towards a wall.
Grid locations are labeled with propositions from P =
{ , , , , , , , , , }. The agent observes propo-
sitions that it steps on (e.g., { } in the top-left corner). Ta-
ble 1 lists several tasks that consist of observing a sequence
of propositions, where the reward is 1 if the goal is achieved
and 0 otherwise. A label L is used as a truth assignment
where propositions p ∈ P in L are true, else they are false
(e.g., { } satisfies ∧ ¬).

Formalism A hierarchy of reward machines (HRM) is a
tuple H = 〈A,Ar,P, δH〉, where A = {A0, . . . ,Am−1} ∪
{A>} is a set ofm RMs and a leaf RMA>,Ar ∈ A\{A>}
is the root RM, P is a finite set of propositions shared by all
RMs, and δH : UH × 2P → UH is a hierarchical transition
function. The setUH denotes the set of all possible hierarchy
states, each a tuple 〈Ai, u,Γ〉 where Ai ∈ A is an RM, u is
a state ofAi, and Γ is a call stack. The call stack determines
the RMs to which control must be returned once a call is
completed. Each reward machine (RM) Ai ∈ A is a tuple
Ai = 〈Ui,P, ϕi, ri, u0

i , U
A
i , U

R
i 〉, where Ui is a finite set of

states, P is a finite set of propositions, ϕi : Ui × Ui ×A →
DNFP is the state transition function, ri : Ui × Ui → R is
the reward transition function, u0

i ∈ Ui is the initial state,
UAi ⊆ Ui is the set of accepting states, and URi ⊆ Ui is the
set of rejecting states.1,2 The leaf machine A> has a single
state, which is accepting (i.e., U> = UA> = {u0

>}). The
expression ϕi(u, u

′,Aj) = φ indicates that the transition
from u ∈ Ui to u′ ∈ Ui is associated with a call to RM Aj
and DNF formula φ ∈ DNFP , which must be satisfied to
start the call (by default, φ = ⊥). Accepting and rejecting
states do not have transitions to other states. Figure 1b shows
BOOK’s HRM, which consists of a root and two RMs for the
subtasks PAPER and LEATHER. An edge from state u to u′ of
an RM Ai is of the form Aj | ϕi(u, u′,Aj), double circled
states are accepting states, and loop transitions are omitted.

The execution of an HRM starts in the root’s initial state
with an empty call stack. Given a hierarchy state and a label

1We assume reward functions are ri(u, u′) = 1 if u /∈ UA
i and

u′ ∈ UA
i , and 0 otherwise for all 0 ≤ i < m.

2These RMs differ from the original ones (Toro Icarte et al.
2018) in that (i) there are calls to other RMs, (ii) there are ex-
plicit accepting and rejecting states, and (iii) transitions are given
by propositional logic formulas instead of sets of propositions.

L ⊆ P , the next hierarchy state is determined by the hierar-
chical transition function δH, which is recursively defined
using the transition functions ϕi of the constituent RMs.
Given a hierarchy state 〈Ai, u,Γ〉, δH covers three cases:

1. If u ∈ UAi is accepting and Γ is non-empty, pop the top
element of Γ and return control to the previous RM on
the call stack, recursively applying δH in case several ac-
cepting states are reached simultaneously.

2. IfL satisfies the formula φ of a transitionϕi(u, u′,Aj) =
φ, as well as formulas from initial states of recursively
called RMs, push Aj onto Γ and recursively apply δH
from its initial state. In Figure 1b, L must satisfy ∧¬
to startA1 from the root’s initial state, while it only needs
to satisfy if the call is made from state u2.

3. If none of the conditions in previous cases hold, the hier-
archy state does not change.

The behavior of δH is equivalent to the transition func-
tions of flat RMs in previous works, specifically those us-
ing logic formulas to label the edges (Furelos-Blanco et al.
2021), so an HRM cannot have circular dependencies and
must behave deterministically (two state transitions cannot
be satisfied at once).

Reinforcement Learning An HRM can be exploited us-
ing options, similar to flat finite-state machines (Toro Icarte
et al. 2018; Furelos-Blanco et al. 2021). Each transition
ϕi(u, u

′,Aj) = φ is associated with a formula option φ
if Aj = A>, and a call option 〈Aj , φ〉 if Aj 6= A>.
Both types of options are applicable in RM state u of Ai.
A formula option simply attempts to satisfy φ, while a call
option additionally has to satisfy formulas in recursively
called RMs. In Figure 1b, the set of formula options is
{ , ∧¬ , , , }, and option ∧¬ leads the agent to
observe label { }. The call options are 〈A1,¬ 〉, 〈A1,>〉
and 〈A2,>〉. Options 〈A1,¬ 〉 and 〈A2,>〉 are applicable
in the root’s initial state. In each RM state, a metacontroller
chooses an option to reach an RM’s accepting state as soon
as possible. The formula option policies and metacontrollers
are trained with Q-learning using a reward function tailored
to the formula and the RM’s reward transition function, re-
spectively.

An option hierarchy ω manages the options currently ex-
ecuting. Initially, ω is empty. At each step, the agent uses
metacontrollers to add options to ω until a formula option is
added. In Figure 1b, the metacontroller in the root’s initial
state may choose option 〈A2,>〉 followed by option , re-
sulting in ω = [〈A2,>〉,], and actions are then selected
according to option . After each action, formula option
policies are updated and the new hierarchy state determines
whether any option in ω has terminated. A formula option
terminates if the hierarchy state changes, while a call op-
tion terminates if it does not appear in the call stack of the
new hierarchy state. Termination is applied bottom-up start-
ing from the formula option, and stopped when an option
does not terminate. Finally, the metacontrollers are updated
for the terminated options, and call options that appear in the
call stack of the new hierarchy state but not in ω are added
to ω so that the corresponding metacontrollers can be later

(a)

u0

u1 u2

u3 uA

A1 | ¬ A2 | >

A2 | > A1 | >

A> |

A0 (root)

u0

u1

uA

A> |

A> |

A1

u0

u1

uA

A> |

A> |

A2

(b)

u0

u1

u2 u5

u3

u4

u6 uA

∧ ¬

(c)

Figure 1: A CRAFTWORLD grid (a), a multi-level HRM for BOOK (b) and an equivalent flat HRM (c).

Task Level Description Task Level Description Task Level Description Task Level Description

BATTER 1 (&) ; PAPER 1 ; MAP 2 (PAPER & COMPASS) ; CAKE 4 BATTER ; MILKB.SUGAR ;
BUCKET 1 ; QUILL 1 (&); MILKBUCKET 2 BUCKET ;
COMPASS 1 (&) ; SUGAR 1 ; BOOKQUILL 3 BOOK & QUILL
LEATHER 1 ; BOOK 2 (PAPER & LEATHER) ; MILKB.SUGAR 3 MILKBUCKET & SUGAR

Table 1: List of CRAFTWORLD tasks. Descriptions “x ; y” express sequential order (observe/do x then y), and descriptions “x
& y” express that x and y can be done in any order.

updated. We remark that the agent may not move through
the hierarchy as intended: if the agent observes { } while
pursuing , it moves to RM A1 and not to A2 as originally
intended.

Learning the Hierarchies An HRM is learned for each
task in a set of composable tasks following a curriculum
learning method (Pierrot et al. 2019). Each task is assigned a
level depending on its subtasks (e.g., Table 1 shows the lev-
els for CRAFTWORLD), and learning progresses from lower
to higher levels. Initially, level 1 tasks are chosen with equal
probability while higher level tasks cannot be chosen. When
task i terminates, its average return Ri is updated using the
last undiscounted return r as Ri ← βRi + (1− β)r, where
β is a hyperparameter. The probability of choosing task i in
the next episode is given by ci/

∑
k ck, where ci = 1 − Ri

(the maximum return is assumed to be 1). When the min-
imum average return of tasks in the current level or lower
surpasses a threshold ∆, the current level increases by 1.

Learning an HRM is analogous to previous work for flat
machines (Furelos-Blanco et al. 2021). Given a set of label
traces, a set of propositions, a set of callable RMs and a num-
ber of RM states, an inductive logic programming system,
ILASP, learns a state transition function that correctly rec-
ognizes the traces (e.g., goal traces finish in a root’s accept-
ing state). The callable RMs include all RMs in lower levels,
and each RM has one accepting state and one rejecting state.
To ease the induction, label traces are compressed (i.e., con-
secutive equal labels are merged into a single one), RMs are
forced to be acyclic, DNFs consist of a single disjunct, and
a symmetry breaking method is applied. The induction of
HRMs is interleaved with policy learning: a new HRM is
learned when an episode’s label trace is not correctly recog-
nized by the current HRM (e.g., a goal trace does not finish
in the root’s accepting state).

The first HRM is learned from a set of κ goal traces col-

lected by exploring, similar to other works (Toro Icarte et al.
2019; Xu et al. 2020). For level 1 tasks, the agent performs
a random walk, while in higher levels the agent uses HRMs
(i.e., call options) and formulas (i.e., formula options) from
lower levels. Enhancing exploration with options allows col-
lecting goal traces faster, especially when labels are sparse.
Finally, the κs shortest traces are used to learn the HRMs in
order to reduce the running time.

3 Evaluation and Discussion
We evaluate our method in two domains. CRAFTWORLD
is a modification of MiniGrid (Chevalier-Boisvert, Willems,
and Pal 2018) that adds new object types (one per proposi-
tion) and tasks. The grid is fully observable and can be of
three types: an open plan 7 × 7 grid (OP) as in Figure 1a,
an open plan 7 × 7 grid with a lava location (OPL), and a
13× 13 four rooms (FR) (Sutton, Precup, and Singh 1999).
OPL has an extra proposition for lava (), which must al-
ways be avoided. WATERWORLD (Toro Icarte et al. 2018) is
a 2D box containing 12 balls of 6 colors (2 per color), mov-
ing at constant speed in a fixed direction. The agent ball can
change its velocity in any cardinal direction. Propositions
P = {r, g, b, c, y,m} denote ball colors. The agent observes
the color of the balls it overlaps with. The tasks consist
in observing specific sequences of colors. Unlike CRAFT-
WORLD, labels with multiple propositions are observable in
WATERWORLD, motivating the use of propositional formu-
las as an extra level of abstraction. Both domains are par-
tially observable since the agent does not know the accom-
plished subgoals, which are encoded by the HRM.

Each experiment consists of 10 runs on a set of 10 ran-
dom instances (e.g., by placing objects randomly in CRAFT-
WORLD). In CRAFTWORLD, OP and OPL have one object
for each proposition, while FR has one or two. All experi-
ments run for 100,000 episodes, each lasting a maximum of

0.0 0.5 1.0 1.5 2.0 2.5
Number of episodes ×104

0.0

0.2

0.4

0.6

0.8

1.0
A

ve
ra

ge
re

tu
rn

0.0 1.0 2.0 3.0 4.0 5.0
Number of episodes ×104

0.0

0.2

0.4

0.6

0.8

1.0

A
ve

ra
ge

re
tu

rn

0.0 2.0 4.0 6.0 8.0 10.0
Number of episodes ×104

0.0

0.2

0.4

0.6

0.8

1.0

A
ve

ra
ge

re
tu

rn

0.0 0.5 1.0 1.5 2.0 2.5
Number of episodes ×104

0.0

0.2

0.4

0.6

0.8

1.0

A
ve

ra
ge

re
tu

rn

BATTER BUCKET COMPASS LEATHER PAPER QUILL SUGAR

BOOK MAP MILKBUCKET BOOK&QUILL MILKBUCKET&SUGAR CAKE

r; g b; c m; y

(r; g)&(b; c) (b; c)&(m; y) (r; g)&(m; y)

(r; g); b c; (m; y) (r; g; (b))&((c);m; y)

Figure 2: Learning curves for CRAFTWORLD (OP, OPL, and FR) and WATERWORLD.

300 steps. The curriculum has parameters β = ∆ = 0.95
and uses returns from the greedy policies evaluated in each
task-instance pair every 100 episodes. ILASP has 2 hours to
learn all HRMs. We use κ = 25 for level 1 tasks, κ = 150
for level 2 tasks onwards, and κs = 10 for all tasks.

We define multiple DQNs at different levels of abstrac-
tion (Kulkarni et al. 2016). Each formula option and each
RM is associated with a DDQN (van Hasselt, Guez, and Sil-
ver 2016). Metacontrollers provide Q-values for each option
in an RM given an observation and an RM state (the out-
put is masked according to the options available in the input
RM state). We adopt ε-greedy exploration: each formula op-
tion and RM state is associated with its own ε, which is lin-
early annealed. For formula options, ε decreases after each
step performed with that formula, while for metacontrollers
ε decreases after having finished an option that started in
that state. Formula option policies and metacontrollers are
trained using different discount factors γ. Each RM has its
own experience replay buffer, whereas all formula options
share a common buffer (a form of intra-option learning).

Figure 2 shows learning curves for the tasks of each do-
main, each measuring the undiscounted return obtained by
the greedy policy every 100 episodes. The dotted vertical
lines correspond to episodes where an HRM is learned. To
ease visibility, some curves are not displayed for all train-
ing episodes. All tasks generalize across instances, and the
curriculum is visible in all domains: when the return for
tasks at a level is close to 1, the HRMs and policies in the
next level start to be learned. In CRAFTWORLD, learning in
OP is easier than in OPL and FR. OPL is harder than OP
because (1) dead-ends hinder observing goal examples for
level 1 tasks using a random policy; (2) the root RMs must
include rejecting states and use an extra proposition, compli-
cating learning; (3) all non-lava policies must avoid the lava;
(4) policies to reach the lava must be learned; and (5) meta-
controllers must learn that edges labeled with should not
be chosen. Similar factors make FR harder than OP and
OPL. The collection of goal examples in level 1 tasks is
challenging with ε-greedy, especially those with several sub-
goals (e.g., BATTER) where convergence is delayed relative
to those with fewer subgoals. It is also harder to generalize
across instances since FR’s grid is bigger. In all cases, we
observe that once level 1 tasks are mastered, learning higher
level tasks is fast due to the reuse of lower level tasks’ RMs.

The average running times (in seconds) of the HRM
learning system across runs are 1257.8 (163.2) for OP,
1706.0 (302.8) for OPL, and 669.9 (113.1) for FR (standard
errors in brackets). Including the lava (OPL) increases the
time needed to learn the HRMs due to (1) a bigger hypoth-
esis space caused by the increase in the number of proposi-
tions and the inclusion of rejecting states, and (2) the need to
cover more example traces (OPL involves dead-end traces).
In the case of FR, despite the learned HRMs are similar to
those in OP, the running time is lower. This may be due to
the example traces being shorter: propositions are sparsely
distributed in FR and dense in OP. In all cases, around 90%
of the running time is spent on the HRMs for BOOK, MAP
and CAKE. Learning a multi-level HRM is less demand-
ing than learning an equivalent flat one: the only task out
of level 1 whose flat HRM can be learned within 2 hours is
MILKBUCKET, which consists of 4 states. The flat HRM for
BOOK, which is also a level 2 task, contains twice as many
states (see Figure 1c). This shows that leveraging task com-
positionality helps learning RMs which could not have been
learned in previous work.

The performance of exploration is evaluated by measuring
for each task the number of episodes between the activation
of its level and the learning of its first HRM. We compare
the performance by using only primitive actions versus us-
ing call and formula options as well. Using only primitive
actions leads to a higher number of episodes (i.e., it takes
more time to collect the set of κ examples). While the BOOK
task in the OP scenario needs 6957.2 (302.8) episodes using
primitive actions, only 500.3 (9.6) episodes are required if
options are also used. Delaying the learning of an HRM in-
curs a general delay since it takes longer to switch to higher
levels. In the case of FR, observing goal examples is harder
and surpassing level 2 never occurs if actions are exclu-
sively used. Besides, using sets of goal examples is conve-
nient: κ = κs = 1 in OP causes experiments to time out
when on level 2 or higher in 9/10 runs. Finally, we evaluate
policy learning alone by comparing the learning curves for
handcrafted non-flat and equivalent flat HRMs. We observe
both converge similarly in the simplest tasks, while non-flat
HRMs speed up convergence in the hardest ones.

In future work, we plan to modify the curriculum learning
component by removing the pre-established task levels, and
enabling imperfect lower level policies to be used.

References
Chevalier-Boisvert, M.; Willems, L.; and Pal, S. 2018. Min-
imalistic Gridworld Environment for OpenAI Gym. https:
//github.com/maximecb/gym-minigrid.
Furelos-Blanco, D.; Law, M.; Jonsson, A.; Broda, K.; and
Russo, A. 2021. Induction and Exploitation of Subgoal Au-
tomata for Reinforcement Learning. J. Artif. Intell. Res., 70:
1031–1116.
Gaon, M.; and Brafman, R. I. 2020. Reinforcement Learning
with Non-Markovian Rewards. In AAAI.
Hasanbeig, M.; Jeppu, N. Y.; Abate, A.; Melham, T.; and
Kroening, D. 2021. DeepSynth: Automata Synthesis for Au-
tomatic Task Segmentation in Deep Reinforcement Learn-
ing. In AAAI.
Kulkarni, T. D.; Narasimhan, K.; Saeedi, A.; and Tenen-
baum, J. 2016. Hierarchical Deep Reinforcement Learning:
Integrating Temporal Abstraction and Intrinsic Motivation.
In NeurIPS.
Pierrot, T.; Ligner, G.; Reed, S. E.; Sigaud, O.; Perrin, N.;
Laterre, A.; Kas, D.; Beguir, K.; and de Freitas, N. 2019.
Learning Compositional Neural Programs with Recursive
Tree Search and Planning. In NeurIPS.
Sutton, R. S.; Precup, D.; and Singh, S. P. 1999. Between
MDPs and Semi-MDPs: A Framework for Temporal Ab-
straction in Reinforcement Learning. Artif. Intell., 112(1-2):
181–211.
Toro Icarte, R.; Klassen, T. Q.; Valenzano, R. A.; and McIl-
raith, S. A. 2018. Using Reward Machines for High-Level
Task Specification and Decomposition in Reinforcement
Learning. In ICML.
Toro Icarte, R.; Waldie, E.; Klassen, T. Q.; Valenzano, R. A.;
Castro, M. P.; and McIlraith, S. A. 2019. Learning Reward
Machines for Partially Observable Reinforcement Learning.
In NeurIPS.
van Hasselt, H.; Guez, A.; and Silver, D. 2016. Deep Rein-
forcement Learning with Double Q-Learning. In AAAI.
Xu, Z.; Gavran, I.; Ahmad, Y.; Majumdar, R.; Neider, D.;
Topcu, U.; and Wu, B. 2020. Joint Inference of Reward Ma-
chines and Policies for Reinforcement Learning. In ICAPS.

