
State Representation Learning for Goal-Conditioned Reinforcement Learning

Lorenzo Steccanella 1 *, Anders Jonsson 1

1Dept. Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain
{lorenzo.steccanella, anders.jonsson}@upf.edu

Abstract

This paper presents a novel state representation for reward-
free Markov decision processes. The idea is to learn, in a
self-supervised manner, an embedding space where distances
between pairs of embedded states correspond to the minimum
number of actions needed to transition between them. Com-
pared to previous methods, our approach does not require any
domain knowledge, learning from offline and unlabeled data.
We show how this representation can be leveraged to learn
goal-conditioned policies, providing a notion of similarity be-
tween states and goals and a useful heuristic distance to guide
planning and reinforcement learning algorithms. Finally, we
empirically validate our method in classic control domains
and multi-goal environments, demonstrating that our method
can successfully learn representations in large and/or contin-
uous domains.

Introduction
In reinforcement learning, an agent attempts to learn use-
ful behaviors through interaction with an unknown environ-
ment. By observing the outcome of actions, the agent has to
learn from experience which action to select in each state in
order to maximize the expected cumulative reward.

In many applications of reinforcement learning, it is use-
ful to define a metric that measures the similarity of two
states in the environment. Such a metric can be used, e.g.,
to define equivalence classes of states in order to accelerate
learning, or to perform transfer learning in case the domain
changes according to some parameters but retains part of the
structure of the original domain. A metric can also be used
as a heuristic in goal-conditioned reinforcement learning, in
which the learning agent has to achieve different goals in the
same environment. A goal-conditioned policy for action se-
lection has to reason not only about the current state, but also
on a known goal state that the agent should reach as quickly
as possible.

In this work, we propose a novel algorithm for comput-
ing a metric that estimates the minimum distance between
pairs of states in reinforcement learning. The idea is to com-
pute an embedding of each state into a Euclidean space (see
Fig. 1), and define a distance between pairs of states equiv-
alent to the norm of their difference in the embedded space.

*Contact Author

Figure 1: Top: a simple gridworld where an agent has to pick
up a key and open a door (key and door positions are fixed).
Bottom: the learned state embedding ϕ on R2. The state is
composed of the agent location and whether or not it holds
the key.

We formulate the problem of computing the embedding as a
constrained optimization problem, and relax the constraints
by transforming them into a penalty term of the objective.
An embedding that minimizes the objective can then be es-
timated via gradient descent.

The proposed metric can be used as a basis for goal-
conditioned reinforcement learning, and has an advantage
over other approaches such as generalized value functions.
The domain of a generalized value function includes the
goal state in addition to the current state, which intuitively
increases the complexity of learning and hence the effort
necessary to properly estimate a goal-conditioned policy. In
contrast, the domain of the proposed embedding is just the
state itself, and the distance metric is estimated by compar-
ing pairs of embedded states.

In addition to the novel distance metric, we also propose
a model-based approach to reinforcement learning in which
we learn a transition model of actions directly in the embed-
ded space. By estimating how the embedding will change
after taking a certain action, we can predict whether a given
action will take the agent closer to or further from a given
target state. We show how to use the transition model to plan



directly in embedded space. As an alternative, we also show
how to use the proposed distance metric as a heuristic in the
form of reward shaping when learning to reach a particular
goal state.

The contributions of this work can be summarized as fol-
lows:

1. We propose a self-supervised training scheme to learn
a distance function by embedding the state space into
a low-dimensional Euclidean space Rd where a chosen
p-norm distance between embedded states approximates
the minimum distance between the actual states.

2. Once an embedding has been computed, we estimate
a transition model of the actions directly in embedded
space.

3. We propose a planning method that uses the estimated
transition model to select actions, and a potential-based
reward shaping mechanism that uses the learned distance
function to provide immediate reward to the agent in a
reinforcement learning framework.

Background
In this section we introduce necessary background knowl-
edge and notation.

Markov Decision Processes
A Markov decision process (MDP) (Puterman 2014) is a tu-
ple M = ⟨S,A, P, r⟩, where S, A denote the state space
and action space, P : S × A → ∆(S) is a transition kernel
and r : S×A→ R is a reward function. At time t, the learn-
ing agent observes a state st ∈ S, takes an action at ∈ A,
obtains a reward rt with expected value E[rt] = r(st, at),
and transitions to a new state st+1 ∼ P (·|st, at).

A stochastic policy π : S → ∆(A) is a mapping from
states to probability distributions over actions. The aim of
reinforcement learning is to compute a policy π that maxi-
mizes some notion of expected future reward.

In this work, we consider the discounted reward criterion,
for which the expected future reward of a policy π can be
represented using a value function V π , defined for each state
s ∈ S as

V π(s) = E

[ ∞∑
t=1

γt−1r(St, At)

∣∣∣∣∣S1 = s

]
.

Here, random variables St and At model the state and ac-
tion at time t, respectively, and the expectation is over the
action At ∼ π(·|St) and next state St+1 ∼ P (·|St, At). The
discount factor γ ∈ (0, 1] is used to control the relative im-
portance of future rewards, and to ensure V π is bounded.

As an alternative to the value function V π , one can instead
model expected future reward using an action-value function
Qπ , defined for each state-action pair (s, a) ∈ S ×A as

Qπ(s, a) = E

[ ∞∑
t=1

γt−1r(St, At)

∣∣∣∣∣S1 = s,A1 = a

]
.

The value function V π and action-value function Qπ are re-
lated through the well-known Bellman equations:

V π(s) =
∑
a∈A

π(a|s)Qπ(s, a),

Qπ(s, a) = r(s, a) + γ
∑
s′∈S

P (s′|s, a)V π(s′).

The aim of learning is to find an optimal policy π∗ that max-
imizes the value in each state, i.e. π∗(s) = argmaxπ V

π .
The optimal value function V ∗ and action-value functionQ∗

satisfy the Bellman optimality equations:

V ∗(s) = max
a∈A

Q∗(s, a),

Q∗(s, a) = r(s, a) + γ
∑
s′∈S

P (s′|s, a)V ∗(s′).

Goal-Conditioned Reinforcement Learning
Standard RL only requires the agent to complete one task
defined by the reward function. In Goal-Conditioned Rein-
forcement Learning (GCRL) the observation is augmented
with an additional goal that the agent is require to achieve
when taking a decision in an episode (Schaul et al. 2015a;
Andrychowicz et al. 2017). GCRL augments the MDP tu-
pleM with a set of goal states and a desired goal distribu-
tion MG = ⟨S,G, pg, A, P, r⟩, where G is a subset of the
state space G ⊆ S, pg is the goal distribution and the re-
ward function r : S × A × G → R is defined on goals G.
Therefore the objective of GCRL is to reach goal states via
a goal-conditioned policy π : S × G → ∆(A) that maxi-
mizes the expectation of the cumulative return over the goal
distribution.

Self-Imitation Learning When we consider the goal
space to be equal to the state space G = S we can
treat any trajectory t = {s0, a0, ..., an−1, sn} and any sub-
trajectory ti,j ∈ t, as a successful trial for reaching their
final states. Goal Conditioned Supervised Learning (GCSL)
(Ghosh et al. 2020) iteratively performs behavioral cloning
on sub-trajectories collected in a datasetD by learning a pol-
icy π conditioned on both the goal and the horizon h:

J(π) = ED[logπ(a | s, g, h)].

Reward Shaping
An important challenge in reinforcement learning is solv-
ing domains with sparse rewards, i.e. when the immediate
reward signal is almost always zero.

Reward Shaping attempts to solve this issue by augment-
ing a sparse reward signal r with a reward shaping function
F , r = r + F . Based on this idea, Ng et al. (Ng, Harada,
and Russell 1999) proposed Potential-based reward shaping
(PBRS) as an approach to guarantee policy invariance while
reshaping the environment reward r. Formally PBRS defines
F as:

F = γΦ(s′)− Φ(s)

where Φ : S → R is a real-valued potential function.



Figure 2: Evaluation Tasks. Top row: MountainCar-v0, CartPole-v0, AcroBot-v1 and Pendulum-v0. Bottom row: GridWorld
and SawyerReachXYZEnv-v1.

Contribution
In this section we present our main contribution, a method
for learning a state representation of an MDP that can be
leveraged to learn goal-conditioned policies. We first intro-
duce notation that will be used throughout, then present our
method for learning an embedding, and finally show how
to integrate the embedding in algorithms for planning and
learning.

We first define the Minimum Action Distance (MAD)
dMAD(s, s′) as the minimum number of actions necessary
to transition from state s to state s′.
Definition 1. (Minimum Action Distance) Let T (s′ | π, s)
be the random variable denoting the first time step in which
state s′ is reached in the MDP when starting from state s
and following policy π. Then dMAD(s, s′) is defined as:

dMAD(s, s′) := min
π
min [T (s′ | π, s)] .

The Minimum Action Distance between states is a pri-
ori unknown, and is not directly observable in continuous
and/or noisy state spaces where we cannot simply enumerate
the states and keep statistics about the MAD metric. Instead,
we will approximate an upper bound using the distances be-
tween states observed on trajectories. We introduce the no-
tion of Trajectory Distance (TD) as follows:
Definition 2. (Trajectory Distance) Given any trajectory
t = s0, ..., sn ∼ M collected in an MDP M and given
any pair of states along the trajectory (si, sj) ∈ t such that
0 ≤ i ≤ j ≤ n, we define dTD(si, sj | t) as

dTD(si, sj | t) = (j − i),
i.e. the number of decision steps required to reach sj from si
on trajectory t.

State Representation Learning
Our goal is to learn a parametric state embedding ϕθ : S →
Rd such that the distance d between any pair of embed-
ded states approximates the Minimum Action Distance from
state s to state s′ or vice versa.

d(ϕθ(s), ϕθ(s
′)) ≈ min(dMAD(s, s′), dMAD(s′, s)). (1)

We favour symmetric embeddings since it allows us to use
norms as distance functions, e.g. the L1 norm d(z, y) =
||z−y||1. Later we discuss possible ways to extend our work
to asymmetric distance functions.

To learn the embedding ϕθ, we start by observing that
given any state trajectory t = {s0, ..., sn}, choosing any
pair of states (si, sj) ∈ t with 0 ≤ i ≤ j ≤ n, their dis-
tance along the trajectory represents an upper bound of the
MAD.

dMAD(si, sj) ≤ dTD(si, sj | t). (2)

Inequality (2) holds for any trajectory sampled by any policy
and allows to estimate the state embedding ϕθ offline from a
dataset of collected trajectories T = {t1, ..., tn}. We formu-
late the problem of learning this embedding as a constrained
optimization problem:

min
θ

∑
t∈T

∑
(s,s′)∈t

(∥ϕθ(s)− ϕθ(s′)∥l − dTD(s, s′ | t))2,

s.t. ∥ϕθ(s)− ϕθ(s′)∥l ≤ dTD(s, s′ | t)
∀t ∈ T ,∀(s, s′) ∈ t.

(3)
Intuitively, the objective is to make the embedded dis-

tance between pairs of states as close as possible to the ob-
served trajectory distance, while respecting the upper bound
constraints. Without constrains, the objective is minimized
when the embedding matches the expected Trajectory Dis-
tance E [dTD] between all pairs of states observed on trajec-
tories in the dataset T . In contrast, constraining the solution
to match the minimum TD with the upper-bound constrains
∥ϕθ(s)− ϕθ(s′)∥l ≤ dTD(s, s′ | t) allows us to approxi-
mate the MAD. Evidently, the precision of this approxima-
tion depends to the quality of the given trajectories.

To make the constrained optimization problem tractable,
we relax the hard constrains in (3) and convert them into
a penalty term in order to retrieve a simple unconstrained
formulation that is solvable with gradient descent and fits
within the optimization scheme of neural networks.



min
θ

∑
t∈T

∑
(s,s′)∈t

1

dTD(s, s′ | t)2
(O + C) , (4)

where O is the objective to be minimized:

O = (∥ϕθ(s)− ϕθ(s′)∥l − dTD(s, s′ | t))2

and C is our penalty term defined as:

C = max (0, ∥ϕθ(s)− ϕθ(s′)∥l − dTD(s, s′ | t))2 .

The penalty term C introduce a quadratic penalization
of the objective for violating the upper-bound constraints
∥ϕθ(s)− ϕθ(s′)∥l <= dTD(s, s′ | t), while the term

1
dTD(s,s′|t)2 normalizes each sample loss to be in the range
[0, 1]. The normalizing term also has the effect of prioritizing
pairs of states that are close together on a trajectory, while
giving less weight to pairs of states that are further apart.
Intuitively, this makes sense since there is more uncertainty
regarding the MAD of pairs of states that are further apart
on a trajectory.

Learning Transition Models
In the previous section we showed how to learn a state repre-
sentation that encodes a distance metric between states. This
distance allows us to identify states st that are close to a
given goal state, i.e. d(ϕθ(st), ϕθ(sgoal)) < ϵ, or to measure
how far we are from the goal state, i.e. d(ϕθ(st), ϕθ(sgoal)).
However, on its own, the distance metric does not directly
give us a policy for reaching the desired goal state.

In this section we propose a method to learn a transition
model of actions, that combined with our state representa-
tion allows us to plan directly in the embedded space and
derive policies to reach any given goal state. Given a dataset
of trajectories T and a state embedding ϕθ(s), we seek a
parametric transition model ρζ(ϕθ(s), a) such that for any
triple (s, a, s′) ∈ T , ρζ(ϕθ(s), a) ≈ ϕθ(s′).

We propose to learn this model simply by minimizing the
squared error as

min
ζ

T∑
t

t∑
s,a,s′

[
(ρζ(ϕθ(s), a)− ϕθ(s′))2

]
. (5)

Note that in this minimization problem, the parameters θ of
our state representation are fixed, since they are considered
known and are thus not optimized at this stage.

Latent space planning
The functions ρζ and ϕθ together represent an approximate
model of the underlying MDP.

We propose a Model Predictive Control algorithm that we
call Plan-Dist, which computes a policy to reach a given de-
sired goal state sgoal ∈ S by unrolling trajectories for a
fixed horizon H in the embedded space. Plan-Dist uses the
negative distance between the actual state st and the goal
state sgoal as the desired reward function to be maximized,
i.e. r(s) = −d(ϕθ(st), ϕθ(sgoal)). Our algorithm considers
discrete action spaces and discretizes the action space oth-
erwise. Plan-Dist samples a number N of action trajectories

TN,H from the set of all possible action sequences of length
H , TN,H ⊂ AH . The trajectories are then unrolled recur-
sively in the latent space starting from our actual state st
and using the transition model ϕθ(st+1) ≈ ρζ(ϕθ(st), at).
At time step t, the first action of the trajectory that mini-
mizes the distance to the goal is performed and this process
is repeated at each time step until a terminal state is reached
(cf. Algorithm 1).

Algorithm 1: PLAN-DIST

1: Input: environment e, state embedding ϕθ, transi-
tion model ρζ , horizon H , number N of trajecto-
ries to evaluate

2: s← initialstate
3: sgoal ← goalstate
4: zgoal ← ϕθ(sgoal)
5: while within budget do
6: TN,H ← sample N action sequences of length

H
7: tMaxReward ← None
8: rmax ←MinReward
9: for ta ∈ TN,H do

10: z = ϕθ(s)
11: r = r − d(z, zgoal)
12: for at ∈ ta do
13: zt+1 = ρζ(z, at)
14: r = r − d(zt+1, zgoal)
15: end for
16: if r > rmax then
17: rmax = r
18: tMaxReward ← ta
19: end if
20: end for
21: s′ ← apply action tMaxReward[0] in state s
22: s = s′

23: end while

Reward Shaping
Our last contribution is to show how to combine prior knowl-
edge in the form of goal states and our learned distance func-
tion to guide existing reinforcement learning algorithms.

We assume that a goal state is given and we augment the
environment reward r(s, a) observed by the reinforcement
learning agent with Potential-based Reward Shaping (Ng,
Harada, and Russell 1999) of the form:

r(s, a) = r(s, a) + F (s, γ, s′), (6)
where F is our potential-based reward:

F (s, γ, s′) = −γd(ϕθ(s′), ϕθ(sgoal))+d(ϕθ(s), ϕθ(sgoal)).
Here, d(ϕθ(·), ϕθ(sgoal)) represents our estimated Mini-
mum Action Distance to the goal sgoal. Note that for a fixed
goal state sgoal, −d(ϕθ(·), ϕθ(sgoal)) is a real-valued func-
tion of states which is maximized when d = 0.



Environments # Trajectories
Dataset

Algorithm to
Collect Trajectories

Avg Reward
Dataset

Max Reward
Dataset

MountainCar-v0 100 DDQN -164.26 -112
CartPole-v0 200 DDQN +89.42 +172
AcroBot-v1 100 DDQN -158.28 -92.0
Pendulum-v0 100 DDPG -1380.39 -564.90
GridWorld 100 RandomPolicy – –
SawyerReach-
XYZEnv-v1 100 RandomPolicy – –

Table 1: Dataset description.

Intuitively our reward shaping schema is forcing the agent
to reach the goal state as soon as possible while maximizing
the environment reward r(s, a). By using potential-based re-
ward shaping F (s, γ, s′) we are ensuring that the optimal
policy will be invariant (Ng, Harada, and Russell 1999).

Experimental Results
In this section we present results from experiments where we
learn a state embedding and transition model offline from a
given dataset of trajectories. We then use the learned models
to perform experiments in two settings:

1. Offline goal-conditioned policy learning: Here we eval-
uate the performance of our Plan-Dist algorithm against
GCSL (Ghosh et al. 2020).

2. Reward Shaping: In this setting we use the learned MAD
distance to reshape the reward of a DDQN(Van Hasselt,
Guez, and Silver 2016) agent (DDQN-PR) for discrete
action environments and DDPG(Lillicrap et al. 2015) for
continuos action environment (DDPG-PR), and we com-
pare it to their original versions.

Subject to acceptance of the paper, we plan to make the code
publicly available to reproduce the experimental results.

Dataset Collection and Domain Description
We test our algorithms on the classic RL control suite
(cf. Figure 2). Even though termination is often defined for
a range of states, we fix a single goal state among the ter-
mination states. These domains have complex dynamics and
random initial states, making it difficult to reach the goal
state without dedicated exploration. The goal state selected
for each domain is:

• MountainCar-v0: [0.50427865, 0.02712902]
• CartPole-v0: [0, 0, 0, 0]
• AcroBot-v1: [-0.9661, 0.2581, 0.8875, 0.4607, -1.8354,

-5.0000]
• Pendulum-v0: [1, 0, 0]

Additionally, we test our model-based algorithm Plan-Dist
in two multi-goal domains(see. Fig. 2):

• A 40x40 GridWorld.
• The multiworld domain SawyerReachXYZEnv-v1,

where a multi-jointed robotic arm has to reach a given
goal position.

In each episode, a new goal sgoal is sampled at random, so
the set of possible goal states G equals the entire state space
S. These domains are challenging for reinforcement learn-
ing algorithms, and even previous work on goal-conditioned
reinforcement learning usually considers a small fixed sub-
set of goal states.

In each of these domains we collect a dataset that approx-
imately covers the state space, since we want to be able to
use any state as a goal state. Collecting these datasets is
not trivial. As an example, consider the MountainCar do-
main where a car is on a one-dimensional track, positioned
between two mountains. A simple random trajectory will
not be enough to cover all the state space since it will get
stuck in the valley without being able to move the cart on
top of the mountains. Every domain in the classic control
suite presents this exploration difficulty and for these envi-
ronments we rely on collecting trajectories performed by the
algorithms DDQN(Van Hasselt, Guez, and Silver 2016) and
DDPG(Lillicrap et al. 2015) while learning a policy for these
domains. Note that we use DDPG only in the Pendulum do-
main, which is characterized by a continuous action space.

In Table 1 we report the size, the algorithm/policy used to
collect the trajectories, the average reward and the maximum
reward of each dataset. Note that the average reward is far
from optimal and that both Plan-Dist (our offline algorithm)
and GCSL improve over the dataset performance (cf. Figure
3).

Learning a State Embedding

The first step of our procedure consists in learning a state
embedding ϕθ from a given dataset of trajectories T . From
each trajectory ti = {s0, ..., sn} ∈ T we collect all samples
(si|ti , sj|ti , dTD(si|ti , sj|ti | ti)), 0 ≤ i ≤ j ≤ n, and popu-
late a Prioritized Experience Replay (PER) memory (Schaul
et al. 2015b). We use PER to prioritize the samples based on
how much they violate our penalty function in (4).

We used mini-batches B of size 512 with the AdamW
optimizer (Loshchilov and Hutter 2017) and a learning rate
of 5∗10−4 for 100,000 steps to train a neural network ϕθ by
minimizing the following loss derived from (4):

L(B) =
∑

(s,s′,dTD)∈B

O + C,



where O is the objective to be minimized:

O =
1

d2TD

(∥ϕθ(s)− ϕθ(s′)∥1 − dTD)2

and C is the penalty term defined as:

C =
1

d2TD

max(0, ∥ϕθ(s)− ϕθ(s′)∥1 − dTD)2

We use an embedding dimension of size 64 with an L1
norm as the metric to approximate the MAD distance. Em-
pirically, the L1 norm turns out to perform better than the L2
norm in high-dimensional embedding spaces. These find-
ings are in accordance with theory (Aggarwal, Hinneburg,
and Keim 2001).

Learning Dynamics
We use the same dataset of trajectories T to learn a transition
model. We collect all the samples (s, a, s′) in a datasetD and
train a neural network ρζ using mini-batches B of size 512
with the AdamW optimizer (Loshchilov and Hutter 2017)
and a learning rate of 5∗10−4 for 10,000 steps by mimizing
the following loss derived from (5):

L(B) =
B∑

s,s′,dTD

[
(ρζ(ϕθ(s), a)− ϕθ(s′))2

]
Experiments
We compare our algorithm Plan-Dist against an offline vari-
ant of GCSL, where GCSL is trained from the same dataset
of trajectories as our models ϕθ and ρζ . The GCSL policy
and the models ϕθ and ρζ are all learned offline and frozen
at test time.

Ghosh et al. (Ghosh et al. 2020) propose two variants
of the GCSL algorithm, a Time-Varying Policy where the
policy is conditioned on the remaining horizon π(a|s, g, h)
(in our experiments we refer to this as GCSL-TVP) and a
horizon-less policy π(a|s, g) (we refer to this as GCSL).

We refer to our reward shaping algorithms as DDQN-
PR/DDPG-PR and their original counterpart without reward
shaping as DDQN/DDPG. DDQN is used in domains in
which the action space is discrete, while DDPG is used for
continuous action domains.

For all the experiments we report results averaged over 10
seeds where the shaded area represents the standard devia-
tion and the results are smoothed using an average window
of length 100. All the hyper-parameters used for each algo-
rithm are reported in the appendix.

In the multi-goal environments in Figure 4 we report two
metrics: the distance to the goal with respect to the state
reached at the end of the episode, and the length of the per-
formed trajectory. In both domains, the episode terminates
either when we reach the goal state or when we reach the
maximum number of steps (50 steps for GridWorld, and 200
steps for SawyerReachXYZEnv-v1). We evaluate the algo-
rithms for 100,000 environment steps.

We can observe that Plan-Dist is able to outperform
GCSL, being able to reach the desired goal state with bet-
ter precision and by using shorter paths. We do not compare
to reinforcement learning algorithms in these domains since
they struggle to generalize when the goal changes so fre-
quently.

On the classic RL control suite in Figure 3 we report
the results showing the total reward achieved at the end of
each episode. Here we compare both goal-conditioned al-
gorithms and state-of-the-art reinforcement learning algo-
rithms for 200,000 environment steps. Plan-Dist is still able
to outperform GCSL in almost all domains, while perform-
ing slightly worse than GCSL-TVP in CartPole-v0. Com-
pared to DDQN-PR/DDPG-PR, Plan-Dist is able to reach
similar total reward, but in MountainCar-v0, DDQN-PR is
eventually able to achieve higher reward.

The reward shaping mechanism of DDQN-PR/DDPG-PR
is not helping in the domains CartPole-v0, Pendulum-v0 and
Acrobot-v0. In these domains, it is hard to define a single
state as the goal to reach in each episode. As an example, in
CartPole-v0 we defined the state [0, 0, 0, 0] as our goal state
and we reshape the reward accordingly, but this is not in line
with the environment reward that instead cares only about
balancing the pole regardless of the position of the cart.
While in these domains we do not observe an improvement
in performance, it is worth noticing that our reward shap-
ing scheme is not adversely affecting DDQN-PR/DDPG-
PR, and they are able to achieve results that are similar to
those of their original counterparts.

Conversely, in MountainCar-v0 where the environment
reward resembles a goal reaching objective, since the goal is
to reach the peak of the mountain as fast as possible, our re-
ward shaping scheme is aligned with the environment objec-
tive and DDQN-PR outperforms DDQN in terms of learn-
ing speed and total reward on the fixed evaluation time of
200,000 steps.

Discussion and Future Work
We propose a novel method for learning a parametric state
embedding ϕθ where the distance between any pair of states
(s, s′) in embedded space approximates the Minimum Ac-
tion Distance, d(ϕθ(s), ϕθ(s′)) ≈ dMAD(s, s′). One limi-
tation of our approach is that we consider symmetric dis-
tance functions, while in general the MAD in an MDP could
be asymmetric, dMAD(s, s′) ̸= dMAD(s′, s). Schaul et
al. (Schaul et al. 2015a) raise a similar issue in the context of
learning Universal Value Functions, and propose an asym-
metric distance function on the following form:

dA(s, s
′) = ∥σ(ψ1(s

′))(ϕ(s)− ψ2(s
′))∥l,

where σ is a the logistic function and ψ1 and ψ2 are two
halves of the same embedding vector. In their work they
show similar performance using the symmetric and asym-
metric distance functions. Still, an interesting future direc-
tion would be to use this asymmetric distance function in
the context of our self-supervised training scheme.

While our work focuses on estimating the MAD between
states and empirically shows the utility of the resulting met-



Figure 3: Results in the classic RL control suite.

Figure 4: Results in multi-goal environments.



ric for goal-conditioned reinforcement learning, the distance
measure could be uninformative in highly stochastic envi-
ronment where the expected shortest path distance better
measures the distance between states. One possible way to
approximate this measure using our self-supervised training
scheme would be to minimize a weighted version of our ob-
jective in (3):

min
θ

∑
t∈T

∑
(s,s′)∈t

1/dαTD(∥ϕθ(s)− ϕθ(s′)∥l−

−dTD(s, s′ | t))2.

Here, the term 1/dTD is exponentiated by a factor α which
decides whether to favour the regression over shorter or
longer Trajectory Distances. Concretely, when α < 1 we
favour the regression over shorter Trajectory Distances, ap-
proximating a Shortest Path Distance.

In our work we learn a distance function offline from a
given dataset of trajectories, and one possible line of future
research would be to collect trajectories while simultane-
ously exploring the environment in order to learn the dis-
tance function.

In this work we focus on single goal reaching tasks, in
order to have a fair comparison with goal-conditioned rein-
forcement learning agents in the literature. However, the use
of our learned distance function is not limited to this set-
ting and we can consider multi-goal tasks, such as reaching
a goal while maximizing the distance to forbidden (obsta-
cle) states, reaching the nearest of two goals, and in general
any linear and non-linear combination of distances to states
given as input.

Lastly, it would be interesting to use this work in the
contest of Hierarchical Reinforcement Learning, in which a
manager could suggest subgoals to our Plan-Dist algorithm.

References
Aggarwal, C. C.; Hinneburg, A.; and Keim, D. A. 2001. On
the surprising behavior of distance metrics in high dimen-
sional space. In International conference on database the-
ory, 420–434. Springer.
Andrychowicz, M.; Wolski, F.; Ray, A.; Schneider, J.; Fong,
R.; Welinder, P.; McGrew, B.; Tobin, J.; Pieter Abbeel, O.;
and Zaremba, W. 2017. Hindsight experience replay. Ad-
vances in neural information processing systems, 30.
Ghosh, D.; Gupta, A.; Reddy, A.; Fu, J.; Devin, C. M.; Ey-
senbach, B.; and Levine, S. 2020. Learning to Reach Goals
via Iterated Supervised Learning. In International Confer-
ence on Learning Representations.
Lillicrap, T. P.; Hunt, J. J.; Pritzel, A.; Heess, N.; Erez, T.;
Tassa, Y.; Silver, D.; and Wierstra, D. 2015. Continuous
control with deep reinforcement learning. arXiv preprint
arXiv:1509.02971.
Loshchilov, I.; and Hutter, F. 2017. Decoupled weight decay
regularization. arXiv preprint arXiv:1711.05101.
Ng, A. Y.; Harada, D.; and Russell, S. 1999. Policy invari-
ance under reward transformations: Theory and application
to reward shaping. In Icml, volume 99, 278–287.
Puterman, M. L. 2014. Markov decision processes: discrete
stochastic dynamic programming. John Wiley & Sons.
Schaul, T.; Horgan, D.; Gregor, K.; and Silver, D. 2015a.
Universal value function approximators. In International
conference on machine learning, 1312–1320. PMLR.
Schaul, T.; Quan, J.; Antonoglou, I.; and Silver, D.
2015b. Prioritized experience replay. arXiv preprint
arXiv:1511.05952.
Van Hasselt, H.; Guez, A.; and Silver, D. 2016. Deep rein-
forcement learning with double q-learning. In Proceedings
of the AAAI conference on artificial intelligence, volume 30.


