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Abstract

A longstanding objective in classical planning is to synthe-
size policies that generalize across multiple problems from
the same domain. In this work, we study generalized policy
search-based methods with a focus on the score function used
to guide the search over policies. We demonstrate limitations
of two score functions — policy evaluation and plan compari-
son — and propose a new approach that overcomes these lim-
itations. The main idea behind our approach, Policy-Guided
Planning for Generalized Policy Generalization (PG3), is that
a candidate policy should be used to guide planning on train-
ing problems as a mechanism for evaluating that candidate.
Theoretical results in a simplified setting give conditions un-
der which PG3 is optimal or admissible. We then study a spe-
cific instantiation of policy search where planning problems
are PDDL-based and policies are lifted decision lists. Em-
pirical results in six domains confirm that PG3 learns gen-
eralized policies more efficiently and effectively than several
baselines.

1 Introduction
How can we compile a transition model and a set of train-
ing tasks into a reactive policy? Can these policies general-
ize to large tasks that are intractable for modern planners?
These questions are of fundamental interest in AI planning
(Fikes, Hart, and Nilsson 1972), with progress in general-
ized planning recently accelerating (Srivastava 2011; Bonet
and Geffner 2015; Jiménez, Segovia-Aguas, and Jonsson
2019; Rivlin, Hazan, and Karpas 2020).

Generalized policy search (GPS) is a flexible paradigm
for generalized planning (Levine and Humphreys 2003;
Segovia-Aguas, Jiménez, and Jonsson 2021). In this family
of methods, a search is performed through a class of gener-
alized (goal-conditioned) policies, with the search informed
by a score function that maps candidate policies to scalar
values. While much attention has been given to different pol-
icy representations, there has been relatively less work on
the score function. The score function plays a critical role: if
the scores are uninformative or misleading, the search will
languish in less promising regions of policy space.
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In this work, we propose Policy-Guided Planning for
Generalized Policy Generation (PG3), which centers around
a new score function for GPS. Given a candidate policy, PG3
solves the set of training tasks using the candidate to guide
planning. When a plan is found, the agreement between the
plan and the policy contributes to the score. Intuitively, if the
policy is poor, the planner will ignore its guidance or fail to
find a plan, and the score will be poor; if instead the policy
is nearly able to solve problems, except for a few “gaps”, the
planner will rely heavily on its guidance, for a good score.

PG3 combines ideas from two score functions for GPS:
plan comparison, which plans on the training tasks and
records the agreement between the found plans and the can-
didate policy; and policy evaluation, which executes the pol-
icy on the training tasks and records the number of suc-
cesses. While plan comparison provides a dense scoring
over policy space, it works best when the solutions for a set
of problems all conform to a simple policy. Absent this prop-
erty, GPS can overfit to complicated and non-general solu-
tions. Policy evaluation scores are extremely sparse within
the policy space, effectively forcing an exhaustive search
until reaching a region of the policy space with non-zero
scores. However, the policies resulting from this approach
are significantly more compact and general. PG3 combines
the strengths of plan comparison and policy evaluation to
overcome their individual limitations. See Figure 1.

In experiments, we study a simple but expressive class
of lifted decision list generalized policies for PDDL do-
mains (Mooney and Califf 1995; Khardon 1999; Levine and
Humphreys 2003). Since the policies are lifted, that is, in-
variant over object identities, they can generalize to prob-
lems involving new and more objects than seen during learn-
ing. We propose several search operators for lifted decision
list policies, including a “bottom-up” operator that proposes
policy changes based on prior planning experience.

This paper makes the following main contributions: (1)
we propose PG3 as a new approach to GPS; (2) in a sim-
plified setting, we provide conditions under which PG3 is
optimal or admissible for policy search; (3) we propose a
specific instantiation of GPS for PDDL domains using lifted
decision lists; and (4) we report empirical results across six
PDDL domains, demonstrating that PG3 learns policies that
generalize to held-out test problems, doing so far more effi-
ciently and effectively than several baselines.



Figure 1: (Left) In this work, we study generalized policy search (GPS). Each node represents a candidate policy. (Left middle)
A candidate policy for the Forest domain. In this domain, the agent can walk along the marked trail (green), but it can also
walk in the dirt (brown) as long as it avoids water (blue). The candidate policy, which has the agent walk along the trail, would
always succeed, except that the trails sometimes contain rocks (gray), which must be climbed; the policy thus fails when a
rock is encountered. This policy is “close” to satisficing (see Definition 1 for a precise meaning), so we would like to give it
a good score. Each of the next three columns illustrates a different score function evaluated using two training problems (top
and bottom rows). Squares (circles) denote agreement (disagreement) between the candidate policy and plan. (Middle) Policy
evaluation gives a trivial score to the candidate policy because it never reaches the goal. (Middle right) Plan comparison gives a
poor score because the policy differs substantially from the paths found by a planner, which often leave the marked trail. (Right)
We propose PG3, which evaluates the candidate by policy-guided planning, resulting in a good score.

2 Related Work

Policy search has been previously considered as an ap-
proach to generalized planning (Levine and Humphreys
2003; Khardon 1999; Jiménez and Jonsson 2015; Segovia-
Aguas, Jiménez, and Jonsson 2018). Most prior work ei-
ther uses policy evaluation as a score function, or relies on
classical planning heuristics for the search through policy
space. One exception is Segovia-Aguas et al. (2021), who
extend policy evaluation with goal counting; we include this
baseline in our experiments. Because of the limited search
guidance and size of the policy space, all of these methods
can typically learn only small policies, or require additional
problem specifications (Illanes and McIlraith 2019).

Another strategy for generalized planning is to construct a
policy, often represented as a finite state machine, from ex-
ample plans (Levesque 2005; Hu and Levesque 2009; Sri-
vastava et al. 2011a; Winner 2008). Such approaches are
successful if the plans all conform to a single compact pol-
icy. This assumption is violated in many interesting prob-
lems including ones that we investigate here (c.f. plan com-
parison). Other approaches learn abstractions from example
plans that lend themselves to compact policies (Martin and
Geffner 2004; Srivastava et al. 2011b; Bonet and Geffner
2018). While these abstraction-based approaches expand the
space of solvable problems, they are still unable to learn
policies that deviate dramatically from the example plans.

Recent work has proposed using deep learning to learn a
generalized policy (Groshev et al. 2018) or a heuristic func-
tion (Rivlin, Hazan, and Karpas 2020; Karia and Srivastava
2020; Gehring et al. 2021). Inspired by these efforts, we in-

clude a graph neural network baseline in experiments. Be-
yond classical planning in factored and relational domains,
learning a goal-conditioned policy is of interest in reinforce-
ment learning and continuous control (Schaul et al. 2015;
Pong et al. 2018). Unlike in generalized planning, these set-
tings do not assume a known, structured domain model, and
often make very different assumptions about state and action
representations. Applying the insights in this paper to these
settings is an interesting area for future investigation.

We propose policy-guided planning as a mechanism for
policy learning. Previous work has also considered the ques-
tion of how to use a fixed (often previously learned) policy to
aid planning (Khardon 1999; Yoon, Fern, and Givan 2008).

3 Preliminaries
We begin with a brief review of classical planning and then
define the generalized problem setting.

Classical Planning
In AI planning, we are given a domain and a problem, both
often expressed in PDDL (McDermott et al. 1998). We use
the STRIPS subset with types and negative preconditions.

A domain is a tuple ⟨P,A⟩ where P is a set of predi-
cates and A is a set of actions. A predicate p ∈ P con-
sists of a name and an arity. An atom is a predicate and
a tuple of terms, which are either objects or variables.
For example, on is a predicate with arity 2; on(X, Y)
and on(b1, b2) are atoms, where X,Y are variables and
b1,b2 are objects. Terms may be typed. A literal is an atom
or its negation. An action a ∈ A consists of a name and



a tuple ⟨PAR(a), PRE(a), ADD(a), DEL(a)⟩, which are the
parameters, preconditions, add effects, and delete effects of
the action respectively. The parameters are a tuple of vari-
ables. The preconditions are a set of literals, and the add
and delete effects are sets of atoms over the parameters. A
ground action is an action with objects substituted for pa-
rameters. For example, if move is an action with parame-
ters (?from, ?to), then move(l5, l6) is a ground
action. In general, actions may be associated with variable
costs; in this work, we focus on satisficing planning and as-
sume all costs are unitary.

A domain is associated with a set of problems. A problem
is a tuple ⟨O, I,G⟩ where O is a set of objects, I is an initial
state, and G is a goal. States and goals are sets of atoms with
predicates from P instantiated with objects from O. Given
a state S, a ground action a = a(o1, . . . , ok) with a ∈ A
and oi ∈ O is applicable if PRE(a) ⊆ S.1 Executing an
applicable action a in a state S results in a successor state,
denoted a(S) = (S \ DEL(a)) ∪ ADD(a). Given a problem
and domain, the objective is to find a plan (a1, . . . , am) that
solves the problem, that is, am ◦ · · · ◦ a1(I) ⊆ G and each
ai is applicable when executed.

Problem Setting: Generalized Planning
AI planning is traditionally concerned with solving individ-
ual planning problems. In generalized planning, the objec-
tive instead is to find a unified solution to multiple problems
from the same domain. Here we are specifically interested
in learning a generalized policy π, which maps a state S and
a goal G to a ground action a, denoted π(S,G) = a. This
form of π is very general, but our intention is to learn a re-
active policy, which produces an action with minimal com-
putation, and does not, for example, plan internally. Given a
problem ⟨O, I,G⟩, the policy is said to solve the problem if
there exists a plan (a1, . . . , am) that solves the problem, and
such that π(Si, G) = ai for each state Si in the sequence of
successors. In practice, we evaluate a policy for a maximum
number of steps to determine if it solves a problem.

Our aim is to learn a policy that generalizes to many prob-
lems from the same domain, including problems that were
not available during learning. We therefore consider a prob-
lem setting with a training phase and a test phase. During
training, we have access to the domain ⟨P,A⟩ and a set of
training problems Ψ = {⟨O1, I1, G1⟩, . . . , ⟨On, In, Gn⟩}.
The output of training is a single policy π. During the test
phase, π is evaluated on a set of held-out test problems, of-
ten containing many more objects than those seen during
training. The objective of generalized policy learning is to
produce a policy π that solves as many test problems as pos-
sible. A policy that solves all problems in the test set is re-
ferred to as satisficing.

4 Policy-Guided Planning for Policy Search
In this work, we build on generalized policy search (GPS),
where a search through a set of generalized policies is
guided by a score function. Specifically, we perform a

1That is, if all positive atoms in PRE(a) are in S, and no negated
atoms in PRE(a) are in S. We use this shorthand throughout.

greedy best-first search (GBFS), exploring policies in the or-
der determined by SCORE, which takes in a candidate policy
π, the domain ⟨P,A⟩, and the training problems Ψ, and re-
turns a scalar value, where lower is better (Algorithm 1).

Example 1 (Forest). Forest is a PDDL domain illustrated
in Figure 1; see the caption for a description. There is a sim-
ple satisficing policy for this domain: walk along the trail,
and climb over any rocks that are encountered. This pol-
icy is similar in spirit to the classic wall-following policy
for mazes. The good-but-imperfect candidate policy illus-
trated in Figure 1 walks along the trail, but does not climb.
When this candidate is considered during GPS, it will spawn
many successor policies: one will add (isRock ?to) as
a precondition to rule1; another will create a rule with the
climb action; among others. Each will then be scored.

The score function has a profound impact on the efficacy
of GPS. One possible score function is policy evaluation:
the candidate policy is executed in each training problem,
and the score is inversely proportional to the number of
problems solved. A major limitation of this score function
is that its outputs are trivial for all policies that do not com-
pletely solve any problems, such as the policy above.

Another possible score function is plan comparison: a
planner is used to generate plans for the training problems,
and the candidate policy is scored according to the agree-
ment between the plans and the candidate policy (Algo-
rithm 4). When there are multiple ways to solve a problem,
this score function can sharply mislead GPS. For example,
plan comparison gives a poor score to the follow-and-climb
policy in Example 1, even though the policy is satisficing!
This issue is not limited to the Forest domain; similar is-
sues arise whenever goal atoms can be achieved in different
orders, or when the same state can be reached through two
different paths from the initial state. This phenomenon also
arises in “bottom-up” generalized planning (Section 2).

Our main contribution is Policy-Guided Planning for
Generalized Policy Generation (PG3). Given a candidate
policy, PG3 runs policy-guided planning on each train-
ing problem (Algorithm 3). Our implementation of policy-
guided planning is a small modification to A∗ search: for
each search node that is popped from the queue, in addition
to expanding the single-step successors, we roll out the pol-
icy for several time steps (maximum 50 in experiments, or
until the policy is not applicable), creating nodes for each
step. The nodes created by policy execution are given cost
0, encouraging the search to prefer paths generated by the
policy. For each training problem, if policy-guided planning
returns a plan, we run single plan comparison (Algorithm 4)
to get a score for the training problem. For each state and
action in the plan, the policy is evaluated at that state and
compared to the action; if they are not equal, the score is in-
creased by 1. If a plan was not found, the maximum possible
plan length ℓ is added to the overall score. Finally, the per-
plan scores are accumulated to arrive at a policy score. To
accumulate, we use max for its theoretical guarantees (Sec-
tion 4), but mean has similar empirical performance.

Intuitively, if a candidate policy is able to solve a problem
except for a few “gaps”, policy-guided planning will rely
heavily on the policy’s suggestions, and the policy will ob-



GENERALIZED POLICY SEARCH VIA GBFS
input: domain ⟨P,A⟩ and training problems Ψ
input: search operators Ω
// E.g., an empty decision list
initialize: trivial generalized policy π0

// Ordered low-to-high priority
initialize: empty priority queue q
// See Algorithm 2
Push π0 onto q with priority SCORE(π0, P,A,Ψ)
// Repeat until max iters
for i = 1, 2, 3, ... do

Pop π from q // Best policy in q
for search operator ω ∈ Ω do

for π′ ∈ ω(π, P,A,Ψ) do
Push π′ to q with SCORE(π′, P,A,Ψ)

// Policy with the lowest score
return Best seen policy π∗

Algorithm 1: Generalized policy search via GBFS. See Al-
gorithm 2 for the PG3-specific implementation of SCORE.

PG3 SCORE FUNCTION FOR POLICY SEARCH
input: candidate policy π
input: domain ⟨P,A⟩ and training problems Ψ
hyperparameter: max plan horizon ℓ
initialize: scores← []
for ⟨O, I,G⟩ ∈ Ψ do

// See Algorithm 3
Run POLICYGUIDEDPLAN(π,O, I,G, P,A)
if a plan p is found then

// See Algorithm 4
score← PLANCOMPARISON(π, p, I)
scores.append(score)

else
scores.append(ℓ)

return max(scores)
Algorithm 2: Scoring via policy-guided planning (PG3).

tain a high score from PG3. If the candidate policy is poor,
policy-guided planning will ignore its suggestions, resulting
in a low score. For example, consider again the good-but-
imperfect policy from Example 1. Policy-guided planning
will take the suggestions of this policy to follow the marked
trail until a rock is encountered, at which point the policy
becomes stuck. The planner will then rely on the single-
step successors to climb over the rock, at which point it will
again follow the policy, continuing along the trail until an-
other rock is encountered or the goal is reached.

Limitation. PG3 requires planning during scoring, which
can be computationally expensive. Nonetheless, in experi-
ments, we will see that PG3 (implemented in Python) can
quickly learn policies that generalize to large test problems.

Theoretical Results
We now turn to a simplified setting for theoretical analysis.

Example 2 (Tabular). Suppose we were to represent poli-
cies as tables. Let {(S,G) 7→ a} denote a policy that assigns
action a for state S and goal G. Consider a single search op-

POLICY-GUIDED PLANNING
input: policy π
input: problem ⟨O, I,G⟩ and domain ⟨P,A⟩
hyperparameter: max plan horizon ℓ
// See definition below
return A∗ with GETSUCCESSORS

Subroutine GETSUCCESSORS
input: state S // State in search
hyperparameter: max policy execution steps k
for ground actions a applicable in S do

// Standard successor function
yield a(S) with cost from domain

// Policy-guided successors
for i = 1, 2, . . . , k do

if π is not applicable in S, stop.
// Get action from policy
ai ← π(S,G)
// Update current state
S ← ai(S)
// Yield all encountered states
yield S with cost 0

Algorithm 3: Policy-guided planning. A helper for the PG3
score function (Algorithm 2). In our experiments with PDDL
domains, A∗ uses the hAdd heuristic (Bonet and Geffner 2001).

SINGLE PLAN COMPARISON
input: policy π, plan p, initial state I
initialize: score to 0 and S to I
for a in p do

if π(S) ̸= a then
Add 1 to score

S ← a(S)
return score

Algorithm 4: Scoring a policy by comparison to a single
plan. A helper for the PG3 score function (Algorithm 2).

erator for GPS, which changes one entry of a policy’s table
in every possible way. For example, in a domain with two
states S1, S2, one goal G, and two actions a1, a2, the GPS
successors of the policy {(S1, G) 7→ a1, (S2, G) 7→ a1}
would be {(S1, G) 7→ a2, (S2, G) 7→ a1} and {(S1, G) 7→
a1, (S2, G) 7→ a2}. Here we are not concerned with gener-
alization; training and test problems are the same, Ψ.

Our main theoretical results concern the influence of PG3
on GPS. Proofs are in Appendix A.

Definition 1 (GPS cost-to-go). The GPS cost-to-go from a
policy π0 is the minimum k s.t. there exists sequences of poli-
cies π0, . . . , πk and search operators ω0, . . . , ωk−1 s.t. πk is
satisficing, and ∀j, πj+1 ∈ ωj(πj).

Note that in the tabular setting, the GPS cost-to-go is
equal to the minimum number of entries in the policy table
that need to be changed to solve all problems.

Assumption 1. The heuristic used for A∗ search in policy-
guided planning (Algorithm 3) is admissible; planning is
complete; and all costs in the original problem are unitary.



Theorem 1. Under Assumption 1, in the tabular setting (Ex-
ample 2), if a policy π solves all but one of the problems in
Ψ, then the PG3 score for π is equal to the GPS cost-to-go.

As a corollary, GPS with PG3 will perform optimally un-
der the conditions of Theorem 1, in terms of the nodes ex-
panded by GBFS before reaching a satisficing policy.
Theorem 2. Under Assumption 1, in the tabular setting (Ex-
ample 2), PG3 is a lower bound on the GPS cost-to-go.

These results do not hold for other choices of score func-
tions, including policy evaluation or plan comparison. How-
ever, the results do not immediately extend beyond the tabu-
lar setting; in general, a single application of a search oper-
ator could change a policy’s output on every state, convert-
ing a “completely incorrect” policy into a satisficing one. In
practice, we expect GPS to lie between these two extremes,
with search operators often changing a policy on more than
one, but far fewer than all, states in a domain. Toward further
understanding the practical case, we next consider a specific
instantiation of GPS that will allow us to study PG3 at scale.

Generalized Policies as Lifted Decision Lists
We now describe a hypothesis class of lifted decision list
generalized policies that are well-suited for PDDL domains
(Mooney and Califf 1995; Levine and Humphreys 2003).
Definition 2 (Rule). A rule ρ for a domain ⟨P,A⟩ is a tuple:
• PAR(ρ): parameters, a tuple of variables;
• PRE(ρ): preconditions, a set of literals;
• GOAL(ρ): goal preconditions, a set of literals;
• ACT(ρ): the rule’s action, from A;

with all literals and actions instantiated over the parame-
ters, and with all predicates in P .

As with actions, rules can be grounded by substituting ob-
jects for parameters, denoted ρ = ρ(o1, . . . , ok). Intuitively,
a rule represents an existentially quantified conditional state-
ment: if there exists some substitution for which the rule’s
preconditions hold, then the action should be executed. We
formalize these notions with the following two definitions.
Definition 3 (Rule applicability). Given a state S and goal
G over objects O, a rule ρ is applicable if ∃(o1, . . . , ok) s.t.
PRE(ρ) ⊆ S and GOAL(ρ) ⊆ G, where ρ = ρ(o1, . . . , ok)
and with each oi ∈ O.
Definition 4 (Rule execution). Given a state S and goal G
where rule ρ is applicable, let (o1, . . . , ok) be the first2 tu-
ple of objects s.t. the conditions of Definition 3 hold with
ρ = ρ(o1, . . . , ok). Then the execution of ρ in (S,G) is
a = ACT(ρ), denoted ρ(S,G) = a.

Rules are the building blocks for our main generalized
policy representation, the lifted decision list.
Definition 5 (Lifted decision list policy). A lifted decision
list policy π is an (ordered) list of rules [ρ1, ρ2, . . . , ρℓ].
Given a state S and goal G, π is applicable if ∃i s.t. ρi is
applicable. If π is applicable, the execution of π is the exe-
cution of the first applicable rule, denoted π(S,G) = a.

2First under a fixed, arbitrary ordering of object tuples, e.g.,
lexicographic, to avoid nondeterminism.

See Appendix E for examples of lifted decision list poli-
cies represented using PDDL-like syntax. Compared to
PDDL operators, in addition to the lack of effects and the
addition of goal preconditions, it is important to emphasize
that the rules are ordered, with later rules only used when
previous ones are not applicable. Also note these policies
are partial: they are only defined when they are applicable.

Representational Capacity. We selected lifted decision
lists because they are able to compactly express a rich set of
policies across several domains of interest. For example, re-
peated application of a lifted decision list policy can lead to
looping behavior. Nonetheless, note the absence of numeric
values, universal quantifiers, and more sophisticated control
flow and memory. PG3 is not specific to lifted decision lists
and could be used with richer policy classes.

Generalized Policy Search Operators

Here we present search operators for GPS with lifted deci-
sion list policies (Algorithm 1). Recall each operator ω ∈ Ω
is a function from a policy π, a domain ⟨P,A⟩, and training
problems Ψ, to a set of successor policies Π′.

Add Rule. This operator adds a new rule to the given
policy. One successor policy is proposed for each possi-
ble new rule and each possible position in the decision list.
Each new rule ρ corresponds to an action with precondi-
tions from the domain, and no goal conditions: for a ∈ A,
ρ = ⟨PAR(a), PRE(a), ∅, a⟩. The branching factor for this
operator is therefore |A|(|π|+1), where |π| denotes the num-
ber of rules in the given decision list.

Delete Rule. This operator deletes a rule from the given
policy. The branching factor for this operator is thus |π|.

Add Condition. For each rule ρ in the given policy, this
operator adds a literal to PRE(ρ) or GOAL(ρ). The literal
may be positive or negative and the predicate may be any in
P . The terms can be any of the variables that are already in ρ.
The branching factor for this operator is thus O(4|π||P |km),
where m is the maximum arity of predicates in P and k is
the number of variables in ρ.

Delete Condition. For each rule ρ in the given policy, this
operator deletes a literal from PRE(ρ) or GOAL(ρ). Literals
in the action preconditions are never deleted. The branching
factor is therefore at most

∑
ρ∈π |PRE(ρ)|+ |GOAL(ρ)|.

Induce Rule from Plans. This final operator is the most
involved; we describe it here at a high level and give details
in Appendix B. Unlike the others, this operator uses plans
generated on the training problems to propose policy modi-
fications. In particular, the operator identifies a state-action
pair that disagrees with the candidate policy, and amends
the policy so that it agrees. The mechanism for amending
the policy is based on an extension of triangle tables (Fikes,
Hart, and Nilsson 1972). This operator proposes a single
change to each candidate, so the branching factor is 1.

Given these operators, we perform GPS starting with an
empty lifted decision list using the operator order: Induce
Rule from Plans; Add Condition; Delete Condition; Delete
Rule; Add Rule. In Appendix C, we describe two optimiza-
tions to improve GPS, irrespective of score function.



PG3 (Ours) Policy Eval Plan Comp Combo Goal Count GNN BC Random
Domains Eval Time Eval Time Eval Time Eval Time Eval Time Eval Time Eval Time
Delivery 1.00 1.5 0.00 – 0.10 5.8 0.20 2132.4 1.00 27.9 0.40 39.9 0.00 –
Forest 1.00 107.2 1.00 605.1 0.16 51.5 1.00 815.4 0.89 662.4 0.13 – 0.03 –
Gripper 1.00 79.5 0.00 – 0.20 0.8 0.00 – 0.00 – 0.06 – 0.00 –
Miconic 1.00 434.8 0.00 – 0.10 316.6 0.00 – 0.90 2415.3 0.12 – 0.13 –
Ferry 1.00 16.1 0.00 – 0.90 1.8 0.00 – 1.00 5705.2 0.11 11.8 0.00 –
Spanner 1.00 17.7 1.00 6.8 0.56 2.1 1.00 31.2 1.00 5.2 0.37 18.1 0.06 –

Table 1: Policy learning results. Eval: fraction of test problems solved by the final learned policy. Time: average wall-clock
time (in seconds) required to learn a policy that solves ≥ 90% of test problems, with a missing entry if such a policy was never
found. All entries are means across 10 random seeds and 30 test problems per seed, with standard deviations shown in Table 2.

5 Experiments and Results
The following experiments evaluate the extent to which PG3
can learn policies that generalize to held-out test problems
that feature many more objects than seen during training.

Experimental Setup. Our main experiments consider the
fraction of test problems solved by learned policies. Note
that here we are evaluating whether policies are capable of
solving the problems on their own; we are not using the poli-
cies as planning guidance. Each policy is executed on each
test problem until either the goal is reached (success); the
policy is not applicable in the current state (failure); or a
maximum horizon is exceeded (failure) (Appendix D). All
experimental results are over 10 random seeds, where train-
ing and test problem instances are randomly generated for
each seed. GPS methods are run for 2500 node expansions.

Domains. We use the following domains:
• Forest: See Figure 1 for description.
• Delivery: An agent must deliver packages to multiple

locations while avoiding trap locations. The agent can
pick up any number of packages from a home base, move
between locations, and deliver a package to a location.

• Miconic: In this International Planning Competition
(IPC) domain, an agent can move an elevator up or down
and board or depart passengers. Each problem requires
the agent to transport passengers to their desired floors.

• Gripper: In this IPC domain, an agent with grippers can
pick, move, and drop balls. Each problem requires the
agent to transport balls to their target locations.

• Ferry: In this IPC domain, an agent can sail, board, and
debark cars. Each problem requires the agent to board
cars, sail to their destination, and debark them.

• Spanner: In this IPC domain, an agent can move, pick
up spanners, and tighten nuts using spanners. Each prob-
lem requires the agent to move along the corridor and
pick up spanners needed to tighten nuts at the shed at the
end of the corridor. The agent cannot move backwards.

See Appendix D for problem counts, sizes, and more details.

Approaches
We evaluate the following methods and baselines:
• PG3 (Ours): Our main approach.
• Policy evaluation: GPS with policy evaluation.
• Plan comparison: GPS with plan comparison. Plans are

collected on the training problems using A∗ with hAdd.

• Combo: GPS with policy evaluation, but with ties bro-
ken using the plan comparison score function.

• Goal count: GPS with a score function that runs the can-
didate policy on each training problem and counts the
number of goal atoms not yet achieved at the end of ex-
ecution (Segovia-Aguas, Jiménez, and Jonsson 2021).

• Graph neural network behavior cloning (GNN BC):
Inspired by recent works that use graph neural networks
(GNNs) in PDDL domains, this method learns a GNN
policy via behavior cloning using plans from the train-
ing problems. The architecture and training method are
taken from (Silver et al. 2021); see Appendix F.

• Random: a trivial baseline that selects among applicable
actions uniformly at random on the test problems.

Results and Discussion. See Table 1 for our main empiri-
cal results. The results confirm that PG3 is able to efficiently
guide policy search toward policies that generalize to larger
held-out test problems. Qualitatively, the policies learned by
PG3 are compact and intuitive (Appendix E). Baseline per-
formance is mixed, in most cases failing to match that of
PG3. The strongest baseline is goal count, which confirms
findings from previous work (Segovia-Aguas, Jiménez, and
Jonsson 2021); however, even in domains with competitive
final evaluation performance, the time required to learn a
good policy can substantially exceed that for PG3. This is
because goal count suffers from the same limitation as pol-
icy evaluation, to a lesser degree: all policies receive trivial
scores until one is found that reaches at least one goal atom.
Plan comparison has consistently good performance only in
Ferry; in this domain alone, the plans generated by the plan-
ner are consistent with the compact policy that is ultimately
learned. GNN BC is similarly constrained by the plans found
by the planner. Combo improves only marginally on policy
evaluation and plan comparison individually.

6 Conclusion
In this work, we proposed PG3 as a new approach for gen-
eralized planning. We demonstrated theoretically and em-
pirically that PG3 outperforms alternative formulations of
GPS, such as policy execution and plan comparison, and
found that it is able to efficiently discover compact poli-
cies in PDDL domains. There are many interesting direc-
tions for future work, including applying PG3 in domains
with stochasticity and partial observability, and integrating
insights from other approaches to generalized planning.
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A Proofs
Proof of Theorem 1
Theorem 1. Under Assumption 1, in the tabular setting (Ex-
ample 2), if a policy π solves all but one of the problems in
Ψ, then the PG3 score for π is equal to the GPS cost-to-go.

Proof. Let ⟨O, I,G⟩ be the problem in Ψ that π does not
solve. First we will show that the PG3 score (Algorithm 2) is
less than or equal to the GPS cost-to-go (Definition 1). Sup-
pose that the PG3 score is n. Then for the problem ⟨O, I,G⟩,
there exists a plan (a1, . . . , am) with corresponding states
(S1, . . . , Sm+1), and indices I = {i1, . . . , in} such that
∀j ∈ I, π(Sj) ̸= aj , and ∀k ̸∈ I, π(Sk) = ak. Consider
the following tabular policy:

{(Sj , G) 7→ aj : j ∈ I} ∪ {(S,G) 7→ π(S) : S ̸∈ SI}

where SI = {Sj : j ∈ I}. By construction, this policy is
satisficing. Furthermore, this policy differs from π in n table
entries, so the cost-to-go is no more than n.

In the other direction, suppose towards a contradiction
that the PG3 score is again n, but the GPS cost-to-go is
n′ < n. Observe that the successor function used in policy-
guided planning induces a modified search graph with re-
spect to the search graph in the original problem. Whereas
all edge costs in the original search graph are unitary by As-
sumption 1, the modified search graph contains new zero-
cost edges corresponding to the policy’s actions. Since the
GPS cost-to-go is n′, there exists a satisficing policy π′ that
differs from π in n′ states. Let (a1, . . . , am) be the plan for
policy π′ with corresponding states (S1, . . . , Sm+1). Since
the policy is deterministic, these states do not have repeats
(otherwise the policy could not be satisficing). The cost of
this plan in the modified search graph is therefore equal
to n′. However, by supposition, the minimum cost path in
the modified search graph is n, a contradiction. Therefore
we can conclude that the PG3 score is equal to the cost-to-
go.

Proof of Theorem 2
Theorem 2. Under Assumption 1, in the tabular setting (Ex-
ample 2), PG3 is a lower bound on the GPS cost-to-go.

Proof. Suppose to the contrary that PG3 is not GPS admis-
sible. Then there exists a policy π and training problems
Ψ where the PG3 score n exceeds the GPS cost-to-go n′.
Since PG3 accumulates per-plan scores using a max (Algo-
rithm 2), there is a corresponding problem ⟨O, I,G⟩ in Ψ
that represents the argmax. In other words, the PG3 score for
{⟨O, I,G⟩} is n. From Theorem 1, we know that the GPS
cost-to-go for π on {⟨O, I,G⟩} is equal to n. Furthermore,
the GPS cost-to-go n′ for the full set Ψ cannot be less than
n, since each additional problem contributes non-negatively
to the GPS cost-to-go in the tabular setting. Thus n ≤ n′, a
contradiction.

B Induce Rule from Plans Operator
Here we describe in detail the final search operator, with a
detailed walkthrough in the next subsection. This search op-
erator proposes a modification to a given policy based on

example plans. The plans are cached from the score func-
tion when possible; for example, PG3 uses the policy-guided
plans, and plan comparison uses the planner-generated
plans. This operator suggests a modification to the candidate
policy by identifying the last missed action — an action that
does not match the candidate’s output at the corresponding
missed state in one of the plans — and computing a new
rule for the policy that would “correct” the policy on that
example.

New rules are computed via an extension of the triangle
tables approach of (Fikes, Hart, and Nilsson 1972), which
was originally proposed for macro action synthesis. Given
a plan subsequence, triangle tables creates a macro by com-
puting a preimage for (an edited subsequence of) the sub-
sequence. The plan subsequence that we use as input to tri-
angle tables is one that begins with the missed action and
ends with the first subsequent goal literal that is permanently
achieved, that is, added to the state and never removed in the
remainder of the plan. The preimage returned by triangle ta-
bles comprises the preconditions PRE(ρ′) of the new rule ρ′;
the goal conditions GOAL(ρ′) consist of the single goal lit-
eral at the tail of the subsequence; and the action ACT(ρ′) is
derived from the missed action. The new rule ρ′ is inserted
into π before the first existing rule that was applicable in
the missed state; if none were applicable, the new rule is ap-
pended to the end.

A limitation of the approach described thus far is that the
preconditions added to the new rule can be overly specific.
We would prefer to introduce a more general rule, to pro-
mote generalization to new problems, so long as that rule
still returns the missed action in the missed state. With that
intuition in mind, we implement a final extension of the
triangle tables approach. Instead of starting with the entire
preimage as the precondition set for the rule, we start with
a smaller set, computed as follows. All preconditions in the
preimage which only involve objects in the failed action and
the first permanently-achieved subsequent goal literal are in-
cluded in proposed rule. If upon checking that the proposed
rule does not produce the missed action, we iteratively step
through each action in the plan subsequence used in the tri-
angle table and add new preconditions to that rule, attempt-
ing to reproduce the missed action. The new preconditions
that we add at each iteration are determined as follows: we
add all preconditions involving objects from the previously
proposed rule and the current action in the plan subsequence.
If the missed action is never produced, the final proposed
rule whose preconditions are equivalent to the entire preim-
age is returned.

In preliminary experiments, we found that this operator
is very helpful in most domains, such as the Ferry example
shown in the following section. But in the Forest domain,
the operator can lead to overfitting and syntactically large
policies. We therefore disable this operator for Forest; note
that this change applies to all GPS methods, including PG3,
policy evaluation, plan comparison, combo, and goal count.

Example
We now provide an example of the Induce Rule from Plans
operator in the Ferry domain. Consider the policy in Figure



Figure 2: Example input to Induce Rule from Plans operator;
see Section B

.

2 as input to the operator, and consider the following plan:
1. sail(l8, l7)
2. board(c0, l7)
3. sail(l7, l0)
4. debark(c0, l0)
5. sail(l0, l2)
6. board(c4, l2)
7. sail(l2, l8)
8. debark(c4, l8)

for a problem where G =
{at(c4, l8), at(c0, l0)}. The initial state is
too large to print, but includes atFerry(l8), at(c0,
l7), at(c4, l2) among others.

Referring to the policy, the last missed action in this plan
is sail(l2, l8). The subsequent goal literal that is per-
manently achieved is at(c4, l8), and it is achieved on
the final time step, so the input to triangle tables is:
7. sail(l2, l8)
8. debark(c4, l8)

The preimage then returned by triangle tables is:
{(car c4), (location l2), (location l8),
(notEq l2, l8), (not (at l2, l8)), (atFerry l2),
(on c4)}

Replacing all objects with placeholders, we arrive at a
new rule, which we then insert into the policy following the
existing rule; see Figure 3. In this example, the additional
generalization step described in the section above does not
change the policy, so the policy in Figure 3 is the final output
of the operator.

C Additional GPS Optimizations
There are two additional optimizations that we use in ex-
periments to accelerate GPS. First, in addition to the score
functions described previously, we add a small size penalty
to the score:

PENALTY(π) = −w
∑
ρ∈π

|PRE(ρ)|+ |GOAL(ρ)|

where w is a weight selected to be small enough (0.00001 in
experiments) so that the penalty only breaks ties in the orig-
inal score function. This regularization encourages GPS to

Figure 3: Example output from Induce Rule from Plans op-
erator; see Section B and Figure 2.

discover policies with shorter description length, encoding
an Occam’s razor bias.

The second optimization is motivated by the observation
that two policies may be syntactically distinct, but seman-
tically equivalent with respect to all states and goals of in-
terest. This leads to two challenges: (1) it is difficult to com-
pute semantic equivalence, especially with respect to the un-
known set of states and goals of interest; and (2) we can-
not necessarily prune policies according to semantic equiva-
lence because their neighbors in policy search space may be
semantically different. Nonetheless, we would like to bias
policy search so that it avoids redundancy.

To address the challenge of computing semantic equiva-
lence, we resort to the following approximate approach. At
the beginning of GPS, we use a planner to collect a set of
example plans on the training problems (as in the plan com-
parison scoring function). The states and goals encountered
in these example plans are used to approximate the “states
and goals of interest.” During GPS, we execute each candi-
date policy on each of these states and goals to compute a
semantic identifier. We maintain a map from semantic iden-
tifiers to counts, with the counts representing the number of
times that a policy with that semantic identifier has been ex-
panded. When a new policy is generated, it is inserted into
the GBFS queue (Algorithm 1) with priority (count, score),
with the effect being that semantically unique policies are
always explored first. This optimization maintains the com-
pleteness of GPS while favoring policies that are approxi-
mately semantically unique.

D Additional Experimental Details
All code is implemented in Python and run on a quad-core
AMD64 processor with 16GB RAM, in Ubuntu 18.04. We
use PDDLGym (Silver and Chitnis 2020) for simulation.

Below are additional details for each domain and train/test
problem distributions, which are procedurally generated
separately for each random seed. The specific problems used
in this work are supplied with the code.

• Forest

– Max horizon: 100



PG3 (Ours) Policy Eval Plan Comp Combo Goal Count GNN BC Random
Domains Eval Time Eval Time Eval Time Eval Time Eval Time Eval Time Eval Time
Delivery 0.00 0.8 0.00 – 0.32 – 0.42 1659.3 0.00 19.4 0.41 27.8 0.00 –
Forest 0.00 80.0 0.00 472.2 0.30 – 0.00 689.2 0.33 517.6 0.07 – 0.03 –
Gripper 0.00 20.8 0.00 – 0.42 0.2 0.00 – 0.00 – 0.13 – 0.00 –
Miconic 0.00 606.1 0.00 – 0.30 – 0.00 – 0.31 1810.6 0.12 – 0.05 –
Ferry 0.00 5.2 0.00 – 0.32 0.3 0.00 – 0.00 2340.0 0.18 – 0.00 –
Spanner 0.00 15.9 0.00 3.0 0.53 0.4 0.00 17.6 0.00 2.0 0.42 12.5 0.04 –

Table 2: Standard deviations for policy learning results. See Table 1 for further description.

– Train problems: 10 problems, which have grids with
heights and widths ranging from 8 to 10, for a total of
64–100 objects.

– Test problems: 30 problems, which have grids with
heights and widths ranging from 10 to 12, for a total
of 100–144 objects.

• Delivery
– Max horizon: 1000
– Train problems: 5 problems, which have 5–9 locations,

2–4 delivery requests, and 2–4 packages, for a total of
9–17 objects.

– Test problems: 30 problems, which have 30–39 loca-
tions, 20–29 requests, and 0–10 more packages than
requests, for a total of 70–110 objects.

• Miconic
– Max horizon: 1000
– Train problems: 10 problems, which have 1–2 build-

ings, and for each building, 5–10 floors and 1–5 pas-
sengers, for a total of 6–30 objects.

– Test problems: 30 problems, which have 1–5 buildings,
and for each building, 10–20 floors and 1–10 passen-
gers, for a total of 11–150 objects.

• Gripper
– Max horizon: 1000
– Train problems: 10 problems, which have 5–10 balls

and 15–20 rooms for a total of 20–30 objects.
– Test problems: 30 problems, which have 20–30 balls

and 40–50 rooms for a total of 60–80 objects.

• Ferry
– Max horizon: 1000
– Train problems: 10 problems, which have 10–15 loca-

tions and 3–5 cars, for a total of 13–20 objects.
– Test problems: 30 problems, which have 20–30 loca-

tions and 10–20 cars, for a total 30–50 objects.

• Spanner
– Max horizon: 1000
– Train problems: 10 problems, which have 3–5 span-

ners, 3–5 nuts, and 3–5 locations, for a total of 9–15
objects.

– Test problems: 30 problems, which have 10–20 span-
ners, 10–20 nuts, and 10–20 locations, for a total of
30–60 objects.

E Additional Results
Standard Deviations for Main Results
See Table 2 for standard deviations on the main policy learn-
ing results presented in Table 1.

Qualitative Results: Learned Policies
See Figures 4, 5, 6, 7, 8, 9 for policies learned by PG3.

F Graph Neural Network Baseline Details
The GNN behavioral cloning baseline is implemented in Py-
Torch, version 1.9.0. Our architecture and learning hyperpa-
rameters are identical to those used in the reactive policy
baseline of (Silver et al. 2021). All GNNs node and edge
modules are fully connected neural networks with one hid-
den layer of dimension 16, ReLU activations, and layer nor-
malization. Message passing is performed for K = 3 itera-
tions. Training uses the Adam optimizer with learning rate
0.001 for 100000 epochs with a batch size of 16. Perfor-
mance is evaluated by directly executing the learned policy
on the test problems for up to 1000 steps. The reported val-
idation accuracy is the percent of test problem executions
that reach the goal after the last training epoch.



Figure 4: Learned policy for the Forest domain. This policy has the agent follow the marked trail until a rock is encountered,
at which point it climbs over the rock. For this policy and the others, it is important to remember that the rules are ordered (left
to right); each rule will only be used when the previous rules are not applicable.

Figure 5: Learned policy for the Delivery domain. This policy has the agent deliver a package whenever it is at a location that
wants a package but does not yet have one; it also picks up packages whenever there are packages available at the home base;
and it moves to a location that wants a package, but has not yet received one.



Figure 6: Learned policy for the Miconic domain. This policy has the agent drop off passengers whenever they are boarded
and at their destination floor; move up or down, depending on whether the destination floor is above or below, whenever a
passenger is boarded but not yet at their destination floor; board a passenger whenever there is a passenger at the elevator’s
current floor that is not yet at their destination; and to start, moves up to a floor where there is a passenger waiting (the elevator
always starts on the ground floor).

Figure 7: Learned policy for the Gripper domain. Note that objects and parameters in this domain are untyped. This policy
has the agent drop a ball that it’s carrying when in the target room for that ball; pick a ball when the gripper is free and the ball
is not yet in its target room; move to a target room when carrying a ball whose target room is not the robot’s current room; and
initially, moves to a room with some ball that is not yet at its target room.



Figure 8: Learned policy for the Ferry domain. Note that objects and parameters in this domain are untyped. This policy has
the agent drop off (debark) cars whenever they are on the ferry but at their destinations; sail to a destination location when there
is a car loaded; board a car when the ferry is empty and there is a car at the ferry’s current location that has not yet been served;
and sail to a location with a car that has not yet been served otherwise.

Figure 9: Learned policy for the Spanner domain. This policy has the agent tighten a nut whenever there is a loose nut at the
agent’s location and the agent is carrying a spanner (wrench); pick up a spanner whenever it is available at the current location
and not yet carried; and walk to a location with a loose nut otherwise.


